

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

STRUCTURAL ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	COMPUTER ORIENTED NUMERICAL METHODS
Course Code	:	BST003
Class	:	I M. Tech I Semester
Branch	:	ST
Year	:	2017 - 2018
Course	:	Mr S V S Hanumantharao, Associate Professor
Coordinator		101.5. V.5.Huhuhuhuhuhu (V.5506hute 110165501
Course Faculty	:	Mr.S.V.S.Hanumantharao, Associate Professor

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S No	QUESTION	Blooms taxonomy level	Course Outcome s						
	UNIT - I								
	SOLUTIONS OF LINEAR EQUATIONS								
Part -	A (Short Answer Questions)								
1	Write short notes on direct mothed	Remember	1						
	write short notes on direct method.								
2	Explain about Cramer's rule.	Remember	1						
3	Define Gauss Elimination method.	Remember	1						

4	What is Gauss Jordan method	Remember	1			
5	Write short notes on indirect method.	Remember	1			
6	Define Triangulization method	Remember	1			
7	What is Jacobi Iteration method	Remember	1			
8	Define Gauss-Seidel iteration method	Remember	1			
9	Define successive over –relaxation method	Remember	1			
10	Write short notes on Eigen values and Eigen vectors for symmetric matrices.	Understand	1			
Part - B (Long Answer Questions)						
1	Solve the system $x+y+z=6$, $2x-3y+4z=8$, $x-y+2z=5$ by Cramer's rule.	Understand	1			
2	Solve the system of equations $x_1+2x_2+x_3=0$, $2x_1+2x_2+2x_3=3$, $-x_1-3x_2=2$ by Gauss Elimination method.	Understand	1			
3	Solve the system of linear equations by Gauss Jordan method $x+y+z=6$, $2x+3y-2z=2$, $5x+y+2z=13$.	Understand	1			
4	Solve by using Traingulization method 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8.	Understand	1			
5	Solve the system of equations by using Jacobi's iteration method. 28x-y-z=32, x+3y+10z=24, 2x+17y+4z=35	Apply	1			
6	Solve the system of equations $10x+y+z=12$, $2x+10y+z=13$, $2x+2y+10z=14$.by Gauss seidel iteration method.	Apply	1			
7	Solve the system by Relaxation method 8 x_1 -3 x_2 +2 x_3 =20, 4 x_1 +11 x_2 - x_3 =33, 6 x_1 +3 x_2 +12 x_3 =36.	Apply	1			
8	Solve by Jacobi's method for the symmetric matrix $A = \begin{bmatrix} 15 & 1 & 1 \\ 1 & -2 & 6 \\ 1 & 6 & 1 \end{bmatrix}$	Apply	1			
9	Solve by Given's method for A= $\begin{bmatrix} 1 & 4 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 2 \end{bmatrix}$	Apply	1			
10	Consider a symmetric matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 6 & 5 \\ 4 & 5 & 7 \end{bmatrix}$. Solve by Householder's method	Apply	1			
Part -	C (Problem Solving and Critical Thinking Ouestions)					
1	Solve the system of equations $x+y+z=7$, $x+2y+3z=16$, $x+3y+4z=20$ by cramer's rule	Understand	1			
2	Solve x+2y+3z=14, 3 x+y+2z=11, 2 x+3y+z=11 by gauss elimination method	Understand	1			
3	Solve the system by Gauss Jordan method $x+2y-z=2$, $3x+8y+2z=10$, $4x+9y-z=12$.	Understand	1			
4	Solve the system of equations $x+y+z=6$, $x+2y+3z=16$, $x+3y+z=12$ by LU decomposition method.	Understand r	1			

