

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	Mathematics-II
Course Code	A30006
Class	II-I B. Tech
Branch	Freshman Engineering
Year	2016 - 2017
Course Faculty	Ms. P. Rajani, Associate Professor, Freshman Engineering

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

1. Group - A (Short Answer Questions)

S. No	Question	Blooms	Course
	Question	Taxonomy Level	Outcome
	UNIT-I		
	VECTOR CALCULUS		
1	Define gradient?	Remember	1
2	Define divergence?	Remember	1
3	Define curl?	Remember	1
4	Define laplacian operator?	Remember	1
5	Find $\Delta(x^2yz)$	Apply	1
6	Evaluate the angle between the normal to the surface $xy=z^2$ at the points (4,1,2) and (3,3,-3)?	Understand	1
7	Find a unit normal vector to the given surface $x^2y+2xz=4$ at the point (2,-2,3)?	Apply	1
8	If \bar{a} is a vector then prove that grad $(\bar{a}, \bar{r}) = \bar{a}$?	Understand	1
9	Define irrotational and solenoidal vectors?	Remember	1
10	Prove that $(\nabla f \times \nabla g)$ is solenoidal?	Analyze	1

S. No	Question	Blooms	Course
B. INU	Question	Taxonomy Level	Outcome
11	Prove that F=yzi+zxj+xyk is irrotational?	Analyze	1
12	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoidal?	Understand	1
13	Show that $\operatorname{curl}(\mathbf{r}^n \bar{\mathbf{r}}) = 0$?	Understand	1
14	Prove that $curl(\phi \bar{a}) = (grad\phi) \times \bar{a} + \phi curl \bar{a}$?	Analyze	1
15	Prove that div curl $\bar{f}=0$?	Analyze	1
16	Define line integral?	Remember	2
17	Define surface integral?	Remember	2
18	Define volume integral?	Remember	2
19	State Green's theorem?	Understand	3
20	State Gauss divergence theorem?	Understand	3

S. No	Question	Blooms Taxonomy Level	Course Outcome		
	UNIT-I				
1	VECTOR CALCULUS				
1	Find the constants a and b so that the Surface $ax^2 - byz = (a + z)x$	Apply	1		
	will be orthogonal to the Surface $4x^2y + z^3 = 4$ at the point (-				
	1,1,2).				
2	Prove that $\nabla f(r) = \frac{\overline{r}}{r} f^{1}(r)$	Analyze	1		
3	Prove that if \bar{r} is the position vector of any point in the space	Analyze	1		
	then r^n . \overline{r} is irrotational and is solenoidal if $n = -3$.				
4	Prove that $\operatorname{div}(r^n, \overline{r}) = (n+3)r^n$. Hence Show that $\frac{\overline{r}}{r^3}$ is solenoidal	Analyze	1		
	Vector				
5	If $\overline{F} = (5xy - 6x^2)\overline{i} + (2y - 4x)\overline{j}$ evaluate $\int_C \overline{F} d\overline{r}$ along the curve C	Understand	2		
	in xy plane $y=x^3$ from (1,1) to (2,8).	TTo do not on d	2		
6	Evaluate the line integral $\int_{c} (x^2 + xy)dx + (x^2 + y^2)dy$ where c	Understand	2		
	is the square formed by the lines $y = \pm 1$ and $x = \pm 1$				
7	Evaluate $\iint_{\mathbf{S}} \overline{\mathbf{A}}.\overline{\mathbf{n}}d\mathbf{s}$ where $\overline{\mathbf{A}} = z\overline{\mathbf{i}} + x\overline{\mathbf{j}} - 3y^2 z\overline{\mathbf{k}}$ and S is the surface of	Understand	2		
	the cylinder $x^2+y^2=16$ included in the first octant between Z=0 and Z=5				
8	If $\overline{F} = (x^2 - 27)\overline{i} - 6yz\overline{j} + 8xz^2\overline{k}$ evaluate $\int_C \overline{F}.\overline{d}r$ from the	Understand	2		
	point $(0,0,0)$ to the point $(1,1,1)$ along the straight line from $(0,0,0)$ to $(1,0,0)$ then from $(1,0,0)$ to $(1,1,0)$ and then finally from $(1,1,0)$ to $(1,1,1)$				
9	Evaluate $\int_{C} \overline{f} d\overline{r}$ where $f = 3xyi - y^2 j$ and C is the parabola	Understand	2		
	$y=2x^2$ from (0,0) to (1,2).				

