INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043

STRUCTURAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	$:$	COMPUTER ORIENTED NUMERICAL METHODS
Course Code	$:$	BST003
Class	$:$	I M. Tech I Semester
Branch	$:$	ST
Year	$:$	$2017-2018$
Course Coordinator	$:$	Mr.S.V.S.Hanumantharao, Associate Professor
Course Faculty	$:$	Mr.S.V.S.Hanumantharao, Associate Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

$\begin{aligned} & \text { S } \\ & \text { No } \end{aligned}$	QUESTION	Blooms taxonomy level	Course Outcome s
UNIT - ISOLUTIONS OF LINEAR EQUATIONS			
Part - A (Short Answer Questions)			
1	Write short notes on direct method.	Remember	1
2	Explain about Cramer's rule.	Remember	1
3	Define Gauss Elimination method.	Remember	1

4	What is Gauss Jordan method	Remember	1
5	Write short notes on indirect method.	Remember	1
6	Define Triangulization method	Remember	1
7	What is Jacobi Iteration method	Remember	1
8	Define Gauss-Seidel iteration method	Remember	1
9	Define successive over -relaxation method	Remember	1
10	Write short notes on Eigen values and Eigen vectors for symmetric matrices.	Understand	1
Part - B (Long Answer Questions)			
1	Solve the system $x+y+z=6,2 x-3 y+4 z=8, x-y+2 z=5$ by Cramer's rule.	Understand	1
2	Solve the system of equations $x_{1}+2 x_{2}+x_{3}=0,2 x_{1}+2 x_{2}+2 x_{3}=3,-x_{1}-3 x_{2}=2$ by Gauss Elimination method.	Understand	1
3	Solve the system of linear equations by Gauss Jordan method $x+y+z=6$, $2 x+3 y-2 z=2,5 x+y+2 z=13$.	Understand	1
4	Solve by using Traingulization method $2 x+3 y+z=9, x+2 y+3 z=6$, $3 x+y+2 z=8$.	Understand	1
5	Solve the system of equations by using Jacobi's iteration method. $28 x-y-z=32, \quad x+3 y+10 z=24,2 x+17 y+4 z=35$	Apply	1
6	Solve the system of equations $10 x+y+z=12,2 x+10 y+z=13$, $2 \mathrm{x}+2 \mathrm{y}+10 \mathrm{z}=14$.by Gauss seidel iteration method.	Apply	1
7	Solve the system by Relaxation method $8 \mathrm{x}_{1}-3 \mathrm{x}_{2}+2 \mathrm{x}_{3}=20,4 \mathrm{x}_{1}+11 \mathrm{x}_{2}-\mathrm{x}_{3}=33$, $6 x_{1}+3 x_{2}+12 x_{3}=36$.	Apply	1
8	Solve by Jacobi's method for the symmetric matrix $\mathrm{A}=\left[\begin{array}{ccc}15 & 1 & 1 \\ 1 & -2 & 6 \\ 1 & 6 & 1\end{array}\right]$	Apply	1
9	Solve by Given's method for $\mathrm{A}=\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 2\end{array}\right]$	Apply	1
10	Consider a symmetric matrix $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 6 & 5 \\ 4 & 5 & 7\end{array}\right]$. Solve by Householder's	Apply	1
Part - C (Problem Solving and Critical Thinking Questions)			
1	Solve the system of equations $x+y+z=7, x+2 y+3 z=16, x+3 y+4 z=20$ by cramer's rule	Understand	1
2	Solve $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=14,3 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=11,2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=11$ by gauss elimination method	Understand	1
3	Solve the system by Gauss Jordan method $x+2 y-z=2,3 x+8 y+2 z=10,4 x+9 y-$ $\mathrm{z}=12$.	Understand	1
4	Solve the system of equations $x+y+z=6, x+2 y+3 z=16, x+3 y+z=12$ by LU decomposition method.	Understand r	1