5	Solve $10x+2y+z=9$, $x+10$)y-z=-22, -2 x+3y	+10z=22 by	Jacobi's ite	ration	Apply	1			
6	Solve the system of linear $x_1+10x_2+x_3=6$ $10x_1+x_2+x_3=6$	equations by Gau $x_{3}=6$ $x_{1}+x_{2}+10x_{3}=$	ss Seidel iter	cative metho	od	Apply	1			
7	Solve $20x+2y+6z=28$, x+ method	20y+9z=-23, 2x-2	7y-20z=-57	by Jacobi's	iteration	Apply	1			
8	Solve the real symmetric r	matrix A= $\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$	3 5 by Jaco 6	bi's methoo	1.	Apply	1			
9	Solve the symmetric matri	$\mathbf{x} \mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 3 & 5 \end{bmatrix}$	by Given's	method.		Apply	1			
10	Solve A= $\begin{bmatrix} 2 & 5 & 4 \\ 5 & 3 & 6 \\ 4 & 6 & 8 \end{bmatrix}$ by I		Apply	1						
UNIT-II INTERPOLATION										
Part -	- A (Short Answer Questio	ons)		1						
1	Define Interpolation		Remember	2						
2	What is extrapolation?		Remember	2						
3	How many types of interp		Remember	2						
4	What is Linear Interpolation		Remember	2						
5	Define higher order interp		Remember	2						
6	Explain Lagrange's interp	olation				Remember	2			
7	Explain finite differences.					Remember	2			
8	Define Hermite interpolati	on.				Remember	2			
9	Define Piece-wise interpol	ation.				Remember	2			
10	Explain Spline interpolation	on.				Remember	2			
Part -	B (Long Answer Question	ns)								
1	The following table containy equal $\frac{1}{2}$ X0.450.46y0.47540.4846	0.47 0.4937	f(x) .For $y = f(x)$.For $y = 0.480.5027$	0.49 0.5116	0.50 0.520499	Understand	2			
2	Find the cubic spline that and (3, 16) with first deriv	passes through the ative boundary co	e data points onditions y'(0	(0, 1), (1,-2)=-4&y'(3	(2, 1) (3)=23.	Understand	2			
3	Use Lagrange's interpolation following table $\begin{array}{c c} \hline x & 15 \\ \hline f(x) & 12.2 \\ \hline \end{array}$	on formula estima 0 152 47 12.329	ate the value 154 12.410 12	of f(155) f 156 2.490	from the	Understand	2			

4	Distinguish betwee example	en linear in	nterpolati	ion and spli	ne interp	olation w	vith an	Understand	2
5	Construct the natur (2,4)	ral cubic s	pline for	the data (0	,-4),(1,-3)	,(1.5,-0.2	25) and	Understand	2
6	X 1.00 1.05 y 1.000 1.02	y(1.12) and 5 1.	d y(1.28)) from the f 1.15 1.07238	ollowing 1.20 1.0954	data: 1.25	5	Understand	2
7	Find the natural cu $x_0 = 0, x_1 = 1, x_2$	bic spline $= 2$ and x	interpola $x_3 = 3$ wh	ate to f at the ate $f_0 = 0$,	e point $f_1 = 1, f_2 =$	1 and <i>f</i>	$f_{3} = 0$	Understand	2
8	Use Hermite's inte following table	$\begin{array}{c c} x \\ \hline x \\ \hline (x) \\ \hline (x) \\ \hline (x) \\ \end{array} $	3 09861 .3333	3.5 1.25276 0.28571	4.0 1.3862 0.2500	29 00	om the	Apply	2
9	Find the value of y (7, 34) by lagrange	x = 0 g at $x = 0$ g as interpola	iven son ation	ne set of val	lues (-2, 5	5), (1, 7),	(3, 11),	Understand	2
10	Find the value of y at $x = 5$ given some set of values (3, 4), (5, 7) by linear interpolation							Understand	2
Part -	C (Problem Solvin	ng and Cr	itical Th	inking Qu	estions)				
1	Find the value of y interpolation	x = 4 g	given son	ne set of val	lues (2, 4)), (6, 7)	by linear	Understand	2
2	Find u_6 from $u_1=22$	2, u ₂ =30, u	₄ =82, u ₇ =	$=106, u_8 = 20$	6 by lagra	anges int	erpolation	Understand	2
3	Find x when y=100 y(3)=6, y(5)=24, y	0 using La (7)=58, y(granges 9)=108,	interpolatio y(11)=174.	n formula	a, given t	hat	Understand	2
4	Find the cubic Her p (1) = 2 p' (1) = 1 p (3) = 1 p' (3) = 2	mite poly	nomial or	r "clamped	cubic" th	at satisfic	es	Apply	2
5	Find the cubic spli x f(x)	ne approx 0 -1	imation f	For the follo	wing data	a with Ma 2 27	0=0,M2=0	Understand	2
6	In(x)-1327Fit a cubic spine to the following data x 0 $f(x)$ 1					Apply	2		
7	Construct differencex0.1 $f(x)$ 0.003Evaluate $f(0.6)$.	ce table fo 0.3 0.067	r the foll 0.5 0.148	owing data 0.7 0.248	0.9 0.370	1.1 0.518	1.3 0.697	Understand	2

