

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	Engineering Mathematics - III
Course Code	:	A30007
Class	:	II B. Tech I Semester
Branch	:	EEE
Year	:	2016 - 2017
Course Faculty	:	Mr. G. Nagendra Kumar, Assistant Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Question	Blooms Taxonomy Level	Course Outcome
LIN	UNIT - I NEAR ODE WITH VARIABLE COEFFICIENTS AND SERIES SOLUTION (SEC	OND ORDER	ONLY)
	Part – A (Short Answer Questions)		
1	Solve $(x^2D^2 - 4xD + 6)y = x^2$	Evaluate	1
2	Solve $\left(x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y\right) = \log x$	Analyse	1
3	Solve $(x^2D^2 + 4xD + 2)y = e^x$	Evaluate	1
4	Solve $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12y = x^3 \log x$	Analyse	1
5	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$.	Evaluate	1
6	Solve in series the equation $x(1-x)y'' - (1+3x)y' - y = 0$	Analyse	3
7	Solve in series the equation $(x - x^2)y'' + (1 - 5x)y' - 4y = 0$	Evaluate	3
8	Solve $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = \frac{12\log x}{x^2}$	Evaluate	1
9	$Solve(x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y) = x^4$	Evaluate	1
10	Find the power series solution of the equation y'' + (x - 3)y' + y = 0 in powers of (x-2) (i.e,about x=2)	Analyse	3
11	Solve in series the equation $\frac{d^2y}{dx^2} - y = 0$ about x=0	Evaluate	3
12	Solve in series the equation $y'' + y = 0$ about x=0	Evaluate	3

S. No	Question	Blooms Taxonomy Level	Course Outcome
13	Solve in series the equation $\frac{d^2y}{dx^2} + xy = 0$	Evaluate	3
14	Solve in series the equation $2x^2 y'' + (x^2 - x) y' + y = 0$	Evaluate	3
15	Solve in series the equation $y'' + x^2 y = 0$ about x=0	Evaluate	3
	Part – B (Long Answer Questions)		
1	Solve $(2x-1)^3 \frac{d^3y}{dx^3} + (2x-1)\frac{dy}{dx} - 2y = x.$	Evaluate	1
2	Solve $(x^2D^2 - 3xD + 1)y = logx\left(\frac{sin(logx)+1}{x}\right)$	Evaluate	1
3	Solve in series the equation $4x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$	Understand	3
4	Solve in series the equation $9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$	Evaluate	3
5	Solve in series the equation $x(1-x)y'' - 3x y' - y = 0$	Evaluate	3
6	$Solve(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} + y = sin2(log(1+x))$	Evaluate	1
7	Solve in series the equation $2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0$	Analyse	3
8	Solve in series the equation $(x - x^2)y'' + (1 - x)y' - y = 0$	Understand	3
9	Solve in series the equation $x(1-x)y'' - (1+3x)y' - y = 0$	Evaluate	3
10	Solve $(x^2D^2 - 4xD + 6)y = (logx)^2$	Analyse	1
11	Solve $(x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y) = (1 + x)^2$	Evaluate	1
12	Solve $(x + 1)^2 \frac{d^2 y}{dx^2} - 3(x + 1)\frac{dy}{dx} + 4y = x^2 + x + 1$	Evaluate	1
13	Solve $\left(x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8\right) y = 65 cos(log x)$	Understand	1
14	Solve in series the equation $xy'' + (1 + x)y' + 2y = 0$	Understand	3
15	Solve $(x + 1)^2 \frac{d^2 y}{dx^2} + (x + 1) \frac{dy}{dx} = (2x+1)(2x+4)$	Evaluate	1
	Part – C (Analytical Questions)		
1	Find the singular points and classify them (regular or irregular) $x^{2} y'' + ax y' + by = 0$	Analyse	2
2	Find the singular points and classify them (regular or irregular) $x^2 y'' + x y' + (x^2 - n^2)y = 0$	Evaluate	2
3	Find the singular points and classify them (regular or irregular) $(1 - x^2)y'' - 2xy' + n(n+1)y = 0$	Understand	2