5	Solve $10 x+2 y+z=9, x+10 y-z=-22,-2 x+3 y+10 z=22$ by Jacobi’s iteration method								Apply		1
6	Solve the system of linear equations by Gauss Seidel iterative method $x_{1}+10 x_{2}+x_{3}=6,10 x_{1}+x_{2}+x_{3}=6, x_{1}+x_{2}+10 x_{3}=6$.								Apply		
7	Solve $20 x+2 y+6 z=28, x+20 y+9 z=-23,2 x-7 y-20 z=-57$ by Jacobi's iteration method								Apply		1
8	Solve the real symmetric matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ by Jacobi's method.								Apply		1
9	Solve the symmetric matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 3 & 5\end{array}\right]$ by Given's method.								Apply		1
10	Solve $\mathrm{A}=\left[\begin{array}{lll}2 & 5 & 4 \\ 5 & 3 & 6 \\ 4 & 6 & 8\end{array}\right]$ by House holder's method.								Apply		1
	UNIT-IIINTERPOLATION										
Part - A (Short Answer Questions)											
1	Define Interpolation								Remember		2
2	What is extrapolation?								Remember		2
3	How many types of interpolations are there?								Remember		2
4	What is Linear Interpolation?								Remember		2
5	Define higher order interpolation								Remember		2
6	Explain Lagrange's interpolation								Remember		2
7	Explain finite differences.								Remember		2
8	Define Hermite interpolation.								Remember		2
9	Define Piece-wise interpolation.								Remember		2
10	Explain Spline interpolation.								Remember		2
Part - B (Long Answer Questions)											
1	The following table contains the values of $y=f(x)$. For what value of x does y equal $\frac{1}{2}$								Understand	2	
	X	0.45		0.46	0.47	0.48	0.49	0.50			
		0.4754		0.4846	0.4937	0.5027	0.5116	0.52049			
2	Find the cubic spline that passes through the data points $(0,1),(1,-2),(2,1)$ and $(3,16)$ with first derivative boundary conditions $y^{\prime}(0)=-4 \& y^{\prime}(3)=23$.								Understand		2
3	Use Lagrange's interpolation formula estimate the value of $f(155)$ from the following table								Understand	2	
			x	150	152	154	156				
			$\mathrm{f}(\mathrm{x})$	12.247	12.329	12.410	12.490				