	From the f	ollowing ta	ble find y	when x=1.3	5				
8	Х	1	1.2	1.4	1.6	1.8	2	Understand	2
0	у	0.0	-0.112	-0.016	0.336	0.992	2		
	Find f(22)	from interp	polation for	mula				Understand	
9	X	20	25	30	35	40	45		2
	f(x)	<u> </u>	<u>332</u>	291	260	231	204	TTo do not o o d	
10	Fit the cub	$\frac{10}{10}$	r the data	1	2		3	Understand	2
10	$f(\mathbf{x})$	1		<u>1</u> 2	9		<u> </u>		2
	1(1)	1		<u>-</u> [JNIT-III		20		
		FINI	TE DIFFE	RENCE M	IETHOD	AND A	PPLICATION	IS	
Part	- A (Short A	nswer Qu	estions)						
1	Define forwa	ard differer	nce.					Remember	3
2	Define backw	vard differe	ence.					Remember	3
3	Define cent	al differen	ce.					Remember	3
4	Explain inte	rpolating p	arabolas.					Remember	3
5	Explain deri	vation of c	lifferentiati	on formula	e using Tay	vlor serie	es.	Remember	3
6	Explain bou	ndarv cond	lition.			,		Remember	3
7	What is bear	m deflectio	on?					Remember	3
8	What are ch	aracteristic	value prob	olems?				Remember	3
0								Understand	3
9	What is the	solution of	characteris	stic value p	roblem?			Chacistana	5
10	Explain fini	te differend	ce method.					Remember	3
Part	- B (Long A	nswer Qu	estions)						
1	Evaluate (i) $\Delta \tan^{-1}$	x (ii) Δ (e	$(x \log 2x)$				Understand	3
	The follow	ing data gi	ves the me	lting points	of an alloy	to lead	and zinc		
		0 0							
	Х	0.20	0.22	0.24 (0.26 0.2	28 ().30		_
2	f(x	1.6596	1.6698	1.6804	1.6912 1.	7024	1.7139	Apply	3
	Find the m	elting noin	t of the allo	ov containir	ng 54% of 1	ead			
	I ma the m	enting poin	t of the and	y containin	15 5470 01 1	cuu			
	Calculate y	/'(1), <i>y</i> '(1.03	B) for the fu	nction y=f(x) given in	the tabl	e		3
3		0.06	0.00	1.00	1.02		1.04	Apply	
	\mathbf{X}	0.90	1 7939	1.00	1.02	3	1.04	rr J	
	From the f	ollowing ta	ble determ	ine f (0.23)	and f (0.29)))	1.7075		3
4	X	0.20	0.22	0.24 (0.26 0.1	28 (0.30	Apply	-
4	f(x	1.6596	1.6698	1.6804	1.6912 1.	7024	1.7139		
ļ									
	Given the	tollowing t	able of value	ues of x and 45	$\frac{1}{2}$				3
_	X	10000 1	0.40 0.40	+5 0.50	0.55	<u> 0.60</u> 54 1 1	U U.65		
5	<u> </u>	1.0000 1 12	100 1.1401	Apply					
	Find $\frac{ay}{l}$ a	and $\frac{a}{1}\frac{y}{2}$ a	t i) x=1.00	ii) x=1.25.					
	dx Approving	$\frac{dx^2}{dx^2}$	votive of 4	o function	$f(x) = e^{-x} e^{-x}$	n(x) of f	ha naint r -	Understand	2
6	1.0 using th	ne centred	divided-dif	ference for	$r(x) = e^{-st}$ mula and R	Lichards	ne point x - on	Understand	3