4	Define ordinary and regular singular point.	Analyse	2
5	Explain Frobenius method about zero.	Evaluate	3
6	Explain the method of solving Legender's differential equation	Analyse	1
7	Explain the method of solving Cauchy's differential equation	Analyse	1
8	Find the singular points and classify them (regular or irregular) $x^2 y' - 5y' + 3x^2y = 0$	Evaluate	2
9	Find the singular points and classify them (regular or irregular) $x^2 y'' + (x + x^2)y' - y = 0$	Analyse	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
10	Find the singular points and classify them (regular or irregular) $x^{3}(x-2)y'' + x^{3}y' + 6y = 0$	Understand	2
11	solve $(x + a)^2 \frac{d^2 y}{dx^2} - 4(x + a) \frac{dy}{dx} + 6y = x$	Understand	1
12	Solve in series the equation $x(1-x)y'' - (1+3x)y' - y = 0$	Understand	3
13	Find the series solution at the non zero singular point $x = 1$ to the equation $2x(1 - x)\frac{d^2y}{dx^2} + (1 - x)\frac{dy}{dx} + 3y = 0$	Analyse	3
14	Solve in series the equation $x(1-x)y'' - 3x y' - y = 0$	Understand	3
15	$Solve(x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y) = x^4$	Analyse	1
	UNIT - II SPECIAL FUNCTIONS		
	Part – A (Short Answer Questions)		
1	Express $f(x) = 2x + 10 x^3$ in terms of Legendre polynomials	Analyse	4
2	Show that $x^3 = \frac{2}{5}P_3(x) + \frac{3}{5}P_1(x)$	Analyse	4
3	Evaluate the value of $J_{\frac{1}{2}}(x)$ is	Analyse	4
4	Show that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^n J_{n+1}(x)$	Analyse	4
5	Prove that $J_{n}(x) = (-1)^n J_n(x)$ n is a positive integer	Create	4
6	Show that $J_3(x) + 3J_0'(x) + 4J_0''(x) = 0$	Analyse	4
7	Prove that $\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$	Analyse	4
8	Prove that a) $\int_0^r x J_0(ax) = \frac{r}{a} J_1(ar)$	Analyse	4
9	show that $J_n(x)$ is an even function function if 'n' is even and odd function when 'n' is odd	remember	4
10	Prove that $\begin{bmatrix} J_{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} J_{-\frac{1}{2}} \end{bmatrix}^2 = \frac{2}{\pi x}$	Analyse	4
11	Show that $\int_{0}^{x} x^{n} J_{n-1}(x) dx = x^{n} J_{n}(x)$	Analyse	4
12	show $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x)$	Analyse	4
13	Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$	Analyse	4
14	Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$ satisfies Bessel's equation of order zero.	Analyse	4
15	Express $J_2(x)$ in terms of $J_0(x)$ and $J_1(x)$	Create	4
	Part – B (Long Answer Questions)	1	
1	Prove that $J_n(x) = 0$ has no repeated roots except at x=0	Evaluate	4
2	Show that $J_3(x) + 3J'_0(x) + 4J'''_0(x) = 0$	Understand	4
3	Prove that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1$	Evaluate	4
4	show that $J_{n-1}(x) = \frac{2}{r} [nJ_n - (n+2)J_{n+2} + (n+5)J_{n+5}]$	Evaluate	4
5	Show that $\int_{0}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) dx = \frac{n(n+1)}{(4n^{2} - 1)(2n+3)}$	Evaluate	4
6	If $f(x) = 0$ if $-1 < x < 0$ =1 if $0 < x < 1$	Evaluate	4
	Then show that $f(x) = \frac{1}{2}P_0(x) + \frac{3}{4}P_1(x) - \frac{7}{16}P_3(x) + \cdots$		

		Blooms	Course
S. No	Question	Taxonomy	Outcome
7	Show that $P(x)$ is the coefficient of t^n in the expansion of	Level Remember	4
,	Show that $r_n(x)$ is the coefficient of t in the expansion of $(1 - 2rt + t^2)^{\frac{-1}{2}}$	Remember	-
8	$(1 - 2xt + t)^{2}$ Prove (2n+1) xP _n (x) = (n + 1)P_{n+1}(x) + nP_{n-1}(x)	Understand	4