	characteristics for this equation.		
9	Solve the following Cauchy problem $\begin{aligned} & u_{x}+u_{y}+u_{z}^{3}=x+y+z \\ & u(x, y, 0)=x y \end{aligned}$	Understand	3
10	Solve the following PDE for $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ $\begin{aligned} & f_{t}+x f_{x}+3 t^{2} f_{y}=0 \\ & f(x, y, 0)=x^{2}+y^{2} \end{aligned}$	Understand	3
UNIT-IVNUMERICAL DIFFERENTIATION AND INTEGRATION			
Part - A (Short Answer Questions)			
1	Define difference methods on undetermined coefficients .	Remember	4
2	Define optimum choice of step length	Remember	4
3	Explain partial differentiation	Remember	4
4	Explain numerical integration.	Remember	4
5	Explain trapezoidal method in double integration.	Remember	4
6	What is Lagrange interpolation method.	Remember	4
7	Explain reduced integration method.	Remember	4
8	Explain composite integration method.	Remember	4
9	What is Gauss-Legendre are point formula?	Understand	4
10	Explain simpson's method in double integration.	Remember	4
Part - B (Long Answer Questions)			
1	A differentiation rule of the form $\mathrm{hf}^{\prime}\left(\mathrm{x}_{2}\right)=\alpha_{0} \mathrm{f}\left(\mathrm{x}_{0}\right)+\alpha_{1} \mathrm{f}\left(\mathrm{x}_{1}\right)+\alpha_{2} \mathrm{f}\left(\mathrm{x}_{3}\right)+\alpha_{3} \mathrm{f}\left(\mathrm{x}_{4}\right) \mathrm{w}$ where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}, \mathrm{J}=0,1,2,3,4$ is given determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} so that the rule is exact for a polynomial of degree u.	Understand	4
2	Using four point formula $f^{\prime}\left(x_{2}\right)=\frac{1}{64}\left\{-2 f\left(x_{1}\right)-3 f\left(x_{2}\right)+6 f\left(x_{3}\right)-f\left(x_{4}\right)\right\}+T E+$ RE where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}_{1} \mathrm{~J}=1,2,3,4$ determine the form of TE and RE determine the total error.	Apply	4
3	A differentiation rule of the form $\mathrm{hf}^{\prime}\left(\mathrm{x}_{2}\right)=\alpha_{0} \mathrm{f}\left(\mathrm{x}_{0}\right)+\alpha_{1} \mathrm{f}\left(\mathrm{x}_{1}\right)+\alpha_{2} \mathrm{f}\left(\mathrm{x}_{3}\right)+\alpha_{3} \mathrm{f}\left(\mathrm{x}_{4}\right) \mathrm{w}$ where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}, \mathrm{J}=0,1,2,3,4$ is given determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} so that the rule is exact for a polynomial of degree u and also obtain expression for the round-off error in calculating $f^{\prime}\left(x_{2}\right)$.	Apply	4
4	Find the Jacobian matrix for the system of equations $f_{1}(x, y)=x^{3}+x y^{2}-y^{3}=0 ; f_{2}(x, y)=x y+5 x+6 y=0$ at $(1,2)$ and $(1 / 2,1)$.	Apply	4
5	If $f(x)$ has a minimum in the interval $x_{n-1} \leq x \leq x_{n+1}$ and $x_{k}=x_{0}+$ kh show that the interpolation of $f(x)$ by a polynomial of second degree yields the approximation $f_{n}-\frac{1}{8}\left\{\frac{\left(f_{n+1}-f_{n-1}\right)}{f_{n+1}-2 f_{n}+f_{n-1}}\right\}$ for this minimum value	Apply	4