S. No	Question	Blooms Taxonomy Level	Course Outcome
10	Evaluate $\iint \overline{F}_{.ds}$ if $f = yzi + 2y^2j + xz^2k$ and S is the Surface	Understand	2
	of the Cylinder $x^2+y^2=9$ contained in the first Octant between the planes $z=0$ and $z=2$.		
11	Evaluate $\oint_{c} (yz dx + xz dy + xy dz)$ over arc of a helix	Understand	2
10	$x = a\cos t$, $y = a\sin t$, $z = kt$ as t varies from 0 to 2π .	A	2
12	Find the circulation of \bar{f} around the curve c Where	Apply	2
	$\bar{f} = (e^x \sin y)i + (e^x \cos y)j$ and c is the rectangle whose vertices		
	are $(0,0),(1,0),(1,\frac{\pi}{2}),(0,\frac{\pi}{2})$		
13	Verify gauss divergence theorem for the vector point function $F=(x^3-yz)i-2yxj+2zk$ over the cube bounded by $x=y=z=0$ and $x=y=z=a$	Apply	3
14	Verify divergence theorem for $2x^2y_i - y^2j + 4xz^2k$ taken over the region of first octant of the cylinder $y^2 + z^2 = 9$ and $x = 2$	Apply	3
15	Verify Green's theorem in the plane for $\int_{C} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where C is a square with vertices	Apply	3
16	(0,0),(2,0),(2,2),(0,2).	Apply	3
10	Applying Green's theorem evaluate $\int (y - \sin x) dx + \cos x dy$ where C is the plane Δ^{le} enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$	Apply	5
17	Verify Green's Theorem in the plane for $\int_{c} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where C is a square with vertices (0,0),(2,0),)(2,2),(0,2)	Apply	3
18	Verify Stokes theorem for $f = (2x - y)i - yz^2 j - y^2 zk$ where S is the upper half surface $x^2+y^2+z^2=1$ of the sphere and C is its boundary	Apply	3
19	Verify Stokes theorem for $f = (x^2 - y^2)i + 2xyj$ over the box bounded by the planes $x=0,x=a,y=0,y=b,z=c$	Apply	3
20	Evaluate by Stroke's Theorem $\iint_{s} Curl \vec{F}.\vec{n}ds$ where	Apply	3
	$\vec{F} = y^2 \vec{i} + x^2 \vec{j} - (x+Z)/\overline{C}$ and S comprising the planes		
	x=0,y=0,y=4;z=-1		

3. Group - III (Analytical Q	uestions)
------------------------------	-----------

S. No	Ouestions	Blooms	Program
5. INU	Questions	Taxonomy Level	Outcome

S. No	Questions	Blooms	Program
0.110	Questions.	Taxonomy Level	Outcome
	UNIT-I		
	VECTOR CALCULUS		
1	If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$ then what is $\Delta^2(\frac{1}{r})$?	Understand	1
2	If curl $\overline{f} = \overline{0}$ then what is \overline{f} ?	Understand	1
3	If \overline{a} and \overline{b} are irrotational vectors then what is $\overline{a} X \overline{b}$?	Understand	1
4	What is the physical interpretation of $ \Delta \phi $?	Understand	1
5	If $div \overline{A} = 0$ then what is called \overline{A} ?	Understand	1
6	What is $\int f o g. d \bar{r}$?	Understand	2
7	What is the necessary and sufficient condition for the line	Understand	2
	integral $\int_{C} A dr = 0$ for every closed curve <i>c</i> ?		
8	What is $\int \bar{r} X \bar{n} dS$?	Understand	2
9	If $\overline{F} = axi + byj + czk$ where a, b, c are constants then what is	Evaluate	2
	$\iint \overline{F} \cdot \overline{n} dS$ where s is the surface of the unit sphere?		
10	If $\bar{r} = x\bar{\iota} + y\bar{j} + z\bar{k}$ then what is $\oint_C \bar{r} \cdot d\bar{r}$?	Understand	2

