INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	$:$	THERMODYNAMICS
Course Code	$:$	A30306
Class	$:$	II B. Tech I Semester
Branch	$:$	MECH
Year	$:$	$2016-2017$
Course Coordinator	$:$	Mr. SV Durga Prasad, Assistant Professor.
Course Faculty	$:$	Mr. SV Durga Prasad, Assistant Professor.

OBJECTIVES:

Thermodynamics is the science that deals with the relationship between heat and work and those properties of systems that bear relation to heat and work. General laws of energy transformations concerning all types of systems, mechanical, electrical and chemical may fall within the purview of this science. It is a science based on a number of empirical laws formed by experimentation from which all predictions concerning the physical behavior of the system may be deduced by logical reasoning. The findings have been formalized into certain basic laws, which are known as Zeroth, First, Second and Third laws of thermodynamics. Power cycles and refrigeration cycle based on thermodynamic system is studied.

S No	QUESTION	$\begin{gathered} \text { Blooms } \\ \text { taxonomy } \\ \text { level } \\ \hline \end{gathered}$	Course Outcomes
UNIT - I			
Part - A (Short Answer Questions)			
1	Explain Zeroth law of Thermodynamics.	Understand	1,2
2	Define System, Surroundings and Boundary?	Remember	1,2
3	Distinguish between macroscopic and microscopic point of view?	Evaluate	1,2
4	Discuss Quasi Static process, what are its characteristics?	Understand	1,2
5	Distinguish between different types of systems with examples.	Evaluate	1,2
6	Explain the features of constant volume gas thermometer.	Understand	1,2
7	Discuss First law of thermodynamics, explain Joule's experiment.	Understand	1,3
8	Define PMM 1.	Remember	1,4
9	State the causes of irreversibility?	Remember	1,4
10	Derive Steady Flow Energy Equation, when the device is an air compressor.	Apply	4,5,6
11	State thermodynamic system? How do you classify it?	Remember	1,2
12	State the closed system? Give an example	Remember	1,2
13	Define Intensive and Extensive properties.	Remember	1,2
14	Define equilibrium of a system?	Remember	1,2

S No	QUESTION	Blooms taxonomy level	Course Outcomes
15	Define Intensive and Extensive properties.	Remember	1,2
16	Differentiate closed and open system.	Analyze	1,2
17	Define Specific heat capacity at constant volume	Remember	1,2
18	Define Specific heat capacity at constant pressure.	Remember	1,2
19	Differentiate closed and open system.	Analyze	1,2
20	Classify the properties of system?	Understand	1,2
Part - B (Long Answer Questions)			
1	Differentiate the system, surroundings and boundary Explain in detail.	Analyze	4,5,6
2	Classify the types of systems, explain the energy conversion in them.	Understand	1,2
3	Explain in detail the macroscopic and microscopic study of thermodynamics?	Understand	1,2
4	Explain the importance of concept of continuum in thermodynamic approach?	Understand	1,2
5	Explain thermodynamic equilibrium in detail?	Understand	1,2
6	Differentiate thermal equilibrium and thermodynamic equilibrium, explain.	Analyze	4,5,6
7	Explain, the role of chemical equilibrium in thermodynamic equilibrium?	Understand	1,2
8	Enumerate the Isobaric process from thermodynamic point of view?	Analyze	4,5,6
9	Enumerate the Isochoric process from thermodynamic point of view?	Analyze	4,5,6
10	Enumerate the Isothermal process from thermodynamic point of view?	Analyze	4,5,6
11	Enumerate the Isentropic process from thermodynamic point of view?	Analyze	4,5,6
12	Enumerate the polytrophic process from thermodynamic point of view?	Analyze	4,5,6
13	Explain displacement work with neat diagram?	Understand	1,2
14	State Zeroth law and explain with a good example?	Understand	1,2
15	Explain the Joule's experiment with a neat sketch?	Understand	1,2
16	Sketch the constant volume gas thermometer and explain?	Apply	4,5,6
17	List the scales of temperature and explain in detail?	Understand	1,2
18	Compare the first law of thermodynamics with its corollaries?	Analyze	4,5,6
19	Explain how the first law of thermodynamics applied to a process?	Understand	1,2
20	Explain the Steady flow energy equation?	Understand	1,2
Part - C (Problem Solving and Critical Thinking Questions)			
1	When a stationary mass of gas was compressed without friction at constant pressure, its initial state of $0.4 \mathrm{~m}^{3}$ and 0.105 MPa was found to change to final state of $0.20 \mathrm{~m}^{3}$ and 0.105 MPa . There was a transfer of 42.5 kJ of heat from the gas during the process. Determine the change in internal energy of the gas?	Apply	4,5,6
2	0.44 kg of air at $180^{\circ} \mathrm{C}$, expands adiabatically to 3times its original volume and during the process there is a fall in temperature to $15^{\circ} \mathrm{C}$. The work done during the process is 52.5 kJ . Calculate Cp and Cv ?	Understand	1,2
3	Two thermometers one centigrade and other Fahrenheit are immersed in a fluid, after the thermometers reached equilibrium with the fluid, it is noted that both the thermometers indicate the same numerical values. Find that the identical numerical values shown by the thermometers? Determine the corresponding temperature of the fluid, express in degrees Kelvin and degrees Rankine?	Apply	4,5,6
4	Derive the steady flow energy equation.	Apply	4,5,6
5	Derive the expression for work done in	Apply	4,5,6

