

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY TUTORIAL QUESTION BANK

Course Name	:	BASIC ELECTRICAL ENGINEERING
Course Code	:	A30202
Class	:	II B. Tech I Semester
Branch	:	Information Technology
Year	:	2016 - 2017
Course Faculty	:	Ms.S Swathi, Assistant professor.

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S. No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
	UNIT -1		
	INTRODUCTION TO ELECTRICAL ENGINEERING AND NETWO	RK ANALYSIS	
	(SHORT ANSWER QUESTION)		
1	State Kirchhoff's voltage law and Kirchhoff's Current law?	Remember	2
2	Explain ideal voltage and current source?	Understand	1
3	Discuss the applications of both series and parallel combination?	Understand	2
4	Discuss resistor, capacitor, and inductor with relevant expression?	Understand	2
5	Explain the equations for resistors in equivalent delta. If the resistors Ra, Rb and Rc are connected electrically in star?	Evaluate	2
6	State Ohm's law?	Evaluate	1
7	State Superposition Theorem?	Remember	3
8	State Thevinins Theorem?	Remember	3
9	State Maximum power transfer theorem?	Remember	3
10	Explain difference between series and parallel resistive circuit?	Understand	2
11	Explain the equations for resistors in equivalent star. If the resistors Ra, Rb	Evaluate	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
	and Rc are connected electrically in delta?		
12	Discuss limitations of ohm's law?	Understand	2
13	Define resistance and state its units. On which factors the resistance of a material depends?	Remember	7
14	Define conductance and state its units	Remember	7
15	Define electrical energy. state its units	Remember	7
	(LONG ASNWERS QUESTIONS)		
1	Explain two capacitors are connected in series then Ceq=C1C2/C1+C2?	Evaluate	1
2	Explain derivation of star-delta conversion equations?	Evaluate	2
3	Explain derivation of delta-star conversion equations?	Evaluate	2
4	Explain in detail the volt-ampere relationship of R, L and C elements with neat diagrams?	Understand	1
5	Explain about series and parallel networks of resistor?	Understand	1
6	Explain about series and parallel networks of inductor?	Understand	1
7	Explain classification of network elements?	Understand	1
8	Explain superposition theorem?	Remember	3
9	Explain Thevinin's theorem?	Remember	3
10	Derive the condition for maximum power transfer theorem?	Evaluate	3
11	Write differences between ideal and practical voltage sources?	Understand	2
12	Write differences between ideal and practical current sources?	Understand	2
13	Write a notes on dependent sources?	Understand	2
14	Write down KVL and KCL and explain?	Understand	2
15	Write the characteristics of series and parallel circuits?	Understand	2
	(ANALYTICAL QUESTIONS)		
1	Find the equivalent resistance for the following circuit?	Apply	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
2	Determine the current through 800 ohm resistor in the network shown in figure	Apply	2
3	If current flowing through a coil changes at the rate of 2amps/sec and the voltage induced is 20v. Find the inductance value?	Apply	1
4	By using Thevinin's theorem Determine the current through 5 ohm resistor? 4^{A} 10^{V} 12^{V} 3^{O} 10^{V} 12^{V} 3^{O} 10^{V} 10^{V} 12^{V} 10^{V} 12^{V} 10^{V}	Apply	3
5	Find current I in the above circuit?	Apply	2
6	Find the power consumed by each resistor?	Apply	1
7	Find the current in each resistor ? $100 V$ 5Ω 5Ω 20Ω 20Ω	Apply	3
8	Calculate how to combine four 100 ohm resistors to obtain an equivalent resistance of a. 25 ohm, b. 60 ohm, c. 40 ohms?	Apply	2
9	Calculate the current 'I' shown in figure using super position theorem?	Apply	2
10	If 3 capacitors of values 2mF, 4mF, 5mF are connected in parallel. Calculate the effective capacitance?	Apply	2