0	(0, 10, 0) = (0, 10, 0)	Evoluoto	
9	$0, if \alpha \neq \beta$	Evaluate	4
	Prove that $\int_{0}^{\infty} x J_n(\alpha x) J_n(\beta x) dx = \begin{cases} \frac{1}{2} [J_{n+1}(\alpha)]^2 & \text{if } \alpha = \beta \end{cases}$		
10	Show that a) $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$	Remember	4
	b) $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin\theta) d\theta = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos\theta) d\theta$		
11	State and prove Legendre's Rodrigue's formula.	Analyse	4
12	Show that $x^4 = \frac{8}{25}P_4(x) + \frac{4}{7}P_2(x) + \frac{1}{5}P_0(x)$	Understand	4
13	Express $P(x) = x^4 + 2x^3 + 2x^2 - x - 3$ in terms of Legendre Polynomials.	Evaluate	4
14	Using Rodrigue's formula prove that $\int_{-1}^{1} x^m p_n(x) dx = 0$ if m <n.< td=""><td>Evaluate</td><td>4</td></n.<>	Evaluate	4
15	State and prove orthogonality of Legendre polynomials	Analyse	4
	Part – C (Analytical Questions)		
1	Find the value of $J_{\frac{3}{2}}(x)$	Evaluate	4
2	Find the value of $\frac{d}{d} [J_0(x)]$	Apply	4
3	Find the value of $\frac{d}{dx}[xJ_1(x)]$	Analyse	4
4	Write the generating function for $J_n(x)$	Analyse	4
5	Write the Rodrigue's formula of $P_n(x)$	Evaluate	4
6	Prove that $2J_0''(x) = J_2(x) - J_0(x)$	Remember	4
7	Show that $x^3 = \frac{2}{5}P_3(x) + \frac{3}{5}P_1(x)$	Analyse	4
8	Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x\sin\theta) d\theta$ satisfies Bessel's equation of order zero.	Analyse	4
9	Prove that $J_n(-x) = (-1)^n J_n(x)$ where n is a positive or negative integer	Evaluate	4
10	Find the value of $\int_{-1}^{1} P_3(x) P_4(x) dx$	Analyse	4
11	Find the value of $J_1(x)$	Evaluate	4
12	Find the generating function for $J_n(x)$	Apply	4
13	Write the integral form of Bessel's function	Analyse	4
14	Find the value of $J_{\underline{5}}(x)$	Analyse	4
15	Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$	Evaluate	4
	UNIT - III COMPLEX FUNCTIONS-DIFFERENTIATION AND INTEGRAT	ION	
	Part – A (Short Answer Questions)		
1	Show that $f(z) = z^3$ is analytic for all z	Analyse	5
2	Show that the function $f(z) = \sqrt{ xy }$ is not analytic at the origin although Cauchy – Riemann equations are satisfied at the point.	understand	5
3	Show that $f(z) = z ^2$ is not analytic.	understand	5
4	Find whether $f(z) = \frac{x - iy}{x^2 + y^2}$ is analytic or not.	understand	5
5	Find whether $f(z) = sinxsiny - icosxcosy$ is analytic or not	understand	5
6	Find k such that $f(x,y) = x^3 + 3kxy^2$ may be harmonic and find its conjugate.	Analyse	5

		Blooms	Course
S. No	Question	Taxonomy	Outcome
		Level	Outcome
7	Find the most general analytic function whose real part is $u = x^2 - y^2 - x$	Analyse	5
8	Find an analytic function whose imaginary part is $v = e^x(xsiny + ycosy)$	understand	5
9	If f(z) is an analytic function of z and if u - v = $\frac{\cos x + \sin x - e^{-y}}{\cos x}$ find f(z) subject to the	Analyse	5
	condition $f(\frac{\pi}{2}) = 0$		
	condition $\left(\frac{1}{2}\right) = 0$		
10	If f(z) is an analytic function of z and if $u + v = \frac{sin2x}{2cosh2y-cos2x}$ find f(z) in terms of z.	remember	5
11	Let $w = f(z) = z^2$ find the values of w which correspond to (i) $z = 2+i$ (ii) $z = 1+3i$	Analyse	5
12	Show that $f(z) = z ^2$ is a function which is continous at all z but not differentiable at	understand	5
	any $z \neq 0$.		