S No	QUESTION				Blooms taxonomy level	Course Outcomes
	i) Isothermal process ii) Polytropic process					
6	A piston cylinder device operates 1 kg of fluid at 20atm pressure with initial volume is $0.04 \mathrm{~m}^{3}$. Fluid is allowed to expand reversibly following $\mathrm{pV}^{1.45}=C$. So that the volume becomes double. The fluid is cooled at constant pressure until the piston comes back. Determine the work done in each process?				Apply	4,5,6
7	A fluid contain in a horizontal cylinder with a frictionless leak proof piston is continuously agitated by a stirrer passing through the cylinder cover. The diameter of the cylinder is 50 cm and the piston is held against the fluid due to atmospheric pressure equal to 100 kPa . The stirrer turns 8000 revolutions with an average torque of 1.5 Nm . If the piston slowly moves outwards by 60 cm . Determine the net work transfer to the system?				Apply	4,5,6
8	A Piston and cylinder machine contains a fluid system which passes through a complete cycle of four processes. During a cycle the sum of all heat transfers is -170 kJ . The system completes 100cycles/minute. Complete the following table showing the method for each item and compute net rate of work output in kW .				Analyze	4,5,6
		$\mathrm{Q}(\mathrm{kJ} / \mathrm{min})$	W(kJ/min)	$\Delta \mathrm{E}(\mathrm{kJ} / \mathrm{min})$		
	a-b	0	2170	----		
	b-c	21000	0	----		
	c-d	-2100	----	-36600		
9	A fluid is confined in a cylinder by a spring loaded friction less piston, so the pressure in the fluid is a linear function of volume $(\mathrm{p}=\mathrm{a}+\mathrm{bV})$. The internal energy of the fluid is given by the following equation $\mathrm{U}=34+3.15 \mathrm{pV}$. Where U is in kJ , p in kPa and V is in m^{3}. If the fluid changes from initial state of $170 \mathrm{kPa}, 0.03 \mathrm{~m}^{3}$ to a final state of 400 kPa , $0.06 \mathrm{~m}^{3}$ with no work other than that done on the piston. Define the direction and magnitude of work and heat transfer.?				Remember	1,2
10	Air flows steadily at the rate of $0.5 \mathrm{~kg} / \mathrm{sec}$ through an air compressor, entering at $7 \mathrm{~m} / \mathrm{sec}$ velocity, 100 kpa pressure and $0.95 \mathrm{~m}^{3} / \mathrm{kg}$ volume and leaving at $5 \mathrm{~m} / \mathrm{sec}, 700 \mathrm{kpa}$ and $0.19 \mathrm{~m}^{3} / \mathrm{kg}$. The internal energy of air leaving is $90 \mathrm{~kJ} / \mathrm{kg}$ greater than that of air entering. Cooling water in the compressor jacket absorbs heat from the air at the rate of 58 kw .Compute the rate of shaft work input to the air in KW.				Analyze	4,5,6
UNIT - II						
Part - A (Short Answer Questions)						
1	State the limitations of first law of thermodynamics?				Remember	1,2
2	Define second law of thermodynamics?				Remember	1,2
3	State PMM 2?				Remember	1,2
4	State the Carnot Cycle?				Remember	2,4,6
5	State the Clausius inequality?				Remember	1,2
6	Define the absolute temperature scale?				Remember	1,2,4
7	State the property of entropy?				Remember	1,2
8	Define an inversion curve?				Remember	2,3
9	Solve one T -dS equation by using Maxwell's relations?				apply	4,5,6
10	State the Third law of Thermodynamics?				Remember	1,2,5
11	Define internal energy of a system?				Remember	1,2
12	Define the change in internal energy of a system?				Remember	2,3