S. No	Question	Blooms Taxonomy Level	Course Outcome
11	A piece of certain wire length of 40m length and 0.07cm in radius has a resistance of 15ohm, Calculate the specific resistance of the material?	Apply	2
12	If 3 capacitors of values 4mF, 6mF, 8mF are connected in series. Calculate the effective capacitance?	Apply	2
13	If 3 inductors of values 4mH, 6mH, 8mH are connected in series. Calculate the effective inductance?	Apply	2
14	If 3 inductors of values 4mH, 6mH, 8mH are connected in parallel. Calculate the effective inductance?	Apply	2
15	A 100W, 250V bulb is put in series with a 40W, 250V bulb across a 500V supply. What will be the power consumed by each bulb? Will such a combination work?	Apply	2
	UNIT – II ALTERNATING QUANTITIES		
	(SHORT ANSWER QUESTION)		
1	Define RMS Value?	Remember	7
2	State advantages of alternating quantities?	Understand	7
3	Define form factor?	Remember	7
4	Define peak factor?	Remember	7
5	Explain significance of J factor?	Understand	7
6	Define average Value?	Remember	7
7	Explain polar form and rectangular form?	Understand	7
8	Differentiate ac and dc quantities?	Understand	7
9	Define time period	Remember	7
10	Define cycle	Remember	7
11	Define frequency?	Remember	7
12	Define waveform?	Remember	7
13	Define peak value?	Remember	7
14	Define instantaneous value?	Remember	7
15	Discuss concept of phase and phase difference?	Remember	7

S. No	Question	Blooms Taxonomy	Course Outcome
	(LONC A SNWEDS OUESTIONS)	Level	
	(LONG ASN WERS QUESTIONS)		
1	Explain following terms: i) Impedance ii) admittance iii) susceptance iv) conductance v)Power factor ?	Remember	7
2	Write about series RL circuit?	Understand	7
3	Write about series RC circuit?	Understand	7
4	Explain behavior of RLC Series circuit?	Understand	7
5	Explain i) rectangular form ii) polar form ?	Understand	7
6	Explain significance of J-Operator?	Understand	7
7	Write equations for RMS value, average value, form factor and peak factor?	Understand	7
8	Discuss what are the advantages of AC quantities?	Understand	7
9	Explain conversion from rectangular form to polar form?	Understand	7
10	Explain conversion from polar form to rectangular form?	Understand	7
11	Explain the behavior of ac through resistance (R)derive instantaneous value of v and i, average power ,power factor, instantaneous power,and relevant phasors.	Understand	7
12	Explain how the voltage and current in purely resistive circuit are in phase	Understand	7
13	Explain the behavior of ac through inductance (L).derive instantaneous value of v and i , average power, power factor, instantaneous power, and relevant phasors.	Understand	7
14	Explain the behavior of ac through capacitance(C).derive instantaneous value of v and i, average power, power factor, instantaneous power, and relevant phasors.	Understand	7
15	Explain admittance method to solve parallel circuit?	Understand	7
	(ANALYTICAL QUESTIONS)		<u>I</u>
1	A circuit consists of a resistance of 150hm, a capacitance of 200 micro Farad and inductor of 0.05H all in series. If supply of 230V, 50Hz is applied to the ends of circuit. Calculate i) Current in the coil ii) Potential difference across each element?	Apply	7
2	Write about series RC circuit?	Understand	7