13	Find all values of k such that $f(x) = e^{x}(cosky + isinky)$ is analytic	understand	5
14	Show that $u = e^{-x}(xsiny - ycosy)$ is harmonic	understand	5
15	Verify that $u = x^2 - y^2 - y$ is harmonic in the whole complex plane and find a conjugate harmonic function v of u.	understand	5
	Part – B (Long Answer Questions)		
1	Show that the function $u = e^{-2xy} \sin(x^2 - y^2)$ is harmonic, find the conjugate function 'y' and express $u + iy$ as an analytic function of z.	Apply	5
2	Find whether the function $u = \log z ^2$ is harmonic. If so find the analytic function	Apply	5
2	whose real part is u. Find the imaginary part of an analytic function whose real part is $a^{\chi}(x_{2}, y_{3}, y_{4}, y_{5}, y_$	Apply	5
<u> </u>	Find the magnaty part of an analytic function whose real part is $e^{-(x\cos y - y\sin y)}$	Apply	5
	Find the regular function whose imaginary part is $\frac{1}{x^2+y^2}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
5	If $f(z) = u+iv$ is an analytic function of z find $f(z)$ if $2u + v = e^{-it}[(2x+y)\cos 2y + (x-2y)\sin 2y]$	Analyse	5
6	$\frac{1+i}{2}$	Apply	6
	Evaluate $\int (x - y + ix) dz$		
	(i) along the straight from $z = 0$ to $z = 1 \pm i$		
	(i) along the straight from $z = 0$ to $z = 1 + 1$. (ii) along the real axis from $z = 0$ to $z = 1$ and then along a line parallel to real		
	axis from $z = 1$ to $z = 1+i$		
	along the imaginary axis from $z = 0$ to $z = I$ and then along a line parallel to real axis		
7	z = i to $z = 1 + i$	A	6
/	Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle with vertices -1 ,1,1+i ,-1+i	Apply	0
8	e^{2z}	Apply	6
	Evaluate $\int \frac{1}{(z-1)(z-2)} dz$ where c is the circle $ z =3$ using Cauchy's integral		
	$c \left(\frac{1}{2} \right)$		
9		Evaluate	6
	Evaluate $\int_{c} \frac{z e^{-z}}{(z-1)^3} dz$ where c is $ z-1 = \frac{1}{2}$ using Cauchy's integral formula.		-
10	$57^2 - 37 + 2$	Evaluate	6
	Evaluate $\int_{c} \frac{5z + 2}{(z-1)^3} dz$ where c is any simple closed curve enclosing $z = 1$		
L	using Cauchy's integral formula.		
11	Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Realf(z) ^2 = 2 f'(z) ^2$ where w = f(z) is analytic.	Apply	5
12	Prove that $\overline{\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log f'(z) }$ where w = f(z) is analytic	Apply	5
13	If f(z) is a regular function of z prove that $\left(\frac{\partial^2}{\partial r^2} + \frac{\partial^2}{\partial v^2}\right) f(z) ^2 = 4 f'(z) ^2$	Apply	5
L	(0n 0y)	1	

S. No	Question	Blooms Taxonomy	Course
		Level	Outcome
14	$\left(\begin{array}{c} \frac{xy^2 (x+iy)}{x+iy}, z \neq 0 \end{array}\right)$	Apply	5
	Show that the function defined by $f(z) = \begin{cases} x^2 + y^4 \\ 0 & if z = 0 \end{cases}$		
	Is not analytic although Cauchy Riemann equations are satisfied at origin.		