S No	QUESTION	Blooms taxonomy level	Course Outcomes
13	Explain the available energy in a system?	Understand	1,2,6
14	State the unavailable energy in a system?	Remember	1,6
15	Explain the principle of entropy increase?	Understand	1,6
16	Explain the exergy of a system?	Understand	2,6
17	Explain the Clausius statement?	Understand	3,4,5
18	State the Kelvin-Plank statement?	Remember	3,4,5
19	Sketch the PV and TS diagrams of Carnot cycle.	Apply	4,5,6
20	Classify the processes which constitute the cycle.	Understand	1,6
Part - B (Long Answer Questions)			
1	Explain the limitations of First law of thermodynamics in detail?	Understand	1,2
2	Explain the thermal reservoir with a neat sketch?	Understand	1,2
3	Explain the heat engine with a neat sketch?	Understand	1,2
4	Explain the heat pump with a neat sketch?	Understand	1,2
5	List the performance parameters of a system and explain in detail.	Understand	1,2
6	Compare the first law and second law of thermodynamics with suitable examples?	Analyze	4,5,6
7	Explain the second law of thermodynamics with suitable sketches?	Understand	1,2
8	Write the Kelvin-Plank statement and explain with an example?	Understand	1,2
9	Write the Clausius statement and explain with an example?	Understand	1,2
10	Write the Kelvin-Planck and Clausius statemes and explain with sketches?	Understand	1,2
11	State PMM1 and PMM2, in which manner both are different?	Analyze	4,5,6
12	Compare the relation with process and cycle? Explain.	Analyze	4,5,6
13	State the Carnot's principle? What is the importance of the principle, explain?	Understand	1,2,6
14	State the Clausius inequality? Explain.	Understand	1,2
15	Explain the influence of entropy on various parameters?	Analyze	4,5,6
16	Define Gibb's and Helmholtz's functions? Compare the importance of them?	Analyze	4,5,6
17	State the irreversibility and explain.	Understand	1,2
18	Explain the Availability in a thermodynamic system with example.	Understand	1,2
19	Discuss the importance of Maxwell relations ?	Understand	1,2
20	State the Third law of thermodynamics? Explain the importance.	Remember	1,2,3
Part - C (Problem Solving and Critical Thinking)			
1	A heat engine working on Carnot cycle converts $1 / 5^{\text {th }}$ of the heat input into work. When the temperature of the sink is reduced by $80^{\circ} \mathrm{C}$, the efficiency gets doubled. Determine the temperature of sink?	Apply	4,5,6
2	Discuss the equivalent of Kelvin-Plank and Clausius statements?	Understand	4,5,6
3	1 kg of ice at $-5^{\circ} \mathrm{C}$ expose to the atmosphere which, is at $20^{\circ} \mathrm{C}$. The ice melts and comes into thermal equilibrium with the atmosphere. Determine the entropy increase of Universe. Cp for ice is $2.039 \mathrm{~kJ} / \mathrm{kgK}$, and the enthalpy of fusion of ice is $333.3 \mathrm{~kJ} / \mathrm{kg}$.	Apply	4,5,6
4	A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$, the ambient air temperature is $30^{\circ} \mathrm{C}$, if heat leaks into the freezer at the continuous rate of $1.75 \mathrm{~kJ} / \mathrm{sec}$. State the least power necessary to pump this heat out continuous?	Remember	1,2
5	A heat engine is operating between two reservoirs 1000 K and 300 K is used to drive a heat pump which extracts heat from the reservoir at 300 K at a	Apply	4,5,6

