INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION

Course Title	PROGRAMMING FOR PROBLEM SOLVING LABORATORY					
Course Code	ACSB02	ACSB02				
Programme	B. Tech					
Semester	ONE	ONE				
Course Type	Foundation					
Regulation	IARE - R18					
	Theory Practical			al		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	-	_	-	4	2	
Chief Coordinator	Dr. M Purus	hotham Reddy, A	Associate Profe	essor		

I. COURSE OVERVIEW:

The course covers the basics of programming and demonstrates fundamental programming techniques, customs and terms including the most common library functions and the usage of the preprocessor. This course helps the students in gaining the knowledge to write simple C language applications, mathematical and engineering problems. This course helps to undertake future courses that assume this programming language as a background in computer programming. Topics include variables, data types, functions, control structures, pointers, strings, arrays and dynamic allocation principles. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Basic Programming Concepts	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Programming for Problem Solving Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

Open Ended	Dama Vidao	Lab Worksheets	Vive Questions
Experiments	Demo Video	Lab Worksheets	Viva Questions

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment	pattern for CIA	١
---------------------	-----------------	---

Component			Total Marks
Type of Assessment	Day to day performance Final internal lab assessment		
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes		Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Videos
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		

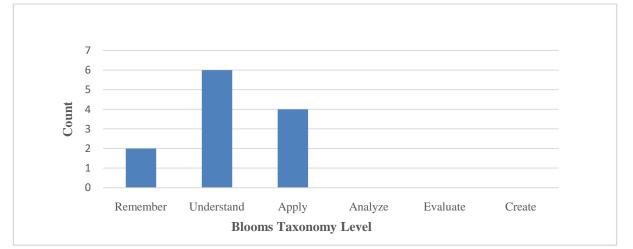
	Program Outcomes	Strength	Proficiency assessed by
PO 2	Problem analysis: Identify, formulate, review research	2	Lab Exercises
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for	3	Lab Exercises
	complex engineering problems and design system components		
	or processes that meet the specified needs with appropriate		
	consideration for the public health and safety, and the cultural,		
	societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Videos
	techniques, resources, and modern engineering and IT tools		
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to research, understand and	2	Assignment
	implement computer programs in the areas related to algorithms,		
	system software, multimedia, web design, big data analytics, and		
	networking for efficient analysis and design of computer-based		
	systems of varying complexity.		
PSO 2	Problem Solving Skills: The ability to apply standard practices and	3	Assignment /
	strategies in software project development using open-ended		Lab Exercises
	programming environments to deliver a quality product for business		
	success.		
PSO 3	Successful Career and Entrepreneurship: The ability to employ	1	Lab Exercises
	modern computer languages, environments, and platforms in creating		
	innovative career paths, to be an entrepreneur, and a zest for higher		
	studies.		

3 = High; **2** = Medium; **1** = Low


VIII. COURSE OBJECTIVES:

The co	The course should enable the students to:				
Ι	Formulate problems and implement algorithms using C programming language.				
II	Develop programs using decision structures, loops and functions.				
III	Learn memory allocation techniques using pointers.				
IV	Use structured programming approach for solving of computing problems in real world.				

IX. COURSE OUTCOMES:

After suce	cessful completion of the course, students will be able to:	
CO No	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Develop the algorithms and draw flowcharts for solving Mathematical and Engineering problems.	Apply
CO 2	Identify, compile and debug programs in C language.	Apply
CO 3	Outlinedifferent data types in a computer program.	Understand
CO 4	Construct programs involving decision structures and loops.	Apply
CO 5	Explain the difference between call by value and call by reference.	Understand
CO 6	Interpret the various types of functions, parameters, and return values for complex problem solving.	Understand
CO 7	Demonstrate the working of arrays, character strings and array of strings.	Understand
CO 8	Illustrate the dynamics of memory by the use of pointers.	Understand
CO 9	Define data types and use structures, unions and enumerations to solve problems.	Remember
CO 10	Interpret file input and output functions to do integrated programming.	Understand
CO 11	Utilize the algorithms in "C" language to real-life computational problems.	Apply
CO 12	Show confidence for self-education and ability for life-long learning needed for computer language.	Remember

COURSE KNOWLEDGE COMPETENCY LEVELS

X. JUSTIFICATIONS FOR CO – (PO, PSO) MAPPING

Course Outcomes	POs / PSOs	Justification for mapping (Students will be able to)	No. of key competencies
CO 1	PO 1	Developing algorithms and draw flowcharts for solving	3
		mathematical and engineering problems related to areas of	
		computer science.	