	of $f(x)$.		
6	Find the approximate value of $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}}$ using trapezoidal rule and obtain a bound for the errors.	Understand	4
7	Using optimum choice of step length method $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=\frac{-3 \mathrm{f}\left(\mathrm{x}_{0}\right)+4 \mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)}{2 \mathrm{~h}}+\frac{\mathrm{h}^{2}}{3} \mathrm{f}^{\prime \prime \prime}(\mathrm{g}) \mathrm{r}_{0}<\mathrm{g}<\mathrm{x}_{2}$ determine the optimal value of h using the criteria $\|\mathrm{RE}\|=\|\mathrm{TE}\|\|\mathrm{RE}\|+\|\mathrm{TE}\|=$ minimum.	Understand	4
8	Determine $a, b, c \in \int_{0}^{h} f(x) d x=h\left[a f(0)+b f\left(\frac{h}{3}\right)+c f(h)\right]$ is exact for polynomials of as high order as possible and determine the order of the truncation error.	Understand	4
9	Using four point formula $\mathrm{f}^{\prime}\left(\mathrm{x}_{2}\right)=\frac{1}{64}\left\{-2 \mathrm{f}\left(\mathrm{x}_{1}\right)-3 \mathrm{f}\left(\mathrm{x}_{2}\right)+6 \mathrm{f}\left(\mathrm{x}_{3}\right)-\mathrm{f}\left(\mathrm{x}_{4}\right)\right\}+\mathrm{TE}+$ RE where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}_{1} \mathrm{~J}=1,2,3,4$ determine the form of TE and RE.	Understand	4
10	Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{2 \mathrm{x}^{2}+2 \mathrm{x}+1}$ using Radau three point formula	Understand	4
Part - C (Problem Solving and Critical Thinking)			
1	A differentiation rule of the form $\mathrm{hf}^{\prime}\left(\mathrm{x}_{2}\right)=\alpha_{0} \mathrm{f}\left(\mathrm{x}_{0}\right)+\alpha_{1} \mathrm{f}\left(\mathrm{x}_{1}\right)+\alpha_{2} \mathrm{f}\left(\mathrm{x}_{3}\right)+\alpha_{3} \mathrm{f}\left(\mathrm{x}_{4}\right) \mathrm{w}$ where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}, \mathrm{J}=0,1,2,3,4$ is given determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} so that the rule is exact for a polynomial of degree u and also find the error term.	Understand	4
2	A differentiation rule of the form $h^{\prime}\left(\mathrm{x}_{2}\right)=\alpha_{0} \mathrm{f}\left(\mathrm{x}_{0}\right)+\alpha_{1} \mathrm{f}\left(\mathrm{x}_{1}\right)+\alpha_{2} \mathrm{f}\left(\mathrm{x}_{3}\right)+\alpha_{3} \mathrm{f}\left(\mathrm{x}_{4}\right) \mathrm{w}$ where $\mathrm{x}_{\mathrm{J}}=\mathrm{x}_{0}+\mathrm{Jh}, \mathrm{J}=0,1,2,3,4$ is given determine the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} so that the rule is exact for a polynomial of degree u and calculate $f^{\prime}(0.3)$ using five place values of $f(x)=\sin x$ with $h=0.1$.	Apply	4
3	Using optimum choice of step length method $f^{\prime}\left(\mathrm{x}_{0}\right)=\frac{-3 \mathrm{f}\left(\mathrm{x}_{0}\right)+4 \mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)}{2 \mathrm{~h}}+\frac{\mathrm{h}^{2}}{3} \mathrm{f}^{\prime \prime \prime}(\mathrm{g}) \mathrm{r}_{0}<\mathrm{g}<\mathrm{x}_{2}$ determine the optimal value of h using the criteria $\|\mathrm{RE}\|=\|\mathrm{TE}\|$.	Apply	4
4	Using optimum choice of step length method $f^{\prime}\left(\mathrm{x}_{0}\right)=\frac{-3 \mathrm{f}\left(\mathrm{x}_{0}\right)+4 \mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{2}\right)}{2 \mathrm{~h}}+\frac{\mathrm{h}^{2}}{3} \mathrm{f}^{\prime \prime \prime}(\mathrm{g}) \mathrm{r}_{0}<\mathrm{g}<\mathrm{x}_{2}$ determine the optimal value of h using the criteria $\|\mathrm{RE}\|=\|\mathrm{TE}\|$ and determine	Understand	4