S No	QUESTION	Blooms taxonomy level	Course Outcomes
	rate twice that at which the engine rejects the heat to it. If the efficiency of the engine is 40% of the maximum possible and COP of heat pump is 50% of the maximum possible, then determine the temperature of the reservoir to which the heat pump rejects heat. Also determine the rate of heat rejection from the heat pump, if the rate of heat supply to the heat engine is 50kW?		
6	Three Carnot engine are arranged in series. The first engine takes 4000kJ of heat from a source at 2000 K and delivers 1800 kJ of work. The second and third engines deliver 1200 kJ and 500 kJ of work respectively. Compare the exhaust temperature of second and third Carnot engines?	Analyze	4,5,6
7	Two bodies of equal capacities C and T_{1} and T_{2} from an adiabatically closed system. Determine the final temperature, if the system is brought to an equilibrium state. i) Freely ii) Reversibly, Proceed to calculate the maximum work which can be obtained from the system?	Apply	4,5,6
8	A heat engine is supplied with $2512 \mathrm{~kJ} / \mathrm{min}$ of heat at $650^{\circ} \mathrm{C}$. Heat rejectiontakes place at $100^{\circ} \mathrm{C}$. Distinguish which of the following heat rejection represent a reversible, irreversible or impossible result. i) $867 \mathrm{~kJ} / \mathrm{min}$ ii) $1015 \mathrm{~kJ} / \mathrm{min}$ iii) $1494 \mathrm{~kJ} / \mathrm{min}$	Analyze	4,5,6
9	Heat flows from a hot reservoir at 800 K to another reservoir at 250 K .If the entropy change of overall process is $4.25 \mathrm{~kJ} / \mathrm{K}$, Compare calculation for the heat flowing out of the high temperature reservoir?	Analyze	4,5,6
10	Air expands through a turbine from $500 \mathrm{kPa}, 520^{\circ} \mathrm{C}$ to $100 \mathrm{kPa}, 300^{\circ} \mathrm{C}$. During expansion $10 \mathrm{~kJ} / \mathrm{kg}$ of heat is lost to the surroundings, which is at $98 \mathrm{kPa}, 20^{\circ} \mathrm{C}$. Neglecting K.E and P.E changes, determine per kg of air i)the decrease in availability ii)the maximum work iii)irreversibility for air take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kgk}$	Apply	4,5,6
UNIT-III			
Part - A (Short Answer Questions)			
1	Explain the equation of state?	Understand	1,4
2	Derive the changes in internal energy during a process with variable specific heats.	Apply	4,5,6
3	Derive the changes in enthalpy during a process with variable specific heats.	Apply	4,5,6
4	Explain the process of free expansion?	Understand	1,2
5	Explain the process of Throttling?	Understand	1,2
6	State the expression for Vander Wall's equation and determine the constants?	Remember	
7	Explain On what coordinates compressibility charts can be drawn?	Understand	1,2
8	List the molar specific heats, explain?	Understand	1,2
9	Derive the expression for work done in a non-flow process, if the process is adiabatic?	Apply	4,5,6
10	Discuss briefly the reduced properties?	Apply	4,5
11	Define Pure Substance and what do you understand by a saturation stage?	Remember	1,2
12	Draw the phase diagram on p-v diagrams with water as pure substance?	Apply	4,5
13	Explain the concept of p-v-T surface? Represent on p-T coordinates?	Understand	1,2
14	Explain the critical state of water?	Understand	1,2

S No	QUESTION	Blooms taxonomy level	Course Outcomes
15	Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property line?	Apply	4,5,6
16	Draw the phase equilibrium diagram for a pure substance on H -s plot with relevant constant property line?	Apply	4,5,6
17	Compare isobar on Mollier diagram diverse from one another?	Analyze	4,5,6
18	Explain Mollier chart by representing all the properties on it?	Understand	1,2
19	State the degree of superheat and degree of sub cooling?	Remember	1,2
20	Define dryness fraction? What are the different methods of measurement of dryness fraction?	Remember	1,2
Part - B (Long Answer Questions)			
1	Enumerate the Perfect Gas Laws and analyze from thermodynamics point of view?	Evaluate	2,3,6
2	Explain the equation of State with variations?	Understand	1,2
3	Explain, how the heat and work transfer observed in perfect gas?	Understand	1,2
4	Explain the change in internal energy in perfect gas?	Understand	1,2
5	State Vander Waals equation, what is the importance of it?	Remember	1,2
6	What is compressibility chart, explain the procedure of usage?	Understand	1,2
7	Explain the phase transformation process with a diagram?	Understand	1,2
8	Analyze the properties at Triple point and state properties?	Analyze	4,5,6
9	Derive the Clausius Claperon equation?	Apply	4,5,6
10	Analyze the procedure adopted in Steam calorimetry ?	Analyze	4,5,6
11	Why can not a throttling calorimeter measure the quality, if the steam is wet? Explain how is the quality been measured?	Understand	1,2
12	Explain the saturation temperature, the changes in specific volume, enthalpy and entropy during evaporation at 1 MPa .	Understand	1,2
13	Compare the enthalpy, entropy and volume of steam at $1.4 \mathrm{MPa}, 380^{\circ} \mathrm{C}$.	Analyze	4,5,6
14	A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquid present is 9 kg .Find the pressure, mass, specific volume, enthalpy, entropy and internal energy?	Apply	4,5,6
15	Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and adiabatically in a steam turbine to $40^{\circ} \mathrm{C}$. Determine the ideal work output of the Turbine per kg of steam?	Apply	4,5,6
16	Steam flows in a pipe line at 1.5 MPa . After expanding to 0.1 MPa in a throttling calorimeter, the temperature is found to be $120^{\circ} \mathrm{C}$.Determine the quality of the steam in pipe line?	Apply	4,5,6
17	The following data were obtained with a separating and throttling calorimeter. Pressure in pipe line is 1.5 MPa. Condition after throttling is at $0.1 \mathrm{MPa}, 110^{\circ} \mathrm{C}$, During 5minutes moisture collected in the separator 0.15 lt at $70^{\circ} \mathrm{C}$ steam condense after throttling during 5 min 3.24 kg Determine the quality of steam in the pipe line?	Apply	4,5,6
18	Determine the enthalpy and entropy of steam and the pressure is 2 MPa and the specific volume is $0.09 \mathrm{~m}^{3} / \mathrm{kg}$.	Apply	4,5,6
19	A large insulated vessel is divided in to two chambers. One is containing 5 kg of dry saturated steam at 0.2 MPa and other 10 kg of steam, $0.8 q u a l i t y$ at 0.5 MPa . If the partition between the chambers is removed and the steam is mixed thoroughly and allow to settle. Determine the final pressure steam quality and entropy change in the process?	Apply	4,5,6