15	Show that $u = x^3 - 3xy^2$ and find a conjugate harmonic function v and the analytic	Analyse	5
	function		
	(Analytical Questions)		1
1	Find the conjugate harmonic if the harmonic $u = y^2 - 3x^2y$	Understand	5
2	Find an analytic function $f(z) = u + iv$ if $u = a(1 + \cos\theta)$	Analyse	5
3	Show that both the real and imaginary parts of an analytic function are narmonic. Show that the function $(u^2 + u^2)$ is how only in the line bits	Analyse	5
4	Show that the function $u = 2\log(x^2 + y^2)$ is harmonic and find its Harmonic conjugate	Analyse	5
5	Find an analytic function whose real part is	Analyse	5
	$\mathbf{u} = e^{x} [(x^2 - y^2) \cos y - 2xy \sin y].$	j ~ -	-
6	Find an analytic function whose real part is $u = \frac{sin2x}{contained}$	Evaluate	5
7	$\frac{\cos x - \cos x}{\cos x + \sin x - e^{-y}}$	Analyse	5
	If $I(z)$ is an analytic function of z and if $u - v = \frac{1}{2\cos x - e^y - e^{-y}}$ and $I(z)$ subject to the		-
	condition $f(\frac{1}{2}) = 0$		
8	Find whether $f(z) = sinxsiny - icosxcosy is analytic or not$	Evaluate	5
9	Show that $f(z) = x + iy$ is everywhere continous but is not analytic Show that $y = e^{-x} (y_0) + y_0 + y_0$ is hormonia	Understand	5
10	Show that $u = e^{-\alpha} (xsiny - ycosy)$ is harmonic Find the analytic function if y is harmonic and u is conjugate harmonic	Analyse	5
12	Write cauchy's integral formula	remember	6
13		Evaluate	7
	Evaluate $\int_{c} \frac{z}{(z-1)(z-2)^2} dz$ where c is the circle $ z-2 = 1/2$ using Cauchy's		
1.4	integral formula		7
14	Evaluate $\int_{c} \frac{z^4}{(z+1)(z-i)^2} dz$ where c is the ellipse $9x^2 + 4y^2 = 36$ using Cauchy's	Evaluate	1
15		Evaluate	7
15	Evaluate $\int_{c} \frac{z+1}{z^2+2z+4} dz$ where c is the circle $ z+1+i =2$ using Cauchy's integral	Lvaluate	,
	formula		
	UNIT - IV POWER SERIES EXPANSIONS OF COMPLEX FUNCTIONS AND CONTOUR	INTEGRATI	ON
	Part – A (Short Answer Questions)		
1	What circle does the maclaurin's series for the function tanhz coverage to the function.	Analyse	7
2	Expand $f(z) = \frac{1}{z^2}$ in powers of z+1	Analyse	7
3	Expand e^z as taylor's series about $z=1$	Analyse	7
4	Expand e^z as taylor's series about $z=3$	Evaluate	7
5	Find the residue of $\frac{z^2}{(z-z)(z-z)}$ at $z = \infty$	Evaluate	9
	(z-a)(z-b)(z-c)		
6	Determine the poles and the residue of the function $f(z) = \frac{ze^{z}}{(z+2)^{4}(z-1)}$	Kemember	9
7	Evaluate the Taylor's series expansion of $\left(\frac{1}{z-2} - \frac{1}{z-1}\right)$ in the region $ z < 1$	Analyse	7

S. No	Question	Blooms Taxonomy Level	Course Outcome
8	Obtain the Taylor series expansion of $f(z) = \frac{1}{z}$ about the point $z = 1$	Analyse	7
9	Obtain the Taylor series expansion of $f(z) = e^{z}$ about the point $z = 1$	Evaluate	7
10	Find the poles and residues of $\frac{1}{z^2 - 1}$	Analyse	9
11	Find zeros and poles of $\left(\frac{z+1}{z^2+1}\right)^2$	Analyse	9
12	Find the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and residues at these poles	Analyse	9
13	Find the residue of the function $f(z) = \frac{z^3}{(z^2 - 1)} at \ z = \infty$	Evaluate	9
14	Find the residue of $\frac{z^2}{(z-a)(z-b)(z-c)}$ at $z = \infty$	Evaluate	9
15	Define residue at pole of order m	remember	9
	Part – B (Long Answer Questions)		
1	Evaluate $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where c is the circle $ z = 1$	Evaluate	9
2	Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$	Evaluate	9
3	Evaluate $\oint_c \tan z dz$ where c is circle $ z = 2$.	Evaluate	9
4	Evaluate $\oint_c \frac{dz}{(z^2+4)^2}$ where c is $ z-i = 2$.	Evaluate	9
5	Evaluate $\oint_c \frac{\coth z}{z-i} dz$ where c is $ z = 2$	Evaluate	9
6	Determine the poles and the residue of the function $f(z) = \frac{ze^{z}}{(z+2)^{4}(z-1)}$	Evaluate	9
7	Evaluate $\oint_{c} \frac{4-3z}{(z-2)(z-1)z}$ dz where c is the circle $ z = 1.5$ using residue theorem	Apply	9
8	Show that $\int_{0}^{2\pi} \frac{1+4\cos\theta}{17+8\cos\theta} d\theta = 0$	Apply	10