1. Group - A (Short Answer Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outcome	
	UNIT-II FOURIER SERIES AND FOURIER TRANSFORMS			
1	Define periodic function and write examples	Remember	5	
2	Define even and odd function	Remember	5	
3	Express the function $f(x)$ as the sum of an even function and an odd function	Understand	5	
4	Find the functions are even or odd (i) $x \sin x + \cos x + x^2 \cosh x$ (ii) $x \cosh x + x^3 \sinh x$	Apply	5	
5	If f and g are periodic functions with same period T show that (af+bg) are also periodic function of period T where a and b are real numbers	Understand	5	
6	Define Euler's formulae	Remember	5	
7	Write Dirichlet's conditions	Understand	4	
8	If $f(x) = x^2 - 2$ in (-2,2) then find b_2	Apply	5	
9	If $f(x) = x^2$ in (-2,2) then a_0	Apply	5	
10	If $f(x) = \sin^3 x$ in $(-\pi, \pi)$ then find a_n	Apply	5	
11	If $f(x) = x^4$ in (-1,1) then find b_n	Apply	5	
12	State Fourier integral theorem	Understand	6	
13	Write about Fourier sine and cosine integral	Understand	6	
14	Define Fourier transform and finite Fourier transform?	Remember	6	
15	Find the Fourier sine transform of xe^{-ax}	Apply	6	
16	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Apply	6	
17	Find the finite Fourier sine transform of $f(x)=2x$ in $(0, \pi)$	Apply	6	

18	Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - cosn\pi}{n^2 \pi^2}$	Apply	6
19	Write the properties of Fourier transform	Understand	6
20	If finite Fourier sine transform of f is $\frac{2\pi}{n^3}(-1)^{n-1}$ find f(x)	Apply	6

S. No	Ip - B (Long Answer Questions) Questions	Blooms	Program
	UNIT-II	Taxonomy Level	Outcome
	FOURIER SERIES AND FOURIER TRANSF	ORMS	
1	Obtain the Fourier series expansion of f(x) given that	Understand	5
	$f(x) = (\pi - x)^2$ in $0 < x < 2\pi$ and deduce the value of		
	$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$ Obtain Fourier cosine series for $f(x) = x \sin x$ $0 < x < \pi$ and		
2	Obtain Fourier cosine series for $f(x) = x \sin x$ $0 < x < \pi$ and	Understand	5
	show that		
	$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{\pi - 2}{4}.$		
3	Find the Fourier Series to represent the function $f(x) = \sin x $	Apply	5
	in $-\pi < x < \pi$.		
4	Find the Fourier series to represent $f(x) = x^2$ in $(0, 2\pi)$.	Apply	5
5	Express $f(x) = x$ as a Fourier series in $(-\pi, \pi)$.	Understand	5
6	If $f(x)$ =coshax expand $f(x)$ as a Fourier Series in $(-\pi, \pi)$.	Understand	5
7	Expand the function $f(x) = x^2$ as a Fourier series in $(-\pi, \pi)$.	Understand	5
8		Apply	5
	If $f(x) = \begin{cases} x \text{ for } 0 < x < \frac{\pi}{2} \\ \pi - x \text{ for } \frac{\pi}{2} < x < \pi \end{cases}$. Then prove		
	$f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \cdots \right].$		
9	Find the Fourier series to represent the function $f(x)$ given by:	Apply	5
	$f(x) = \begin{cases} 0 \text{ for } -\pi \le x \le 0\\ x^2 \text{ for } 0 \le x < \pi \end{cases}$		
10	Find cosine and sine series for $f(x) = \pi - x$ in $[0, \pi]$.	Apply	5
11	Expand $f(x) = \cos x$ for $0 < x < \pi$ in half range sine series	Understand	5
12	Using Fourier integral show that	Understand	6