S. No	Question	Blooms	Course
		Taxonomy	Outcome
		Level	
3	Solve the following parallel circuit and find out current in each branch and total current as shown in figure	Apply	1
	total current as shown in figure		
	14		
4	C-L	A	7
4	Calculate the RMS, and average values of an alternating quantity given by $y = 20 \cos(314t)^2$	Apply	/
5	Find form facto and peak factor?		
U U			
	υ(t)=∨m ^{Sin} ωt		
	Vm	Apply	7
6	Determine the average and effective values of saw-tooth waveform as shown		
	in below figure		
	$^{\vee}$ ^	Apply	7
	20V		
	2 4 6 $>$ t(Sec)		
	2 4 0		
7	Two impedances $z1=20+j10$ and $Z2=10-j30$ are connected in parallel and		_
	this combination is connected in series with $Z3=30+jx$. Find the value of 'x'	Apply	7
	which will produce resonance?		
8	Convert from rectangular to polar i) 7-30±i60?	Apply	7
0		rippiy	/
9	Convert from rectangular to polar i) z=45+j50?	Apply	7
10	Find the voltage across R, L, phase angle in series R-L circuit, with $R = 100$	Apply	7
11	ohms and $L = 50$ mH and input voltage 10V, 100Hz?	A	7
11	Find the voltage across K, C phase angle in series K-C circuit, with $K = 100$ obms and $C = 50\mu E$ and input voltage 10V 100Hz?	Apply	/
12	Find the power, current in series R-C circuit, with $R = 120$ ohms and C	Apply	7
	$=10\mu$ F and input voltage 100V, 50Hz?		
13	Find the voltage across R, L, phase angle in series R-L circuit, with $R = 100$	Apply	7
	ohms and L = 100mH and input voltage 10V, 100Hz?		
14	A metal filament lamp rated 750w, 110v is to be connected in series with a		
	capacitor across a 220v, 50HZ SUPPLY. calculate	Apply	7
	(i) The connectioned required (ii) the nerver factor		
	(1) The capacitance required (11) the power factor		
15	In a circuit the voltage across and the current through a load are given	Apply	7
-	by $(70+j0)$ and $(6+j8)$ a respectively. Calculate the active and reactive	· · · PPIJ	,

S. No	Question	Blooms Taxonomy Level	Course Outcome
	powers and also the power factor?		
	UNIT – III TRANSFORMERS		
	(SHORT ANSWER QUESTION)		
1	Define transformation ratio?	Remember	5
2	Explain the purpose of laminating the core in a transformer?	Understand	5
3	Explain the emf equation of a transformer and define each term. ?	Remember	5
4	Explain does transformer draw any current when secondary is open? Why?	Understand	5
5	Explain mutual induction principle?	Understand	5
6	Explain why the transformer measured in KVA?	Understand	5
7	Discuss what are the parts are in parts in transformer?	Understand	5
8	Explain the equivalent circuit diagram of transformer?	Understand	5
9	Define voltage regulation of a transformer?	Remember	5
10	Explain difference between core and shell type transformers?	Understand	5
11	Explain core type transformers?	Understand	5
12	Explain shell type transformers?	Understand	5
13	Explain iron losses of the transformers?	Understand	5
14	Explain iron losses of the transformers?	Understand	5
15	Explain core losses of the transformers?	Understand	5
	(LONG ASNWERS QUESTIONS)	1	
1	Describe the construction details of transformer?	Understand	5
2	Explain the principle of operation of transformer?	Understand	5
3	Explain the OC test of a single phase transformer?	Understand	5
4	Explain the losses in a Transformer?	Understand	5
5	Obtain the condition for maximum efficiency of a transformer?	Evaluate	5
6	Obtain the equivalent circuit of a single phase transformer?	Evaluate	5
7	Explain the SC test of a single phase transformer?	Understand	5