S No	QUESTION	$\begin{gathered} \text { Blooms } \\ \text { taxonomy } \\ \text { level } \\ \hline \end{gathered}$	Course Outcomes
20	Saturated steam has entropy of $6.76 \mathrm{~kJ} / \mathrm{kg}$ K. Determine the pressure, temperature, specific volume, enthalpy and internal energy?	Apply	4,5,6
Part - C (Problem Solving and Critical Thinking)			
1	The volume of a high altitude chamber is $40 \mathrm{~m}^{3}$.It is put into operation by reducing pressure from 1 bar to 0.4 bar and temperature from $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$.How many kg of air must be removed from the chamber during the process? Express this mass as a volume measured at 1 bar and $25^{\circ} \mathrm{C}$.	Understand	1,2
2	A fluid at 200 kPa and $300^{\circ} \mathrm{C}$ has a volume of $0.8 \mathrm{~m}^{3}$ in a frictionless process at constant volume, the pressure changes to 100 kPa . Calculate the final temperature and heat transfer, if the fluid is air?	Apply	4,5,6
3	A fluid at $250^{\circ} \mathrm{C}$ and 300 kPa is compressed reversibly and isothermally to $1 / 16^{\text {th }}$ of its original volume. Calculate the final pressure, work done and change of internal energy per kg of fluid, if the fluid is air?	Apply	4,5,6
4	Solve that for an ideal gas the slope of the constant volume line on the T-S diagram is more than that of the constant pressure line.	Apply	4,5,6
5	The specific heats of a gas are given by $\mathrm{C}_{\mathrm{p}}=\mathrm{a}+\mathrm{kT}$ and $\mathrm{C}_{\mathrm{v}}=\mathrm{b}+\mathrm{kT}$ where a, b, k are constants and T is in Kelvin. Show that for an isentropic expansion of gas $\mathrm{T}^{\mathrm{b}} \mathrm{v}^{(\mathrm{ab-b}} \mathrm{e}^{\mathrm{kT}}=$ constant.	Apply	4,5,6
6	A reversible polytropic process begins with a fluid at $\mathrm{p}_{1}=10 \mathrm{bar}, \mathrm{T}_{1}=200^{\circ} \mathrm{C}$ and at $\mathrm{p}_{2}=1 \mathrm{bar}$, the exponent n has the value 1.15 . Find the final specific volume, the final temperature and the heat transfer per kg of fluid, if the fluid is air.	Apply	4,5,6
7	A certain gas has $\mathrm{Cp}=1.968$ and $\mathrm{C}_{\mathrm{v}}=1.507 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Find its molecular weight and the gas constant?	Apply	4,5,6
8	A constant volume of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $5^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Find the work done, the heat transfer and changes in internal energy, enthalpy and entropy?	Apply	4,5,6
9	A reversible adiabatic process begins at $\mathrm{p}_{1}=10 \mathrm{bar}, \mathrm{T}_{1}=300^{\circ} \mathrm{C}$ and ends with $\mathrm{p}_{2}=1$ bar. Find the specific volume and the work done per kg of fluid, if the fluid is air?	Apply	4,5,6
10	Derive an expression for entropy change of an ideal gas from Tds equations?	Apply	4,5,6
UNIT-IV			
Part - A (Short Answer Questions)			
1	State Dalton's law of partial pressures?	Remember	1,2
2	Compute the characteristic gas constant and the molecular weight of the gas mixture?	Analyze	4,5,6
3	Derive the expression for internal energy?	Apply	4,5,6
4	Define mole fraction?	Remember	1,2
5	Explain about volumetric and gravimetric analysis?	Understand	1,2
6	Define dry bulb temperature, wet bulb temperature, dew point temperature and degree of saturation?	Remember	1,2
7	Explain adiabatic saturation temperature?	Understand	1,2
8	Explain psychrometric charts while representing all the properties?	Understand	1,2
9	Locate i) sensible heating ii) sensible cooling iii) heating and humidification iv) heating and dehumidification on psychrometric chart?	Apply	4,5,6
10	Define bypass factors represent adiabatic mixing of two air streams on psychrometric chart?	Remember	1,2
11	State dry bulb temperature?	Remember	1,2
12	State wet bulb temperature?	Remember	1,2
13	Define specific humidity?	Remember	1,2