	22.0		
	$e^{-x}cosx = \frac{2}{\pi} \int_0^\infty \frac{\lambda^2 + 2}{\lambda^4 + 4} cos\lambda x dx$		
13	Find the Fourier transform of $f(x)$ defined by	Apply	6
	$\left 1 - x^2 \ if \ \left x \right \le 1$		
	$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$		
14	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$	Apply	6
	Hence show that		
	$\int_{0}^{\infty} \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$		
15	Find the Fourier sine transform for the function $f(x)$ given by	Apply	6
	$f(x) = \begin{cases} \sin x, \ 0 < x < a \\ 0 \qquad x \ge a \end{cases}$		
16	Find the finite Fourier sine and cosine transforms of $f(x) = sinax$ in $(0,\pi)$.	Apply	6
17	Find the finite Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax} - e^{-bx}}{x}$	Apply	6
18	Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$ and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$	Apply	6
19	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$	Apply	6
20	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$ Evaluate using Parseval's identity $\int_0^\infty \frac{x^2}{(a^2+x^2)^2} dx \ (a > 0)$	Understand	6

3. Group - III (Analytical Questions)

S. No	Questions	Blooms	Program
		Taxonomy Level	Outcome
	UNIT-II		
	FOURIER SERIES AND FOURIER TRANSF	ORMS	
1	If $f(x)$ is an even function in the interval $-(l, l)$ then what is	Understand	5
	the value of b_n ?		
2	If $f(x) = x$ in $(-\pi, \pi)$ then what is the Fourier	Understand	5
	coefficient a_2 ?		
3	What are the conditions for expansion of a function in Fourier	Understand	4
	series?		
4	If $f(x)$ is an odd function in the interval $-(l, l)$ then what	Apply	5
	are the value of a_0, a_n ?		
5	If $f(x) = x^2$ in $-(l, l)$ then what is b_1 ?	Understand	5
6	What is the Fourier sine series for $f(x) = x \text{ in } (0, \pi)$?	Understand	5
7	What is the half range sine series for $f(x) = e^x \text{ in } (0, \pi)$?	Understand	5
8	What is the Fourier sine transform of $f(x) = x$?	Understand	6
9	What is the Fourier cosine transform of $f(x)$?	Understand	6
10	What is the $F_c \{e^{-at}\}$?	Understand	6

S. No		Q	uestio	ns					Blooms	Program
									Taxonomy Level	Outcome
					NIT-II					
1	Define Internalist	INTERI			AND	CUR	VE F		•	7
1 2	Define Interpolat								Remember Understand	7
3	Explain forward of Explain backward				n				Understand	7
4	Explain central d				n				Understand	7
5	Define average of)r				Remember	7
6	Prove that $\Delta = E$		Shirt	perate	Л				Analyze	9
7	Prove that $\nabla = 1 - E^{-1}$						Analyze	9		
8	Prove that $(1+\Delta)$								Analyze	8
9	Construct a forward difference table for $f(x)=x^3+5x-7$ if					Analyze	9			
10	$\frac{x=-1,0,1,2,3,4,5}{Prove that \Delta[x(x+1)(x+2)(x+3)]=4(x+1)(x+2)(x+3)}$						Analyze	9		
11	Evaluate $\Delta \log f(x)$					Understand	9			
12	Evaluate $\Delta f(x)g(x)$					Understand	9			
13	Evaluate $\triangle \cos x$								Understand	9
14	Find the missing term in the following table X 01234 Y 13981					Apply	8			
15	Y 1 3 9 81 What is the principle of method of least square				Understand	9				
15	Solve the differen								Understand	8
10	Derive the norma								Understand	8
18	Derive the norma					parab	ola		Understand	8
19	Explain errors in	A		cona c	05100	puluo	514		Understand	9
20	Write the normal			ne curv	<i>y y y y y y y y y y</i>	ae ^{bx}			Understand	8
2. Grou	p - B (Long Ans									
S. No			uestio	ns					Blooms Taxonomy Level	Program Outcome
				TI	NIT-II	T				Outcome
		INTERI	POLA				VE F	ITTIN	NG	
1	Find the interpola								Apply	8
	Newton's forward					C		C		
		Х	2.4	3.2	4.0	4.8	5.]		
							6			
		f(x)	22	17. 8	14. 2	38. 3	51 .7			
2	Use Newton's for			ormul	a to fir	nd the			Apply	8
	polynomial satisf	ied by (0,5)	, (1,12	2),(2,3	7) and	(3,86)				
3	Find f(22), from t	he followir	ng data	using			ackw	ard	Apply	8
	x 20 25	30 35	40	45	form	iula.				
		291 260	231	204		100			Apply	8
4		en sin 45=0.7071, sin 50=0.7660, sin 55=0.8192 and sin					A			