S. No	Question	Blooms	Course
		Taxonomy Level	Outcome
8	Explain the determination of deducing equivalent circuit parameters?	Understand	5
9	Explain the ON load condition of a transformer?	Understand	5
10	Explain the NO load condition of a transformer?	Understand	5
11	Explain What are the differences between an Ideal transformer and Practical Transformer?	Understand	5
12	Explain self induction and mutual induction in detail. Also derive the expression for dynamically induced emf.	Understand	5
13	Explain in detail the difference between a core type and a shell type transformer.	Understand	5
14	Derive the approximate equivalent circuit of a 1 phase transformer.	Evaluate	5
15	Derive an emf equation of a single phase transformer.	Evaluate	5
	(ANALYTICAL QUESTIONS)		
1	A 125 KVA transformer having primary voltage of 2000V at 50 Hz has 182		
	primary and 40 secondary turns. Neglecting losses, calculate: i) The full load	Apply	5
	primary and secondary currents. ii) The no-load secondary induced emf.		
	iii) Maximum flux in the core.		
2	Open Circuit and short circuit tests on a single phase transformer gave the		
	following results.		
	V0=200V, I0=0.7A, WO=20W test from primary side	Apply	5
	VS -10V IS -10A WS -40W test from primary side		
	Determine the equivalent circuit referred to primary side?		
	1 1 2		
3	A transformer supplied a load of 32A at 415V. If the primary voltage is		
	3320V, find the following:	Apply	5
	(a) Secondary volt ampere (b) Primary current	11 2	
	(c) Finnary von ampere. Neglect losses and magnetizing current.		
4	A single phase transformer has 50 primary and 1000 secondary turns. Net		
	cross sectional area of the core is 500 cm2. If the primary winding is	Apply	5
	connected to 50 Hz supply at 400 V, Calculate the value of	rippiy	5
	Maximum flux density on core and the emf induced in the secondary?		
5	A transformer with 40 turns on the high voltage winding is used to step down		
	the voltage from 240V to 120V. Find the number of turns in the low voltage		
	winding. Open circuit and short circuit tests on a 5 KVA, 220/400V, 50 Hz,		
	single phase transformer gave the following results:	Apply	5
	OC Test: 220V, 2A, 100W (lv side) SC Test: $40V$, 11 4A, 200W (lv side)		
	$S \subset 1$ est: 40 V, 11.4A, 200 W (NV SIGe) Obtain the equivalent circuit?		
	obtain the equivalent encurt.		
6	A 3300/230V, 50Hz, 1-phase transformer is to be work at maximum flux	Annley	5
	density of 1.2 wb/m2 in the core is 150 cm2 . Calculate suitable value of	Арріу	3
	primary and secondary turns?		

S. No	Question	Blooms Taxonomy	Course Outcome
7	A single phase 50Hz transformer has 80 turns on the primary winding and	Level	
	280 in the secondary winding. The voltage applied across the primary winding is 240 V . Calculate (i) the maximum flux density in the core (ii)	Apply	5
	induced emf in the secondary winding. The net cross sectional area of the		
	core can be taken 200cm2?		
8	A 15kVA 2400-240-V, 60 Hz transformer has a magnetic core of 50-cm2		
	cross section and a mean length of 66.7 cm. The application of 2400 V		
	causes magnetic field intensity of 450 A1/m (RMS) and a maximum flux density of 1.5 T. Determine	Apply	5
	i The turn's ratio		
	ii. The number of turns in each winding		
	iii. The magnetizing current		
9	The emf per turn of a 1- φ , 2200/220 V, 50 Hz transformer is approximately	Apply	5
	12V. Calculate	rippiy	5
10	1) The number of primary and secondary turns, and $440/(110)$ strangformers have a primary projection of 0.02 shows and		
10	A 440/110 v transformer has a primary resistance of 0.03 onms and secondary resistance of 0.02 ohms if iron losses at normal input is 150 watts	Apply	5
	Determine the secondary current at which maximum efficiency will occur	Арргу	5
	and the value of this maximum efficiency at a unity power factor load?		
11	The maximum flux density in the core of 250/3000 Volts 50 Hz single phase	A	5
	transformer is 1.2 webers per square meter. If the emf per turn is 8 volts	Apply	5
	determine primary and secondary turns and area of the core.		
12	A single phase 2200V/250V, 50 Hz transformer has a net core area of 36 cm2	Apply	5
	and maximum flux density of 6 Wb / m2. Calculate the number of turns of $\frac{1}{2}$	11 2	
13	The primary winding of a 50 HZ single phase transformer has 1480 turns and		
15	ised from 8400 V supply. The secondary winding has 200 turns. Find the	Apply	5
	peak value of flux in the core and the secondary Voltage.		
14	The primary winding of a 50 HZ single phase transformer has 480 turns and	Apply	5
	ised from 6400 V supply. The secondary winding has 20 turns. Find the peak	rippiy	5
15	value of flux in the core and the secondary Voltage.		
15	The emi per turn of a 1- φ , 2200/220 V, 50 Hz transformer is approximately	Apply	5
	i) The net cross-sectional area of core for a maximum flux density of 1.5 T.	Арргу	5
	-//		
	UNIT –IV		
	DC AND AC MACHINES		
	(SHORT ANSWER QUESTION)		
1	Define slip in induction motor?	Remember	5
2	State Fleming's Left Hand Rule?	Remember	5
3	Write down the emf equation of a dc generator?	Understand	5
4	Write down the torque equation of a D.C motor?	Understand	5
5	State the function of brushes?	Remember	5
6	State Fleming's Right Hand Rule?	Remember	6