9	Evaluate $\int_{0}^{\infty} \frac{dx}{x^6 + 1}$	Apply	10
10	Show that $\int_{0}^{2\pi} \frac{d\theta}{4\cos^2\theta + \sin^2\theta} = \pi$	Analyse	10

S. No	Question	Blooms Taxonomy Level	Course Outcome
11	Expand $f(z) = \frac{z-1}{z+1}$ in Taylor's series about the point (i) $z = 0$ (ii) $z = 1$	Apply	7
12	Expand $f(z) = \frac{z-1}{z^2}$ in Taylor's series in powers of z -1 and determine the region of convergence.	Evaluate	7
13	Obtain Laurent's series expansion of $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ valid in $1 < z < 2$	Analyse	7
14	Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about $z = 1$ as Laurent's series also find the region of	apply	7
15	Expand $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ about z=-1 in the region1< z+1 < 3 as Laurent's series	apply	7
	Part - C (Analytical Questions)		
1	Evaluate $\oint_{c} \frac{z-3}{(z^2+2z+5)} dz$ where c is circle $ z = 1$	Analyse	9
2	Evaluate the residue of $z \cos \frac{1}{z}$ at $z = 0$	Remember	9
3	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$	Understand	10
4	Write the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$	Understand	9
5	State Residue theorem	Understand	9
6	Write the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$	Analyse	9
7	Find $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where c is the circle $ z = 1$	Understand	9
8	Find the Laurent expansion of $f(z) = \frac{1}{z^2 - 4z + 3}$ for $1 < z < 3$ (ii) $ z < 1$ (iii) z > 3	Analyse	7
9	Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region where $ z < 1$ (ii) $1 < z < 4$	Analyse	7
10	Find $\int_{0}^{\infty} \frac{\sin mx}{x} dx$	Evaluate	10
11	Find $\oint_c \frac{1}{(z^2+4)^2} dz$ where c is the circle $ z-i = 2$	Analyse	9
12	Find the poles and residues at each pole of $f(z) = \frac{z \sin z}{(z - \pi)^3}$	Remember	9

S. No.	Question	Blooms	Course
5. INO	Question	Level	Outcome
	• 1	Understand	9
13	Find $\oint_c \frac{1}{(z^2+1)(z^2-4)} dz$ where c is the circle $ z = 1.5$		
	$\int_{c}^{\infty} dx$	Understand	10
14	Find $\int_{0}^{1} \frac{1}{x^6 + 1}$		
15	Find poles and residues of each pole of tanhz	Understand	9
	UNIT - V CONFORMAL MAPPING		
	Part – A (Short Answer Questions)		
1	Find the map of the circle $ z = c$ under the transformation w = Z-2+4i	Analyse	11
2	Determine the bilinear transformation whose fixed points are i,-i.	Analyse	12
3	Find the fixed points of the transformation	Evaluate	11
	2i - 6z		
	$w = \frac{1}{iz - 3}$		
4	Find the points at which $w = \cosh z$ is not conformal	A palvse	11
5	Find the image of $ z = 2$ under the transformation $w = 3z$	Anaryse	11
6	Find the Bi-linear transformation which carries the points from $(-i,0,i)$ to $(-1,i,1)$	Evaluate	112
7	Determine the bilinear transformation whose fixed points are 1,-1	Арріу	12
8	Find the bilinear transformation which maps $z = -1$, i, 1 into the points $w = -i$, 0, i	Evaluate	12
9	Find the bilinear transformation which maps the points (-1,0,1) into the points (0,i,3i)	Evaluate	12
10	Find the fixed points of the transformation	Evaluate	11
	$w = \frac{6z - 9}{z}$ Type equation here.		
11		Evaluate	11
	Find the fixed points of the transformation $z - 1 + i$		
	$w = \frac{1}{z+2}$		
12	Find the fixed points of the transformation	Evaluate	11
	1		
	$W = \frac{1}{z - 2i}$		
13	Find the bilinear transformation which maps the points (-2,1,0) into w=1,0,i	Evaluate	12
14	Find the bilinear transformation which maps the points $(2,i,-2)$ into the points $(1,i,-1)$	Evaluate	12
15	Find the bilinear transformation which maps the points $(0,-i,-1)$ into the points $(i,1,0)$.	Evaluate	12
	Part – A (Long Answer Questions)		•
1	Find the Bi-linear transformation which carries the points from	Evaluate	12
	$(0,1,\infty)$ to $(-5,-1,3)$		
2	Find the image of the triangle with vertices 1,1+I,1-i in the z-plane under	Evaluate	11
	the transformation $w=3z+4-21$.		