	60=0.8660 find sin 52 using newton's formula					
5	The population of a town in the decimal census was given	Understand	8			
	below. Estimate the population for the year 1895					
	Year (x) 1891 1901 1911 1921 1931					
	Population (y) 46 66 81 93 101					
6	Find y(25) given that y(20)=24, y(24)=32, y(28)=35, y(32)=40,	Apply	8			
	using Gauss forward difference formula.					
7	Find by Gauss's backward interpolating formula the value of y	Apply	8			
	at $x = 1936$ using the following table					
	X 1901 1911 1921 1931 1941 1951					
	Y 12 15 20 27 39 52					
8	Find by Gauss's backward interpolating formula the value of y	Apply	8			
	at $x = 8$ using the following table					
	X 0 5 10 15 20 25					
	y 7 11 14 18 24 32					
9	Using Lagrange's formula find y(6) given	Apply	8			
	x 3 5 7 9 11					
	y 6 24 58 108 74					
10	Find f (1.6) using Lagrange's formula from the following table.	Apply	8			
	x 1.2 2.0 2.5 3.0					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
11	Find y(5) given that $y(0)=1$, $y(1)=3$, $y(3)=13$ and $y(8)=123$	Apply	8			
11	using Lagrange's formula	Арргу	0			
	using Eugrange s formatia					
12	Find y(10), given that y(5)=12, y(6)=13, y(9)=14, y(11)=16	Apply	8			
	using Lagrange's formula		Ũ			
12	A sume passes through the points $(0, 10)$ $(1, 10)$ $(2, 10)$ and	A	7			
13	A curve passes through the points $(0, 18), (1,10), (3,-18)$ and $(6, 00)$. Find the along of the summe at $n = 2$	Apply				
	(6,90). Find the slope of the curve at $x = 2$.					
14	By the method of least square, find the straight line that best fits	Apply	7			
14	the following data:	Арргу	/			
	the following data.					
	x 1 2 3 4 5					
	y 14 27 40 55 68					
15	Fit a straight line $y=a +bx$ from the following data:	Understand	7			
10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chidolistand	,			
16		TT. J. and and	7			
16	Fit a straight line to the form $y=a+bx$ for the following data:	Understand	7			
	x 0 5 10 15 20 25					
	y 12 15 17 22 24 30					
17	By the method of least squares, fit a second degree polynomial	Understand	7			
	$y=a+bx+cx^2$ to the following data.		-			
	x 2 4 6 8					
	y 3.07 12.85 31.47 57.38					

18	Fit a curv	ve y=a+b	$x+cx^2$ from	m the foll	lowing da	ta			Understand	7
	Х	1	2	3	4					
	Y	6	11	18	27					
19	Using the method of least squares find the constants a and b						Apply	7		
	such that	y=ae ^{bx} fi	ts the fol	lowing da	ata:					
	Х	0	0.5	1	1.5	2		2.5		
	У	0.10	0.45	2.15	9.15	40.	35	180.7		
								5		
20	Obtain a	relation of	of the form	n y=ab ^x f	for the fol	lowing	g dat	a by	Understand	7
	the method of least squares.									
		Х	2	3	4	5		6		
		У	8.3	15.4	33.1	65.2	2	127.4		