	extrapolation	on starting	g with h	n = 0.5 and	d continu	uing usin	$g \epsilon_{step} = 0.$	0001.		
7	Describe R	ichardson	ı extrap	olation ir	n derivati	ve comp	utation		Remember	3
	Find the so	lutions of	f							3
	$(u_x)^2 + (u_y)^2$	$(u_x)^2 + (u_y)^2 = 1$								
		r^2								
8	in a neighborhood of the curve $y = \frac{x}{2}$ satisfying the conditions								Understand	
Ŭ	2		2		2					
	$u(x,\frac{x}{x}) =$	$=0, u_{y}($	$(x,\frac{x}{x})$	>0						
			2	aatmia fam						
	Solve the f	ollowing	n paran Cauchy	problem	11					3
0	$u^2 + u^2 + u^2$	$u + u^2 + u^2 = 1$								5
9	(0)									
	u(0, y, z) =	= y.z	.1 . 6 . 11	•						2
	Find the so	$2t^2$ c	the follo	owing eq	uation				Understand	3
10	$f_t + xf_x +$	$3t^2 f_y =$	0						Understand	
	f(x, y, 0)	$=x^2+y$	2							
Part -	- C (Probler	n Solving	g and C	ritical T	hinking)					
1	Evelvete (i)	Λ^2	5x + 12						Understand	2
1	Evaluate (1) $\Delta \left(\frac{1}{x^2 + 5x + 16} \right)$								3	
	Find $y^{1}(0)$ and $y^{11}(0)$ from the following table:						Apply			
2	Х	0	1	2		3	4	5		3
	у	4	8	15	′	7	6	2		
2	Find the fir	$\frac{1}{1}$ st and sec	$\frac{1}{20}$	rivatives	of $f(x)$ at	x = 1.5 11	25	4.0	Apply	2
3	$\frac{x}{f(x)}$	3 375	2.0	$\frac{2.3}{0}$	<u>625</u>	5.0 24.000	38 875	<u>4.0</u> 59.000		3
	Solve the in	nitial valu	le probl	em v' = -2	$2xv^2$, v((() = 1 for	v at x = 1	with step	Understand	
4	length 0.2 u	using Tay	lor serie	es method	d of orde	r four.)	I I I I I I I I I I I I I I I I I I I		3
	Energy (h. c. f.	11	-1.1. C.	. 1 (1 1	_c d	y	y^2	02		-
5	From the re	nowing		iu the val	$\frac{d}{d}$	$x = \frac{1}{\alpha}$	$\frac{1}{lx^2}$ at $x=2$		Apply	3
5	Х	1.96	1	.98	2.00	2	02	2.04		
	у	0.7825	5 0).7739	0.765	1 0	7563	0.7473		
6	Approxima	te the der	ivative	of the fund different	nction $f(x)$	$(x) = e^{-x} \operatorname{si}_{x}$	n(x) at the	point $x =$	Understand	3
0	extrapolation	on starting	g with h	n = 0.5 an	d continu	uia and i ing usin	$g \epsilon_{step} = 0.$	0001.		
	From the fo	ollowing	table de	termine y	v(1925) a	nd y(195	5)			3
								_	Understand	
7		x 1	.921	1931	1941	1951	1961	_	Onderstand	
		y(x 4)	-6000	66000	81000	93000	10100			
	Solve the in	itial valu	e probl	em			U			3
	1 2	x^2	- F							-
	$\frac{-u_{x}^{2}-u_{y}}{2}$	$=-\frac{1}{2},$							Understand	
8	$\frac{-}{\mu(x,0)} = x$. –								
	You will fi	nd that th	e soluti	on blows	up in fin	ite time.	Explain f	nis in terms		
	of the									