S. No	Question	Blooms	Course
		Taxonomy Level	Outcome
7	Write expression for rotor current frequency?	Understand	6
8	What is principle operation of 3-phase induction motor?	Understand	6
9	Explain the slip-torque characteristics of 3-phase induction motor?	Understand	6
10	State two types of induction motors?	Understand	6
11	State Fleming's right Hand Rule?	Understand	6
12	What is principle operation of dc generator?	Understand	6
13	State the function of commutator?	Remember	6
14	State the function of slots?	Remember	6
15	State the function of slip rings?	Remember	6
	(LONG ASNWERS QUESTIONS)	1	<u> </u>
1	Explain the classification of DC generator?	Understand	5
2	Derive the equation for induced EMF of a DC generator?	Evaluate	5
3	Derive the torque equation of DC motor?	Evaluate	5
4	Explain the principle and construction of a 3 phase induction motor?	Understand	6
5	Derive the expression for rotor frequency?	Evaluate	6
6	Explain why does an induction motor never runs at Synchronous speed?	Understand	6
7	Obtain the condition for maximum running torque of an induction motor?	Understand	6
8	Explain the classification of DC Motor and explain?	Understand	6
9	Explain the significance of back emf in a DC motor?	Understand	6
10	Explain the load characteristics of shunt, series and compound generators?	Understand	6
11	Explain the reasons for the following i. A series motor should not be connected to a load through a belt ii. A series motor develops a high starting torque iii. A differential compound motor is very rarely used iv. A shunt motor runs at almost constant speed irrespective of load current	Understand	6
12	Explain How may the direction of rotation of dc shunt motor be reversed? What is the effect of reversing the line terminals?	Understand	6
13	Explain: i. Slip speed ii. Slip iii. Synchronous Speed iv. Torque.	Understand	6

S. No	Question	Blooms Taxonomy Level	Course Outcome
14	Explain Why an induction motor is called a rotating transformer? Justify	Understand	6
15	Derive the expression for the armature torque and shaft torque of a DC motor	Evaluate	5
	(ANALYTICAL QUESTIONS)		1
1	Calculate the e.m.f by 4 pole wave wound generator having 65 slots with 12 conductors per slot when driven at 1200 rpm the flux per pole is 0.02 wb?	Apply	5
2	A dynamo has a rated armature current at 250 amps what is the current per path of the armature if the armature winding is lap or wave wound? The machine has 12 poles.	Apply	5
3	A 6 pole lap wound dc generator has 600 conductors on its armature flux per pole is 0.02 wb. Calculate i) The speed at which the generator must be run to generate 300v. ii) What would be the speed if the generated were wave wound?	Apply	5
4	A 230 volts dc shunt motor takes 51 A at full load. Resistances of armature and field windings are 0.10hm and 230 ohms respectively. Determine i. armature current ii. field current iii. Back emf developed at full load?	Apply	5
5	In case of an 8-pole induction motor the supply frequency was 50 Hz and the shaft speed was735 rpm. Determine i) Synchronous speed ii) Slip speed per unit slip iii) Percentage slip?	Apply	6
6	Calculate the value of torque established by the armature of a 4pole motor having 774 conductors, two paths in parallel,24 m wb flux per pole, when the total armature current is 50 amps.	Apply	5
7	A 6 pole DC Long shunt generator having an armature, series and shunt field resistances of 0.25 Ω , 0.5 and 100 Ω respectively delivers a load current of 35 Amps at a voltage of 200V.Take 2Volt as total brush drop. Calculate the induced EMF?	Apply	5
8	Calculate the induced EMF for a 6 pole DC Shunt generator having an armature and field Resistances of 0.25 Ω and 50 Ω respectively delivers a load current of 25 Amps at a voltage of 220V. Take 1Volt as total brush drop	Apply	5
9	A 6 – pole dc shunt generator with a wave – wound armature has 960 conductors. It runs at a speed of 500 rpm. A load of 20Ω is connected to the generator at a terminal voltage of 240V.The armature and field resistances are 0.3Ω and 240Ω respectively. Find the armature Current, the induced emf and flux per pole?	Apply	5
10	A 6-pole, 50Hz squirrel cage induction motor runs on load at a shaft speed of 970 rpm. Calculate i) Percentage slip ii) The frequency of the induced current in the rotor?	Apply	6
11	A short shunt compound generator supplied 7.5 KW at 230 V. The shunt field, series field and armature resistances are 100, 0.3 and 0.4 respectively. Calculate the induced emf and the load resistance.	Apply	6
12	A 4 pole DC generator with a shunt field resistance of 100 and armature resistance of 1 has 378 wave connected conductors in its armature. The flux per pole is 0.02 Wb. If a load resistance of 10 is connected across the	Apply	6