3. Group - III (Analytical Questions)

S. No	Questions	Blooms	Program
		Taxonomy Level	Outcome
	UNIT-III INTERDOLATION AND CUDVE EITTIN	IC	
-	INTERPOLATION AND CURVE FITTIN		0
1	For what values of <i>y</i> the Gauss backward interpolation formula is used to interpolate?	Evaluate	8
2	For what values of <i>y</i> the Gauss forward interpolation formula is used to interpolate?	Evaluate	8
3	What is the difference between interpolation and extrapolation	Understand	7
4	Write a short note on difference equation	Remember	7
5	Write about curve fitting	Remember	7
6	If $y = a + \frac{b}{x}$ is a curve then write it's normal equations	Analyze	7
7	If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$ by least squares method?	Analyze	7
8	If $y = a_0 + a_1 x^2$, then what is the first normal equation of $\sum y_i$?	Analyze	7
9	If $y = ax^b$, then what is the first normal equation of $\sum \log y_i$?	Analyze	7
10	If $y = 2x + 5$ is the best fit for 6 pairs of values (x, y) by the best method of least-squares, find $\sum x_i$ if $\sum y_i = 120$?	Apply	7

S. No	Questions	Blooms	Program
		Taxonomy Level	Outcome
	UNIT-IV		
	Numerical Techniques		
1	Define algebraic and transcendental equation and give example	Remember	10
2	Explain graphically the root of an equation	Understand	10
3	Write about bisection method	Understand	10
4	Write about false position method	Understand	10
5	Write a short note on iterative method	Understand	10
6	Explain iterative method approach in solving the problems	Understand	10
7	State the condition for convergence of the root by iterative method	Understand	10
8	Derive Newton's Raphson formula	Understand	10
9	Show that Newton's Raphson method is quadratic convergence	Understand	10
10	Establish the formula to find the square root of a number N by Newton's Raphson method	Analyze	10
11	Find the square root of a number 16 by using Newton's Raphson	Apply	10
12	Derive the formula to find the reciprocal of a number	Understand	10
13	Explain solving system of non-homogeneous equations	Understand	10
14	Explain LU decomposition method	Apply	11
15	Define Crout's and Doolittle's method	Remember	11
16	If A=LU and $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$ then find L	Apply	11
17	Explain the procedure to find the inverse of the matrix by using	Understand	11
	LU decomposition method		
18	Write a short note on Jacobi's method	Understand	11
19	Write a short note on Gauss Seidel iterative method	Understand	11
20	Write the difference between Jacobi's and Gauss Seidel iterative method	Understand	11

1.Group - A (Short Answer Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT-IV		
	NUMERICAL TECHNIQUES		
1	Find the real root of the equation $x^3-x-4=0$ by bisection method.	Apply	10
2	Find the real root of the equation $3x=e^x$ by bisection method.	Apply	10
3	Find the square root of 25 up to 2 decimal place s by using bisection method	Apply	10
4	Find a real root of the equation $e^x \sin x = 1$, using Regulafalsi method	Apply	10