3	Find the image of the triangle with vertices i,1+i,1-i in the z-plane under the	Remember	11
	$\frac{5\pi}{2}$		
	transformation $e^{-5}(z-2+4i)$		
4	Sketch the transformation $w = e^z$	Understand	11
5	Sketch the transformation $w = \log z$	Understand	11
6	Find the Bi-linear transformation which carries the points from	Apply	12

S. No	Question	Blooms Taxonomy	Course
		Level	Outcome
	$(1, i, -1)$ to $(0, 1, \infty)$		
7	Show that transformation $w = z^2$ maps the circle $ z - 1 = 1$ into the cardioid $r = 2(1+\cos\theta)$ where $w = re^{i\theta}$ in the w-plane.	Evaluate	11
8	Determine the bilinear transformation that maps the points $(1-2i,2+i,2+3i)$ into the points $(2+i,1+3i,4)$	Apply	12
9	Find the image under the transformation $w = \frac{z - i}{1 - iz}$ find the image of $ w = 1$	Apply	11
10	f(u) z =1 in the w-plane Find the image of the region in the z-plane between the lines	Evaluate	11
10	y = 0 and y = $\frac{\pi}{2}$ under the transformation w = e^z		
11	Show that the relation $w = \frac{5-4z}{4z-2}$ transforms the circle $ z = 1$ into a circle of	Analyse	11
12	Show that the transformation $w = \frac{i(1-z)}{(1+z)}$ transforms the circle $ z = 1$ into the real	Analyse	11
	axis in the w-plane and the interior of circle into upper half of the w-plane the w- plane		
13	Show that the transformation $w = \frac{3-z}{z-2}$ transforms the circle $\left z - \frac{5}{2}\right = \frac{1}{2}$ in the	Analyse	11
1.4	z-plane into the imaginary axis in the w-plane	A	11
14	show that the transformation $w = \cos z$ maps the nam of the z-plane to the right of the imaginary axis into the entire w-plane	Anaryse	11
15	Show that the transformation $w = \frac{2z+3}{z-4}$ changes the circle $x^2 + y^2 - 4x = 0$	Analyse	11
	into the straight line $4u+3 = 0$		
- 1	Part - C (Analytical Questions)		11
1	Show that the function $w = \frac{1}{z}$ transforms the straight line x=c in the z-plane into a circle in the w-plane.	Analyse	11
2	Show that the transformation $w = \frac{iz+2}{4z+i}$ transforms the real axis in the z-plane into a circle in the w-plane	Analyse	11
3	Find the invariant points of the tranformation $w = \frac{z-1}{z+1}$	Understand	11
4	Find the critical points of w = $\frac{6z-9}{7}$	Understand	11
5	Show that the transformation $w = \frac{2z+3}{z-4}$ changes the circle $x^2 + y^2 - 4x = 0$ into the straight line $4u+3=0$	Analyse	11
6	Find the image of the triangle with vertices at i,1+i,1-I in the z-plane under the transformation $w = 3z+4-2i$	Understand	11
7	Find the image of the domain in the z-plane to the left of the line x= -3 under the transformation $w = z^2$	Understand	11
8	4	Understand	11
	Show that the function $w = \frac{1}{z}$ transforms the straight line x = c in the z-plane into a		
0	circle in the w- plane	Evaluata	11
,	Define Translation, Rotation, inversion	Lyanuate	11

S. No	Question	Blooms Taxonomy Level	Course Outcome
10	Define and sketch Joukowski's transformation	Apply	11
11	Find the effect of inversion $w = \frac{1}{z}$ on the vertical line $\text{Re}(z) = a$	Analyse	11
12	Find the image of the rectangle R: $-\pi < x < \pi$, $\frac{1}{2} < y < 1$ under the transformation w = sinz	Analyse	11
13	Plot the image $1 < z < 2$ under the transformation $w = 2iz + 1$	Analyse	11
14	Find and plot the image of the regions (i) x>1 (ii) y>0 (iii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$	Analyse	11
15	Find the fixed points of the transformation $w = \frac{2i - 6z}{iz - 3}$	Evaluate	11

Prepared By: Mr. G. Nagendra Kumar, Assistant Professor

HOD, ELECTRICAL AND ELECTRONICS ENGINEERING