S No	QUESTION	$\begin{gathered} \hline \text { Blooms } \\ \text { taxonomy } \\ \text { level } \\ \hline \end{gathered}$	Course Outcomes
14	Define relative humidity?	Remember	1,2
15	Explain Psychrometric chart?	Understand	1,2
16	State adiabatic saturation?	Remember	1,2
17	Define degree of saturation?	Remember	1,2
18	Obtain the expression for enthalpy of gas mixture?	Apply	4,5,6
19	Define mass fraction?	Remember	1,2
20	State the law of additive volumes?	Remember	1,2
Part - B (Long Answer Questions)			
1	Explain the Mole fraction and Mass fraction in the Mixture of Perfect gas?	Understand	1,2
2	Explain Gravimetric Analysis of mixtures?	Understand	1,2
3	Explain the Volumetric Analysis of mixtures?	Understand	1,2
4	Explain the Dalton's law of partial pressure with an example?	Understand	1,2
5	Explain the Avogadro's laws of additive volumes?	Understand	1,2
6	Compare the Volumetric and Gravimetric Analysis of mixtures?	Analyze	4,5,6
7	Determine mole fraction and volume fraction in a gas mixture?	Apply	4,5,6
8	Determine mole fraction and partial pressure in a gas mixture?	Apply	4,5,6
9	Explain Equivalent gas constant of a gas mixture?	Understand	1,2
10	Explain Molecular internal energy of a gas mixture?	Understand	1,2
11	Determine enthalpy of a gas mixture?	Apply	4,5,6
12	Determine the entropy of a gas mixture?	Apply	4,5,6
13	Explain the various properties of psychrometry?	Understand	1,2
14	Compare dry bulb temperature and wet bulb temperature with a sketch?	Analyze	4,5,6
15	Explain the concept of dew point temperature?	Understand	1,2
16	Differentiate the Relation between specific humidity and relative humidity?	Analyze	4,5,6
17	Explain the degree of saturation with an example?	Understand	1,2
18	Explain the adiabatic saturation,	Understand	1,2
19	Compare degree of saturation and adiabatic saturation.	Analyze	4,5,6
20	Derive the Carrier's equation.	Apply	4,5,6
Part - C (Problem Solving and Critical Thinking)			
1	The analysis by weight of a perfect gas mixture at $20^{\circ} \mathrm{C}$ and 1.3 bar is $10 \% \mathrm{O}_{2}, 70 \% \mathrm{~N}_{2}, 15 \% \mathrm{CO}_{2}$ and $5 \% \mathrm{CO}$. For a reference state of $0^{\circ} \mathrm{C}$ and 1 bar , determine partial pressure of the constituent and gas constant of mixture.	Analyze	4,5,6
2	In an engine cylinder a gas has a volumetric analysis of $13 \% \mathrm{CO}_{2}, 12.5 \% \mathrm{O}_{2}$ and $74.5 \% \mathrm{~N}_{2}$. The temperature at the beginning of expansion is $950^{\circ} \mathrm{C}$ and gas mixture expands reversibly through a volume ratio of $8: 1$. According to the law $\mathrm{pV}^{1.2}=$ constant. Calculate per kg of gas, the work done and the heat flow. Take Cp for $\mathrm{CO}_{2}=1.235 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{O}_{2}=1.088 \mathrm{~kJ} / \mathrm{kgK}$ and N_{2} is $1.172 \mathrm{~kJ} / \mathrm{kgK}$.	Apply	4,5,6
3	The following is the volumetric analysis of a producer gas: $\mathrm{CO}=28 \%, \mathrm{H}_{2}=13 \%, \mathrm{CH}_{4}=4 \%, \mathrm{CO}_{2}=4 \%, \mathrm{~N}_{2}=51 \%$. The values of Cp for the constituent $\mathrm{CO}, \mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{CO}_{2}$ and N_{2} are $29.27 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}, 28.89 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}$, $35.8 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}, 37.22 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}, 29.14 \mathrm{~kJ} / \mathrm{mol}$. K respectively. Calculate the values of Cp, Cv for the mixture.	Apply	4,5,6
4	The gravimetric analysis of air and other data are as follows:	Apply	4,5,6
	Constituent \quad Percentage \quad Molecular weight		