	characteristics for this equation.		
	Solve the following Cauchy problem		3
9	$u_x + u_y + u_z^3 = x + y + z$	Understand	
	u(x, y, 0) = xy		
	Solve the following PDE for f(x,y,t)		3
10	$f_t + xf_x + 3t^2 f_y = 0$	Understand	
	$f(x, y, 0) = x^2 + y^2$		
	UNIT-IV		
Part	- A (Short Answer Questions)	DN	
1	Define difference methods on undetermined coefficients	Remember	4
2	Define ontimum choice of step length	Remember	4
2	Explain partial differentiation	Remember	
3	Explain partial differentiation	Remember	4
4	Explain numerical integration.	Remember	4
5	Explain trapezoidal method in double integration.	Remember	4
6	What is Lagrange interpolation method.	Remember	4
7	Explain reduced integration method.	Remember	4
8	Explain composite integration method.	Remember	4
9	What is Gauss-Legendre are point formula?	Understand	4
10	Explain simpson's method in double integration.	Remember	4
Part	- B (Long Answer Questions)	1	
	A differentiation rule of the form		4
1	$hf'(x_2) = \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_3) + \alpha_3 f(x_4) \text{ w where}$	Understand	
	$x_J = x_0 + Jh, J = 0, 1, 2, 3, 4$ is given determine the values of $\alpha_0, \alpha_1, \alpha_2$ and α_3		
	so that the rule is exact for a polynomial of degree u.		4
			4
	$f'(x_2) = \frac{1}{64} \{-2f(x_1) - 3f(x_2) + 6f(x_3) - f(x_4)\} + TE + RE \text{ where}$		
2	$x_1 = x_0 + Jh_1J = 1, 2, 3, 4$ determine the form of TE and RE determine	Apply	
	the total error.		
	A differentiation rule of the form $hf'(r_{1}) = r_{1}f(r_{2}) + r_{2}f(r_{2}) + r_{3}f(r_{3}) + r_{4}f(r_{3})$		4
	In $(x_2) = \alpha_0 i(x_0) + \alpha_1 i(x_1) + \alpha_2 i(x_3) + \alpha_3 i(x_4)$ where $x_1 + \alpha_2 i(x_3) + \alpha_3 i(x_4)$ where		
3	$x_J = x_0 + Jn, J = 0, 1, 2, 3, 4$ is given determine the values of $\alpha_0, \alpha_1, \alpha_2$ and α_3	Apply	
	so that the rule is exact for a polynomial of degree u and also obtain expression for the round off error in calculating $f'(x)$		
	Eind the leaching metrix for the system of equations.		1
4	Find the factorian matrix for the system of equations $f(x, y) = x^3 + xy^2 - y^3 = 0$; $f(x, y) = xy + 5x + 6y = 0$ at (1.2) and (1/2, 1)	Apply	4
	$\frac{1}{1}(x, y) = x + xy + y = 0, \frac{1}{2}(x, y) = xy + 3x + 0y = 0 \text{ at } (1, 2) \text{ and } (1/2, 1).$ If $f(x)$ has a minimum in the interval $x = x + 1$ is shown		Λ
	that the interpolation of $f(x)$ by a polynomial of second degree violds		4
5	$1 \left[\left(f_{x} - f_{x} \right) \right]$	Apply	
	the approximation $f_n - \frac{1}{8} \left\{ \frac{(r_{n+1} - r_{n-1})}{f_{n+1} - 2f_n + f_{n-1}} \right\}$ for this minimum value		