S. No	Question	Blooms Taxonomy Level	Course Outcome			
	Armature terminals and the generator is driven at 1000 rpm, calculate the power absorbed by the load					
13	A 4 pole wave wound DC generator has 50 slots and 24 conductors per slot. The flux per pole is 10 mWb. Determine the induced emf in the armature if it is rotating at a speed of 700rpm	Apply	6			
14	An 8 pole lap wound dc generator has 960 conductors, a flux of 40 milliwebers and is driven at 400 rpm. Find induced emf.	Apply	6			
15	The armature of a 6 pole, DC shunt motor takes 300 A at the speed of 400 Revolutions per minute. The flux per pole is 75 mWb. The number of armature turns is 500. The torque lost in windage, friction and iron losses can be Assumed a 2.5%. Calculate i. Torque developed by the armature ii. Shaft torque iii. Shaft power in KW.	Apply	6			
UNIT –V BASIC INSTRUMENTS						
(SHORT ANSWER QUESTION)						
1	What are the types of measuring instruments?	Understand	4			
2	Write short notes on moving iron instruments?	Understand	4			
3	Write short notes on moving iron instruments with attraction type?	Understand	4			
4	Write short notes on moving iron instruments with repulsion type?	Understand	4			
5	Define air friction damping?	Remember	4			
6	Write short notes on spring control mechanism?	Understand	4			
7	Write short notes on gravity control?	Understand	4			
8	What is mean by instrument?	Understand	4			
9	Write different types of torques?	Understand	4			
10	Write short notes on controlling torque?	Understand	4			
11	Define fluid friction damping	Remember	4			
12	Define eddy current damping?	Remember	4			
13	What are Different types of instrument?	Understand	4			
14	Write short notes on moving coil instruments?	Understand	4			
15	What are the differences between moving iron and coil instruments?	Understand	4			
(LONG ASNWERS QUESTIONS)						