7Find a real root of the equation, $\log x = \cos x$ using Regulafalsi methodApply8Use the method of false position to find the fourth root of 32 correct to three decimal placesApply9Find a real root of the equation $3x \cdot \cos x \cdot 1 = 0$ using Newton Raphson methodApply10Find a real root of the equation $e^x \sin x = 1$, using Newton Raphson method.Apply111.2 correct to four decimal placesApply	10 10 10 10 10 10
7Find a real root of the equation, $\log x = \cos x$ using Regulafalsi methodApply8Use the method of false position to find the fourth root of 32 correct to three decimal placesApply9Find a real root of the equation $3x$ - $cosx$ -1=0 using Newton Raphson methodApply10Find a real root of the equation $e^x sinx=1$, using Newton Raphson method.Apply11Using Newton's iterative method find the real root of $x log_{10}x =$ Apply	10 10 10 10
Interaction of the equation, eight of the number of gamma in the programma	10 10 10
correct to three decimal places 110 9Find a real root of the equation $3x$ -cosx-1=0 using Newton Raphson methodApply10Find a real root of the equation $e^x sinx=1$, using Newton Raphson method.Apply10method.Image: Correct to four decimal places111.2 correct to four decimal placesApply	10 10
Raphson method If y Find a real root of the equation $e^x \sin x = 1$, using Newton Raphson Apply 10 method. Image: Constraint of the equation $e^x \sin x = 1$, using Newton Raphson 10 method. Image: Constraint of the equation $e^x \sin x = 1$, using Newton Raphson 10 method. Image: Constraint of the equation $e^x \sin x = 1$, using Newton Raphson 10 method. Image: Constraint of the equation $e^x \sin x = 1$, using Newton Raphson 10 Image: Constraint of the equation $e^x \sin x = 1$, using Newton $e^x \sin x = 1$	10
Find a real root of the equation $e^x \sin x = 1$, using Newton RaphsonApply10method.Image: Apply11Using Newton's iterative method find the real root of $x \log_{10} x =$ Apply111.2 correct to four decimal placesImage: Apply	
11 1.2 correct to four decimal places	10
12 Evaluate x tanx+1=0 by Newton Rankson method Understand	10
	10
13 Find the square root of 28 by Newton Raphson method. Apply	10
14Solve x+3y+8z=4, x+4y+3z=-2, x+3y+4z=1 using LUUnderstanddecompositionUnderstand	11
15Solve by LU decomposition method $x+y+z=9,2x-$ Understand $3y+4z=13,3x+4y+5z=40$ Understand	11
	11
17Solve $5x-y+3z=10, 3x+6y=18, x+y+5z=-10$ with initial approximations $(3,0,-2)$ by Jacobi's iteration methodUnderstand	11
18Using Jacobi's iteration method solve the system of equation $10x+4y-2z=12$, $x-10y-z=-10,5x+2y-10z=-3$ Understand	11
19Solve 20x+y-2z=17,3x+20y-z=-18,2x-3y+20z=25by Gauss-UnderstandSeidel iterative method	11
equations $5x+2y+z=12$, $x+4y+2z=15$, $x+2y+5z=20$	11
3. Group - III (Analytical Questions)	
-	ogram tcome
UNIT-IV	
NUMERICAL TECHNIQUES	10

2	What is Transcendental equation	Understand	
			10
3	Define root of an equation	Remember	10
4	What are the merits and demerits of Newton-Raphson Method	Understand	10
5	Explain about order of convergence?	Understand	10
6	Define linear, quadratic and cubic convergence?	Remember	10
7	Explain about False-position method	Understand	10
8	Explain about Regula-Falsi method	Understand	10
9	What is Crout's method in LU decomposition	Understand	11
10	What is Dolittle's method in LU decomposition	Understand	11

1.Group - A (Short Answer Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outco me
	UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFE		
1	Derive the Newton-cote's quadrature formula	Understand	12
2	Explain Trapezoidal rule	Understand	12
3	Explain Simpson's 1/3 and 3/8 rule	Understand	12
4	Estimate $\int_{0}^{\Pi/2} e^{\sin x} dx$ taking h= $\Pi/6$ correct o four decimal places	Understand	12
5	Explain two point and three point Gaussian quadrature	Understand	12
6	Compute using Gauss integral $\int_{-1}^{1} \sqrt{1-x^2} dx, n = 3$	Apply	12
7	Compute using Gauss integral $\int_{0}^{1} x dx, n = 3$	Apply	12
8	Define initial value problem	Remember	13
9	Define boundary value problem	Remember	13
10	Explain single step method and step by step method	Understand	13
11	Explain Taylor's series method and limitations	Understand	13
12	Explain Picard's method of successive approximation Write the second approximation for $y^1 = x^2 + y^2$, $y(0) = 1$	Understand	13
13	Explain Euler's method	Understand	13
14	Explain Euler's modified method	Understand	13

15	Give the difference between Euler's method and Euler's modified	Analyze	13
	method		
16	Find y(0.1) given $y^1 = x^2 - y, y(0) = 1$ by Euler's method	Apply	13
17	Explain Runge-Kutta second and classical fourth order	Understand	13
18	Write any three properties of Eigen value problems	Understand	14
19	Explain power method to find the largest Eigen value of a matrix	Understand	14
20	Write the finite difference formula for $y^{1}(x)$, $y^{11}(x)$	Understand	14