	of $f(x)$.		
6	Find the approximate value of $I = \int_{0}^{1} \frac{dx}{1+x}$ using trapezoidal rule and obtain a bound for the errors	Understand	4
7	Using optimum choice of step length method $f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3} f'''(g)r_0 < g < x_2 \text{ determine the}$ optimal value of h using the criteria $ RE = TE RE + TE =$ minimum.	Understand	4
8	Determine $a, b, c \in \int_{0}^{h} f(x) dx = h \left[af(0) + bf\left(\frac{h}{3}\right) + cf(h) \right]$ is exact for polynomials of as high order as possible and determine the order of the truncation error.	Understand	4
9	Using four point formula $f'(x_2) = \frac{1}{64} \{-2f(x_1) - 3f(x_2) + 6f(x_3) - f(x_4)\} + TE + RE \text{ where}$ $x_J = x_0 + Jh_1 J = 1, 2, 3, 4 \text{ determine the form of TE and RE.}$	Understand	4
10	Evaluate $\int_{0}^{1} \frac{dx}{2x^2 + 2x + 1}$ using Radau three point formula	Understand	4
Part -	- C (Problem Solving and Critical Thinking)		
1	A differentiation rule of the form $hf'(x_2) = \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_3) + \alpha_3 f(x_4)$ w where $x_J = x_0 + Jh, J = 0, 1, 2, 3, 4$ is given determine the values of $\alpha_0, \alpha_1, \alpha_2$ and α_3 so that the rule is exact for a polynomial of degree u and also find the error term.	Understand	4
2	A differentiation rule of the form $hf'(x_2) = \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_3) + \alpha_3 f(x_4)$ w where $x_J = x_0 + Jh, J = 0, 1, 2, 3, 4$ is given determine the values of $\alpha_0, \alpha_1, \alpha_2$ and α_3 so that the rule is exact for a polynomial of degree u and calculate $f'(0.3)$ using five place values of $f(x) = \sin x$ with $h = 0.1$.	Apply	4
3	Using optimum choice of step length method $f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3} f'''(g)r_0 < g < x_2 \text{ determine the}$ optimal value of h using the criteria $ \text{RE} = \text{TE} $.	Apply	4
4	Using optimum choice of step length method $f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(g)r_0 < g < x_2 \text{ determine the}$ optimal value of h using the criteria $ RE = TE $ and determine	Understand	4

	f'(2.0) from the fo	gx.								
	X	2.0	2.01	2.02	2.06					
	f(x) ().6931	0.6981	0.7031	0.7227					
5	Using four point formula $f'(x_2) = \frac{1}{64} \{-2f(x_1) - 3f(x_2) + Jh_1J = 1, 2, 3, 4 \text{ dete} \}$ step length satisfying $ TE = 1$	$(x_2) + 6f(x_3)$ rmine the $ RE $.	$\left(f\left(x_{4}\right) \right) + T$ form of TE	TE + RE when	e e nin the optimu	ım	Apply	3		
6	Find the Jacobian matrix for the system of equations $f_{1}(x, y) = x^{2} + y^{2} - x = 0; f_{2}(x, y) = x^{2} - y^{2} - y = 0 \text{ at } (1, 1) \text{ using}$ $\left(\frac{\partial f}{\partial x}\right)_{(x_{i}+y_{j})} = \frac{f_{i+j} - f_{i+j}}{2h} \text{ and } \left(\frac{\partial f}{\partial y}\right)_{(x_{i},y_{j})} = \frac{f_{i,j+1} - f_{i,j-1}}{2k} \text{ with } h = k=1.$							4		
7	Find the Jacobian matrix for $f_1(x, y) = x^2 - y^2 + xy = 0$; f	and (1/2, 1).		Understand	4					
8	$I = \int_{0}^{1} \frac{xinx}{x} dx \text{ simpson's rule}$	>. 					Understand	4		
9	Evaluate the integral $I = \int_{1}^{2} \frac{2}{1}$ formula.		Understand	4						
10	Evaluate $\int_{0}^{\infty} \frac{e^{-x}}{1+x^2} dx$ using t	a.		Understand	4					
	UNIT-V									
Dort	OR A (Short Answer Question		Y DIFFERI	ENTIAL EQ	UATION					
1	Define ordinary differential	aguation					Remember	5		
1 2	Explain Euler's method	equation					Remember	5		
2	Explain backword Euler's	nathad					Remember	5		
- 5 - 1	Explain mid point method	netnou					Remember	5		
+ 5	Explain single step method					-+	Remember	5		
5	What is Taylor's series meth	od				-+	Remember	5		
7	Define boundary value prob	lom					Remember	5		
/ 8	How many types of boundary	ry yalua r	roblems are	there Wha	t are they?		Remember	5		
9	What is the difference betwee method .	en Eule	r's method a	ind backwar	rd Euler's		Understand	5		
10	What is the difference betwee	en mid-r	point method	and single	step method.		Remember	5		
Part	- B (Long Answer Question	is)								
1	Use the Euler method to so $u^1 = -2u^2t$, $u(0) = 1$ with h = 0.2 on the inter	lve nume val [0, 1]	rically the ir	nitial value pr	oblem		Understand	5		
2	Solve $y^1 = -y^2$, $y(1) = 1$ us	ing mid-p	oint method	with $h = 0.1$	to get y(1.2)		Apply	5		