S No	QUESTION			Blooms taxonomy level	Course Outcomes
	Oxygen	23.14	32		
	Nitrogen	75.53	28		
	Argon	1.28	40		
	Carbon dioxide	0.05	44		
	Calculate i) Gas constant for air ii)Apparent molecular weight				
5	A mixture of hydrogen and oxygen is to be made, so that the ratio of H_{2} to O_{2} is $2: 1$ by volume. If the pressure and temperature are 1 bar and $25^{\circ} \mathrm{C}$, respectively. Calculate mass of oxygen required and volume of the container?			Apply	4,5,6
6	Air at 10bar and a DBT of 40° Cand WBT of $36^{\circ} \mathrm{C}$. Compute degree of saturation, dew point temperature and enthalpy of the mixture?			Analyze	4,5,6
7	Atmospheric air at 1.0132 bar has DBT of $32^{\circ} \mathrm{C}$ and a WBT of $26^{\circ} \mathrm{C}$. Compute partial pressure of the water vapor, specific humidity, dew point temperature and relative humidity?			Analyze	4,5,6
8	Air at $20^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ is mixed adiabatically with air at $40^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ in the ratio of 1 kg of the former with 2 kg of later(on dry basis). Find the final condition of air?			Apply	4,5,6
9	Saturated air at $21^{\circ} \mathrm{C}$ is passed through a dryer, so that its final relative humidity is 20%. The dryer uses silica gel absorbent. The air is then pass through a cooler until its final temperature is $21^{\circ} \mathrm{C}$ without a change in specific humidity. Find out i)the temperature of air at the end of the drying process, ii) the relative humidity at the end of the cooling process, iii)The dew point temperature at the end of the drying process?			Apply	4,5,6
10	An air water vapor mixture enters an adiabatic saturator at $30^{\circ} \mathrm{C}$ and leaves at $20^{\circ} \mathrm{C}$, which is the adiabatic saturation temperature? The pressure remains constant at 100 kPa . Determine the relative humidity and humidity ratio of the inlet mixture.			Analyze	4,5,6
UNIT-V					
Part - A (Short Answer Questions)					
1	Classify the assumptions to be made for the analysis of all air standard cycles?			Analyze	4,5,6
2	List the Processes in Otto cycle and represent on P-V and T-S diagrams?			Apply	4,5,6
3	List the Processes in Constant pressure cycle and represent on P-V and TS diagrams?			Apply	4,5,6
4	List the variable factors used for comparison of cycles?			Remember	1,2,6
5	Draw the Atkinson cycle? How it differs from Otto cycle?			Apply	4,5,6
6	Derive the air standard efficiency of Diesel cycle?			Apply	4,5,6
7	D Define mean effective pressure?			Remember	1,2
8	List functional parts of simple vapor compression system represents the processes on T-S diagram?			Remember	1,2
9	Draw the Sketch P-V and T-S diagrams of Bell-Coleman cycle while representing process and hence deduce its COP?			Apply	4,5,6
10	Discuss limited pressure cycle; represent the processes of it on P-V and TS diagrams?			Understand	1,2
11	Compare Otto cycle with Diesel cycle?			Analyze	4,5,6
12	Define the unit of refrigeration?			Remember	1,2,6
13	Define COP of refrigeration?			Remember	1,2,6
14	Draw the PV and TS diagram of Atkinson Cycle?			Apply	4,5,6
15	Draw the PV and TS diagram of Ericsson Cycle?			Apply	4,5,6
16	Draw the PV and TS diagram of Lenoir Cycle?			Apply	4,5,6