S. No	Question	Blooms Taxonomy	Course Outcome
		Level	0 4000000
1	Explain working principle of permanent magnet moving coil instrument?	Understand	4
2	Explain working principle of moving iron repulsion type instrument?	Understand	4
3	Explain working principle of moving iron attraction type instrument?	Understand	4
4	Explain working of different types of torques produced in indicating instruments?	Understand	4
5	Explain i) Deflecting torque, ii) Controlling torque, iii) Damping torque?	Understand	4
6	Mention advantages and disadvantages of MIinstruments?	Understand	4
7	Explain the essential requirements of instruments?	Understand	4
8	Classify of electrical instruments?		4
9	Discuss advantages and disadvantages of MI instruments?	Understand	4
10	Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments?	Understand	4
11	Explain With neat sketch, explain the process of eddy current damping.	Understand	4
12	Explain Why is the scale of a MI instrument non uniform? Explain.	Understand	4
13	Discuss the classification of electrical instruments	Understand	4
14	Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments.	Understand	4
15	Explain with neat sketch the construction and working of a MI ammeter and MC Ammeter.	Understand	4
	(ANALYTICAL QUESTIONS)		1
1	A moving-coil instrument gives a full scale deflection. When the current is 40 mA and its resistance is 25. Calculate the value of the shunt to be connected in parallel with the meter to enable it to be used as an ammeter for measuring currents up to 50 A.?	Apply	4
2	A moving-coil instrument having a resistance of 10 ohms, gives a full scale deflection. When the current is 8 mA. Calculate the value of the multiplier to be connected in series with the instrument so that it can be used as a voltmeter for measuring full scale deflection up to 100 V?	Apply	4
3	A moving-coil instrument gives full.scale.deflection. For a current of 10 mA. Neglecting the resistance of the instrument. calculate the approximate value of series resistance needed to enable the instrument to measure up to (a) 20 V	Apply	4
4	A meter of resistance 50 ohms has a full scale deflection of 4 mA. Determine the value of shunt resistance required in order that full scale deflection should be (a) 15 mA?	Apply	4
5	A moving-coil instrument having a resistance of 20, gives af.s.d. when the current is5 mA. Calculate the value of the multiplier to be connected in series with the instrument so that it can be used as a voltmeter for measuring full. Scale. Deflection up to 200 V?	Apply	4
6	A moving-coil instrument has a full scale deflection of 20 mA and a resistance of 25. Calculate the values of resistance required to enable the instrument to be used (a) as a $0-10$ A ammeter and (b) as a $0-100$ V voltmeter. State the mode of resistance connection in each case?	Apply	4
7	A PMMC instrument has a coil dimensions 15mm*12mm. the flux density in	Apply	4

S. No	Question	Blooms Taxonomy Level	Course Outcome
	the air gap is 1.8 mWb/m*m and the spring constant 0.14micro N-m/rad. Determine the number of turns required to produce an angular deflection of 90degrees when a current of 5mA is flowing through the coil?		
8	A PMMC instrument has a coil dimensions 18mm*16mm. the flux density in the air gap is 1.5 mWb/m*m and the spring constant 0.18micro N-m/rad. Determine the number of turns required to produce an angular deflection of 90degrees when a current of 3mA is flowing through the coil?	Apply	4
9	A moving-coil instrument has a full scale deflection of 20 mA and a resistance of 25. Calculate the values of resistance required to enable the instrument to be used (a) as a 0–100 V voltmeter. State the mode of resistance connection in each case?	Apply	4
10	A moving-coil instrument gives full.scale.deflection. For a current of 10 mA. Neglecting the resistance of the instrument. calculate the approximate value of series resistance needed to enable the instrument to measure up to (a)100V	Apply	4
11	A moving-coil instrument gives full.scale.deflection. For a current of 10 mA. Neglecting the resistance of the instrument. calculate the approximate value of series resistance needed to enable the instrument to measure up to (a)200V	Apply	4
12	A meter of resistance 50 ohms has a full scale deflection of 4 mA. Determine the value of shunt resistance required in order that full scale deflection should be (a) 20?	Apply	4
13	A meter of resistance 50 ohms has a full scale deflection of 4 mA. Determine the value of shunt resistance required in order that full scale deflection should be (a) 100 A?	Apply	4
14	A PMMC instrument has a coil dimensions 18mm*16mm. the flux density in the air gap is 1.8mWb/m*m and the spring constant 0.28micro N-m/rad. Determine the number of turns required to produce an angular deflection of 95degrees when a current of 4mA is flowing through the coil?	Apply	4
15	A moving-coil instrument gives a full scale deflection. When the current is 50 mA and its resistance is 35. Calculate the value of the shunt to be connected in parallel with the meter to enable it to be used as an ammeter for measuring currents up to 60 A.?	Apply	4

Prepared by: Ms.S Swathi, Assistant professor.

HOD, IT