3	Solve the interval [0	initial value prol , 0.4] using bacl	blem $u^1 = -2u^2$ kward Euler me	t, u(0) = 1 with t	h h = 0.2 on the		Apply	5
4	Find singl	e step method for	for the differential $w(t) = a + ba^{-t}$	al equation y^1	= f(t, y) which		Apply	5
	produce exact results for $y(t) = a + bc$ for $y(t) = a + bcost + csnit.$							5
5	Given the non-zero t $u(1)$.	erms in the Tayl	ree for	Apply	5			
6	Using mid	lpoint method fi	ith h	Understand	5			
	= 0.2.	1	(1 f		$2 \cdot 2 \cdot (1)$	2		5
7	with step s	size $h = 0.3$.	thoa fina y(1, 3	b) given that y	$= x^{-} + y^{-}, y(1)$	= 2	Understand	5
8	Given that 0.3.	t y' = xy, y(0) =	n h =	Understand	5			
9	Using the u" = u + 1, 0.25 to sol Compare t	Understand	5					
	Use shoot	ing method solv	u'' = u' + 2u, 0	0 < x < 1 and				5
10	u'(0) = 1, u	$\mathfrak{u}'(1) = \frac{1}{3} \left(2e^2 + \frac{1}{3} \right) \left(2e^2 +$	$\left(\frac{1}{e}\right)$. Calculate t	he solution of	the IVP analytic	ally.	Understand	
	The exact	solution is $u(x)$	$=\frac{1}{3}\left(e^{2x}-\frac{1}{e^{x}}\right)$					
Part -	- C (Proble	m Solving and	Critical Think	ing)				
1	Solve $y^1 =$ get y(1.2)	= t + y, y(1) = 0 u	using the backw	ard Euler meth	nod with $h = 0.1$	to	Understand	5
2	Solve the $= 0.2$ to $= 0.2$	initial value pro	blem $y^1 = \frac{t}{y}, y$	(0) = 1 using E	Culer method wit	h h	Apply	5
	= 0.2 to get	e sten method fo	or the differenti	al equation v^1	-f(t, y) which		Apply	5
3	produce ex	xact results for $\frac{1}{2}$	$y(t) = a + be^{-t}$.	ai equation y				C C
4	Given the	initial value pro	blem $u^1 = u^2 + u^2$	$t^2, u(0) = 0.I$	Determine first th	nree	Understand	5
	non-zero t Find the th	erms in the Taylor	lors series for u	(t). n for the third	order initial valu	ie.		5
5	problem v	w''' + ww'' = 0, w	(0) = 0, w'(0) =	=0, w''(0)=0 1	find the bound o	n the	Apply	Ũ
	error for t	∈[0,0.2].					11 5	
6	Find the v	alues of $y(0.2)$ a	and $u(0.2)$ for the	e systems of e	quations		Understand	5
	y' = u, y(0)	()=1 and $u'=-$	-4y-2u,u(0) =	1 using Euler	's method.			
	In a comp	utation with Eul	er method the f	ollowing resul	ts are obtained w	vith	Undanster d	5
7		h	1	1	1		Understand	
			$\overline{4}$	$\overline{8}$	16			

		u	2.4414	2.5657	2.6379			
8	Given the	e equation $y' = x$	se	Understand	5			
0	Euler met	thod with step siz	h = 0.2 to co	mpute $y(0.2)$.				
	Use shoo		5					
	u'' = 4u -	$-4xe^{x}, 0 < x < 1ax$						
9	Taylor's	series method u _,		Understand				
	$u^1_{_{J+1}}=u^1_{_J}$	$+hu_{J}^{11}+\frac{h^{2}}{2}u_{J}^{111}$						
	Compare	with the exact so						
	Using she	ooting method so	lve $u'' = 4(u - 1)$	1), $0 < x < 1$ and	d u(0) = 2, u(1) =	=	TT 1 4 1	5
10	$1+e^2$ use	Euler method wit	h h = $\frac{1}{3}$.				Understand	

Prepared By: Mr.S.V.S.Hanumantharao, Associate Professor

HOD,

FRESHMAN ENGINEERING