3	Solve the initial value problem $u^{1}=-2 u^{2} t, u(0)=1$ with $h=0.2$ on the interval [$0,0.4$] using backward Euler method.			Apply	5
4	Find single step method for the differential equation $y^{1}=f(t, y)$ which produce exact results for $y(t)=a+b e^{-t}$ for $y(t)=a+b \cos t+c \sin t$.			Apply	5
5	Given the initial value problem $u^{1}=u^{2}+t^{2}, u(0)=0$. Determine first three non-zero terms in the Taylors series for $\mathrm{u}(\mathrm{t})$ and hence obtain the value for $\mathrm{u}(1)$.			Apply	5
6	Using midpoint method find $\mathrm{y}(0.8)$ given $\frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\mathrm{x}+\mathrm{y}}, \mathrm{y}(0.4)=0.41$ with h $=0.2$.			Understand	5
7	Using backward Euler method find $y(1,3)$ given that $y^{\prime}=x^{2}+y^{2}, y(1)=2$ with step size $\mathrm{h}=0.3$.			Understand	5
8	Given that $\mathrm{y}^{\prime}=\mathrm{xy}, \mathrm{y}(0)=1$ using midpoint method compute $\mathrm{y}(0.3)$ with $\mathrm{h}=$ 0.3 .			Understand	5
9	Using the shooting method solve the first boundary value problem $u^{\prime \prime}=u+1,0<x<1$ and $u(0)=0, u(1)=e-1$ use the Euler method with $\mathrm{h}=$ 0.25 to solve the resulting system of first order initial value problems. Compare the solution with the exact solution $u(x)=e^{x}-1$.			Understand	5
10	Use shooting method solve $u^{\prime \prime}=u^{\prime}+2 u, 0<x<1$ and $u^{\prime}(0)=1, u^{\prime}(1)=\frac{1}{3}\left(2 e^{2}+\frac{1}{e}\right)$. Calculate the solution of the IVP analytically. The exact solution is $\mathrm{u}(\mathrm{x})=\frac{1}{3}\left(\mathrm{e}^{2 \mathrm{x}}-\frac{1}{\mathrm{e}^{\mathrm{x}}}\right)$.			Understand	5
Part - C (Problem Solving and Critical Thinking)					
1	Solve $y^{1}=t+y, y(1)=0$ using the backward Euler method with $h=0.1$ to get $y(1.2)$			Understand	5
2	Solve the initial value problem $y^{1}=\frac{t}{y}, y(0)=1$ using Euler method with h $=0.2$ to get $\mathrm{y}(0.2)$.			Apply	5
3	Find single step method for the differential equation $y^{1}=f(t, y)$ which produce exact results for $\mathrm{y}(\mathrm{t})=\mathrm{a}+\mathrm{be}^{-\mathrm{t}}$.			Apply	5
4	Given the initial value problem $u^{1}=u^{2}+t^{2}, u(0)=0$. Determine first three non-zero terms in the Taylors series for $u(t)$.			Understand	5
5	Find the three term Taylors series solution for the third order initial value problem $\mathrm{w}^{\prime \prime \prime}+\mathrm{ww}^{\prime \prime}=0, \mathrm{w}(0)=0, \mathrm{w}^{\prime}(0)=0, \mathrm{w}^{\prime \prime}(0)=0$ find the bound on the error for $t \in[0,0.2]$.			Apply	5
6	Find the values of $y(0.2)$ and $u(0.2)$ for the systems of equations $\mathrm{y}^{\prime}=\mathrm{u}, \mathrm{y}(0)=1$ and $\mathrm{u}^{\prime}=-4 \mathrm{y}-2 \mathrm{u}, \mathrm{u}(0)=1$ using Euler's method.			Understand	5
7	In a computation with Euler method the following results are obtained with various step sizes. Compute a better estimate by extrapolation.			Understand	5

	u	2.4414	2.5657	2.6379		
8	Given the equation $\mathrm{y}^{\prime}=\mathrm{x}+\sin \mathrm{y}, \mathrm{y}(0)=1$ show that it is sufficient to use Euler method with step size $\mathrm{h}=0.2$ to compute $\mathrm{y}(0.2)$.				Understand	5
9	Use shooting method to solve the mixed boundary value problem $u^{\prime \prime}=4 u-4 \mathrm{xe}^{\mathrm{x}}, 0<\mathrm{x}<1$ and $\mathrm{u}(0)-\mathrm{u}^{\prime}(0)=-1, \mathrm{u}(1)+\mathrm{u}^{\prime}(1)=-\mathrm{e}$ use the Taylor's series method $u_{J+1}=u_{J}+h u_{J}^{1}+\frac{h^{2}}{2} u_{J}^{11}+\frac{h^{3}}{6} u_{J}^{111}$, $u_{j+1}^{1}=u_{J}^{1}+h u_{J}^{11}+\frac{h^{2}}{2} u_{J}^{111}$ to solve initial value problem take $h=0.25$. Compare with the exact solution $u(x)=x^{x}(1-x)$.				Understand	5
10	Using shooting method solve $u^{\prime \prime}=4(u-1), 0<x<1$ and $u(0)=2, u(1)=$ $1+\mathrm{e}^{2}$ use Euler method with $\mathrm{h}=\frac{1}{3}$.				Understand	5

Prepared By: Mr.S.V.S.Hanumantharao, Associate Professor

HOD,
FRESHMAN ENGINEERING