S. No	Questions	Blooms Taxonomy Level	Program Outcome
	UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFI		
1	Use the trapezoidal rule with n=4 to estimate $\int_0^1 \frac{dx}{1+x^2}$ correct to four decimal places	Understand	12
2	Estimate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ correct to four decimal places	Understand	12
3	Evaluate $\int_{0}^{\pi} \left(\frac{\sin x}{x}\right) dx$ by using i) Trapezoidal rule	Understand	12
	ii) Simpson's $\frac{1}{3}$ rule taking n=6		
4	Using Taylor's series method, find an approximate value of y at x=0.2 for the differential equation $y'-2y = 3e^x$ for y(0)=0.	Apply	13
5	Find y(0.1), y(0.2), z(0.1), z(0.2), given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and y(0)=2, z(0)=1 by using Taylor's series method	Apply	13
6	Given $y^1 = 1 + xy$, $y(0) = 1$ compute y (0.1), y (0.2) using Picard's method	Understand	13
7	Find an approximation value of for x=0.1, 0.2 if $\frac{dy}{dx} = x + y$ and y(0)=1 using Picard's method and check your answer with exact particular solution	Apply	13
8	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2).	Understand	13
9	Using Euler's method, solve for y at x=2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1)=2 taking step size: h=0.5 and h=0.25	Understand	13

10	Given $\frac{dy}{dx} = xy$ and y(0)=1. Find y(0.1) using Euler's method	Apply	13
11	Find y(0.5), y(1) and y(1.5) given that $\frac{dy}{dx} = 4 - 2x$ and y(0)=2 with h=0.5 using modified Euler's method	Apply	13
12	Find y(0.1) and y(0.2) using Euler's modified formula given that $\frac{dy}{dx} = x^2 - y$ and y(0)=1	Apply	13
13	Given $y^1=4-2x,y(0)=2$ then find $y(0.5),y(1),y(1.5)$ using Euler's modified formula	Apply	13
14	Find y(0.1) and y(0.2) using Runge Kutta fourth order formula given that $\frac{dy}{dx} = x + x^2 y$ and y(0)=1.	Apply	13
15	Obtain the values y at x=0.1,0.2 usingRunge Kutta method of second and fourth order for $y^1+y=0,y(0)=1$	Understand	13
16	using Runge Kutta method of order 4 find y(0.2) for the equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1, h = 0.2$	Apply	13
17	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and corresponding Eigen vector and other Eigen value	Apply	14
18	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	Apply	14
19	Write the largest Eigen value of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$	Understand	14
20	Solve the boundary value problem $y^{11}-2y(x)/x^2=-5/x, 1 < x < 2, y(1)=1; y(2)=2;$ with h value of 0.5	Understand	14

3. Group - III (Analytical Questions)

S. No	Questions	Blooms Taxonomy Level	Program Outcome			
UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS						
1	How many number of subintervals are required to get accuracy, while evaluating a definite integral by trapezoidal rule?	Analyze	12			
2	What is the interval <i>h</i> for closer application, in Simpson's $\frac{1}{3}$ rule?	Analyze	12			
3	What is the disadvantage of picard's method?	Understand	13			

S. No	Questions	Blooms Taxonomy Level	Program Outcome			
UNIT-V NUMERICAL INTEGRATION AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS						
4	What is the method of Runge-Kutta method?	Understand	13			
5	If $y_0 = 1, h = 0.2, f(x_0, y_0) = 1$ then by using Euler's method what is the value of y_1 ?	Understand	13			
6	If $y_1 = 1.2$, $h = 0.2$, $f(x_1, y_1) = 1.4$ then by using Euler's method what is the value of y_2 ?	Understand	13			
7	what is the iterative formula of Euler's method for solving $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$?	Understand	13			
8	What is the n^{th} difference of a polynomial of degree n ?	Understand	13			
9	If $\frac{dy}{dx} = x - y$ and y(0)=1 then by picards method what is the value of $y^{(1)}(x)$?	Understand	13			
10	What is the disadvantage of Euler's method over Modefied Euler method?	Understand	13			

Prepared By: Ms. P. Rajani, Associate Professor, Freshman Engineering Date: 20 January, 2016

HOD, MECHANICAL ENGINEERING