S No	QUESTION	Blooms taxonomy level	Course Outcomes
17	Draw the PV and TS diagram of Sterling Cycle?	Apply	4,5,6
18	Define vapor compression cycle?	Remember	1,2,6
19	Evaluate the performance of refrigeration cycle?	Evaluate	4,5,6
20	Draw the PV and TS diagrams of dual combustion cycle?	Apply	4,5,6
Part - B (Long Answer Questions)			
1	Differentiate cycle and power cycle. Explain in detail with diagram.	Analyze	4,5,6
2	Explain the working principle of Otto cycle with a diagram.	Understand	
3	Sketch the Otto cycle and explain the processes in the cycle.	Apply	4,5,6
4	State the characteristic of power cycles?	Remember	1,2
5	Support diesel car have a better fuel efficiency than a gasoline car?	Evaluate	4,5
6	Explain the Otto cycle working principle with P-V and T-S diagram?	Understand	1,2
7	Explain the diesel cycle working principle with P-V and T-S diagram?	Understand	1,2
8	Explain the dual cycle working principle with P-V and T-S diagram?	Understand	1,2
9	Explain the sterling cycle working principle with P-V and T-S diagram?	Understand	1,2
10	Explain the Atkinson cycle working principle with P-V and T-S diagram?	Understand	1,2
11	Explain the Ericsson cycle working principle with P-V and T-S diagram?	Understand	1,2
12	Explain the Lenoir cycle working principle with P-V and T-S diagram?	Understand	1,2
13	Compare the thermal efficiency and mean effective pressure of Otto and diesel cycles?	Analyze	4,5,6
14	Compare the thermal efficiency and mean effective pressure of dual and diesel cycles?	Analyze	4,5,6
15	Compare the thermal efficiency and mean effective pressure of Otto and dual cycles?	Analyze	4,5,6
16	List the thermal efficiencies, mep's of otto, diesel and dual cycles? Compare their efficiencies?	Remember	1,2
17	Examine the performance of vapor compression cycle?	Evaluate	4,5
18	Examine the performance of Bell-Coleman cycle?	Evaluate	4,5
19	Explain the working principle of Bell-Coleman cycle with diagram?	Understand	1,2
20	Explain the working principle of vapor compression cycle?	Understand	1,2
Part - C (Problem Solving and Critical Thinking)			
1	Derive the expression for air standard efficiency of a constant volume cycle?	Apply	4,5,6
2	An engine working on Otto cycle has a volume of $0.45 \mathrm{~m}^{3}$ pressure 1bar and temperature $30^{\circ} \mathrm{C}$ at the beginning of the compression stroke. At the end of the compression stroke the pressure is 11 bar .210 kJ of heat is added at constant volume. Determine efficiency and mean effective pressure?	Analyze	4,5,6
3	An engine with 200 mm cylinder diameter and 300 mm stroke working on theoretical diesel cycle. The initial pressure and temperature of air used are 1 bar and $27^{\circ} \mathrm{C}$. The cut of is 8% of the stroke. Determine air standard efficiency, mean effective pressure and power of the engine if the working cycles per minute are 300 ? Assume the compression ratio is 15 and the working fluid is air.	Analyze	4,5,6
4	a)Determine the Compression ratio, if efficiency of an Otto cycle is 60\% and $y=1.5 ?$ b) An inventor claims that a new heat cycle will develop 0.4 kw for a heat addition of $32.5 \mathrm{~kJ} / \mathrm{min}$. The temperature of heat source is 1990 K and that of sink is 850 K . Is his claim possible?	Analyze	4,5,6

S No	QUESTION	Blooms taxonomy level	Course Outcomes
5	A perfect gas undergoes a cycle which consists of following processes. i) heat rejection at constant pressure ii) adiabatic compression from 1bar and $27^{\circ} \mathrm{C}$ to 4 bar iii) heat addition at constant volume to a final pressure of 16 bar iv) adiabatic expansion to 1 bar. Calculate work done per kg of gas and efficiency of the cycle. Take $\mathrm{Cp}=0.92$ and $\mathrm{Cv}=0.7$.	Apply	4,5,6
6	The stroke and cylinder diameter of Compression Ignition engine are 250 mm and 150 mm respectively. If the clearance volume is $0.0004 \mathrm{~m}^{3}$ and fuel injection takes place at constant pressure for 5% of the stroke. Determine the efficiency of the engine. Assume the engine working on Diesel cycle?	Analyze	4,5,6
7	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is $0.00263 \mathrm{~m}^{3}$. The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. The maximum pressure is limited to 25 bar . Find the air standard efficiency and the mean effective pressure of the cycle? Assume ideal conditions?	Apply	4,5,6
8	28tonnes of ice from and at $0^{\circ} \mathrm{C}$ is produced per day in an Ammonia refrigerator. The temperature range in the compressor is from $25^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$. The vapor is dry and saturated at the end of the compression and expansion valve is used. Assuming the C.O.P of 62% of the theoretical. Calculate power required to drive the compressor?	Apply	4,5,6
9	A Bell-Coleman refrigerator operates between pressure limits of 1bar and 8 bar. Air is drawn from the cold chamber at $9^{\circ} \mathrm{C}$, compressed and then it is cooled to $29^{\circ} \mathrm{C}$ before entering the expansion cylinder. Expansion and compression follow the law $\mathrm{pV}^{1.35}=\mathrm{C}$. Calculate theoretical C.O.P of the system. Take y of air is 1.4.	Apply	4,5,6
10	The swept volume of a Diesel engine working on Dual cycle is $0.0053 \mathrm{~m}^{3}$ and clearance volume is $0.00035 \mathrm{~m}^{3}$. The maximum pressure is 65 bar. Fuel injection ends at 5% of stroke. The temperature and pressure of the start of the compression are $80^{\circ} \mathrm{C}$ and 0.9 bar . Determine air standard efficiency of cycle? Take y of air is 1.4.	Analyze	4,5,6

Prepared By:

SV Durga Prasad, Assistant Professor.

