Home (http://ipindia.nic.in/index.htm) About Us (http://ipindia.nic.in/about-us.htm) Who's Who (http://ipindia.nic.in/whos-who-page.htm)
Policy & Programs (http://ipindia.nic.in/policy-pages.htm) Achievements (http://ipindia.nic.in/achievements-page.htm)
RTI (http://ipindia.nic.in/right-to-information.htm) Feedback (https://ipindiaonline.gov.in/feedback) Sitemap (shttp://ipindia.nic.in/itemap.htm)
Contact Us (http://ipindia.nic.in/contact-us.htm) Help Line (http://ipindia.nic.in/helpline-page.htm)



# (http://ipindia.nic.in/index.htm)



## Patent Search

| Invention Title         | BIOGENIC SYNTHESIS OF COFE2O4@AG NANOCOMPOSITES FROM CARISSA CARANDAS PLANT BARK CORTEX FOR THEIR POTENT PHO ANTIBACTERIAL AND CYTOTOXIC ACTIVITIES |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Publication Number      | 36/2023                                                                                                                                             |
| Publication Date        | 08/09/2023                                                                                                                                          |
| Publication Type        | INA                                                                                                                                                 |
| Application Number      | 202341057317                                                                                                                                        |
| Application Filing Date | 26/08/2023                                                                                                                                          |
| Priority Number         |                                                                                                                                                     |
| Priority Country        |                                                                                                                                                     |
| Priority Date           |                                                                                                                                                     |
| Field Of Invention      | CHEMICAL                                                                                                                                            |
| Classification (IPC)    | B01J0035000000, C02F0001300000, A61K0036240000, C02F0101300000, B01J0023750000                                                                      |

#### Inventor

| Name                          | Address                                                                                                        | Country |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|---------|
| Dr. Puthalapattu Reddy Prasad | Associate Professor, Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad       | India   |
| Mrs. Punyasamudram Sandhya    | Assistant Professor, Department of Chemistry, Sri Padmavati Mahaila Visvavidyalayam                            | India   |
| Dr.C R Kesavulu               | Associate Professor, Physics Department, Institute of Aeronautical Engineering, Dundigal, Hyderabad, Telangana | India   |

# Applicant

| Name                                  | Address                                                                                                  | Country |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|---------|
| Institute of Aeronautical Engineering | Dundigal, Hyderabad, Telangana, India                                                                    | India   |
| Dr. Puthalapattu Reddy Prasad         | Associate Professor, Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad | India   |

# Abstract:

Carissa carandas, a traditional medicinal herb with a high concentration of antioxidant phytochemicals, has been used for thousands of years in the Ayurveda, Unani, homoeopathic schools of medicine. By employing Carissa carandas bark extract as a reducing and capping agent in green biosynthesis, we extend this conventional  $\epsilon$  produce CoFe2O4 and CoFe2O4@Ag nanocomposite. A variety of techniques have been used to analyse the synthesised nanocomposite, including UV-Vis, FTIR, XRD, and BET. The CoFe2O4 and CoFe2O4@Ag nanocomposite demonstrated promising antibacterial action against human bacterial pathogens like B. subtilis and S. aurer positive and P. aeruginosa and E. coli as gram negative with inhibition zones of  $24.3 \pm 0.57$ ,  $17.4 \pm 0.75$  and  $20.5 \pm 0.5$ ,  $19.8 \pm 1.6$  mm respectively, and the obtained re superior to the catalyst without silver. On the human breast cancer cell MCF-7, the in vitro cytotoxicity effects of biosynthesized CoFe2O4 and CoFe2O4@Ag were exa MCF-7 cells' 50% inhibitory concentration (IC50) was  $60 \mu g/mL$ . Additionally, biosynthesized CoFe2O4 and CoFe2O4@Ag nanocomposite was used to demonstrate the photocatalytic eradication of Rhodamine Blue (RhB). Due to the addition of Ag, which increases surface area, conductivity, and increased charge carrier separation, th CoFe2O4@Ag nanocomposite exhibits a high percentage of photocatalytic degradation of ? 98% within 35 min under UV light irradiation. Consequently, it is anticipate CoFe2O4@Ag nanocomposite will be a promising photocatalyst and possibly a noble material for environmental remediation applications.

### **Complete Specification**

### Description:Field of invention:

[0001] By employing Carissa carandas bark extract as a reducing and capping agent in green biosynthesis, we extend this conventional application to produce ( and CoFe2O4@Ag nanocomposite. Various techniques have been used to analyse the synthesised nanocomposite, including UV-Vis, FTIR, XRD, FESEM, E.D.X., and B CoFe2O4 and CoFe2O4@Ag nanocomposite demonstrated promising antibacterial action against human bacterial pathogens like B. subtilis and S. aureus as gram pand P. aeruginosa and E. coli as gram-negative with inhibition zones of 24.3 ± 0.57, 17.4 ± 0.75 and 20.5 ± 0.5, 19.8 ± 1.6 mm respectively, and the obtained results we superior to the catalyst without silver. The human breast cancer cell MCF-7, the in vitro cytotoxicity effects of biosynthesized CoFe2O4 and CoFe2O4@Ag were examed The MCF-7 cells' 50% inhibitory concentration (IC50) was 60 µg/mL. Additionally, biosynthesized CoFe2O4 and CoFe2O4@Ag nanocomposite demonstrated the photocatalytic eradication of Rhodamine Blue (RhB). Due to the addition of Ag, which increases surface area, conductivity, and charge carrier separation, the CoFe2O4@Ag nanocomposite exhibits a high percentage of photocatalytic degradation of ? 98% within 35 min under U.V. light irradiation. Consequently, it is anticipated that the CoFe2O4@Ag nanocomposite will be a promising photocatalyst and possibly a noble material for environmental remediation applications. Background of invention:

[002] Pollution is one of the biggest issues facing developing nations [1, 2]. This issue is exacerbated by pollutants leading to massive water contamination that depletes quantity and quality, including industrial effluent with dyestuff and heavy metal traces[3]. Without being treated, the wastewater of various companies disc 5 tonnes of organic compounds annually, damaging freshwater resources [4]. Many dangerous human diseases are thought to have been brought on by this contaminated/unhealthy water [5]. In addition to the paper\_plastic\_printing\_and leather sectors, the textile industry regularly uses rhodamine B (RhB) to colour wo

View Application Status



Terms & conditions (http://ipindia.gov.in/terms-conditions.htm) Privacy Policy (http://ipindia.gov.in/privacy-policy.htm)

Copyright (http://ipindia.gov.in/copyright.htm) Hyperlinking Policy (http://ipindia.gov.in/hyperlinking-policy.htm)

Accessibility (http://ipindia.gov.in/accessibility.htm) Archive (http://ipindia.gov.in/archive.htm) Contact Us (http://ipindia.gov.in/contact-us.htm)

Help (http://ipindia.gov.in/help.htm)

Content Owned, updated and maintained by Intellectual Property India, All Rights Reserved.

Page last updated on: 26/06/2019