	PO 2	Understand the various symbols to draw a flowchart, identify	6
		the appropriate symbols to solve a problem, then formulate the	
		solution, and interpret the result for the improvement of the	
		solution.	
	PSO 1	Understand the features of procedural programming for	3
		designing and analyzing computer programs forproblem-	
		solving.	
CO 2	PO 1	Apply the knowledge of mathematics , C language	3
		fundamentals to design, develop, and debug programs to solve	
		engineering problems.	
	PO 2	Understand the problem statement , identify the data	6
		requirements, design, and develop a system for an engineering	0
		problem, validate and interpret the results.	
	PSO 1	Understand automatic type conversion rules to determine the	3
	1501	magnitude and precision of a mixed datatype expression in the	5
		areas of software development .	
CO 3	PO 1	Describe the fundamental programming constructs, and	2
05	101	articulate how they are used to develop a program with a	2
		desired runtime execution flow.	
	DO 3		5
	PO 2	Identify the appropriate datatypes to formulate , develop and	5
	DO 3	analyze the solution to achieve engineering objectives.	
	PO 3	Recognize right data representation formats based on the	7
		requirements for developing programs in real-time	
		scenariosby managing the design process, and communicating	
		effectively with engineering community.	
	PO 5	Describe the operators, their precedence, and associativity while	1
		evaluating expressions in software program .	
CO 4	PO 1	Understand branching statements, loop statements, and apply	3
		the fundamentals of mathematics , science and engineering.	
	PO 2	Understand the problem statement , control the flow of data,	6
		design the solution and analyze the same to validate the results	
		in a program to solve complex engineering problems.	
	PO 3	Recognize an appropriate control structure to design and	5
		develop a solution for a real-time scenario, and	
		communicating effectively with engineering community.	
CO 5	PO 1	Make use of engineering techniques to design and develop	2
		solutions for real-time computational problems .	
CO 6	PO 1	Recognize the importance of recursion for developing programs	2
000		in real-time scenarios using principles of mathematics , and	-
		engineering fundamentals.	
	PO 2	Understand the various kinds of functions , identify the suitable	6
	102	type of function to solve a problem, formulate the solution, and	0
		interpret the result for the improvement of the solution.	
	PO 5	Apply techniques of structured decomposition to dividea	1
	105	problem into smaller pieces with an understanding of its	1
		limitations.	
CO 7	DO 1		3
CO 7	PO 1	Extend the focus on the usage of derived data types as a basic	5
		building block in problem solving using principles of	
	DC C	mathematics, science, and engineering fundamentals.	
	PO 2	Recognize the multidimensional array representation, determine	6
I		its use to solve a problem, articulate the solution, and evaluate	
		the outcome for solution enhancement .	
	PO 5	Identify the appropriate string function to write C programs which need string manipulations.	1

GO 0	701		•
CO 8	PO 1	Recognize the importance of storage classes and preprocessor	2
		directives in the solving of problems incorporating	
		mathematics, and engineering principles.\	
	PO 5	Understand pointers conceptually and apply them in modeling a	1
		complex engineering activity.	
CO 9	PO 1	Extend the focus on the usage of heterogeneous data types as a	3
		basic building block in problem solving using principles of	
		science, and engineering fundamentals.	
	PO 2	Recognize the representation of the structure, assess in solving a	5
		problem, express the solution, and analyze the result for	
		solution enhancement.	
	PO 5	Understand unions conceptually and apply them in modeling a	1
		complex engineering activity.	
CO 10	PO 1	Make a use of an appropriate type of file to store a large volume	2
		of persistent data and give solution to engineering problems .	
	PO 5	To identify appropriate mode to access a file and run the same	1
		program multiple times.	
CO 11	PO 5	Develop, choose and implement suitable methods, tools and	1
		modern engineering for problem solving .	
	PSO 1	Identify tasks in which the numerical techniques are	4
		applicable, develop programs, and hence use computers	
		effectively to solve real-time applications .	
CO 12	PO12	Realize the need and the desire to train and invest in	7
		autonomous and lifelong learning in the widest sense of	
		technical transition to achieve employability expertiseand	
		excel advanced engineering concepts .	

3 = **High**; **2** = **Medium**; **1** = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course		Program	Outcomes	Program Specific Outcomes				
Outcomes	PO1	PO2	PO3	PO5	PSO1	PSO2	PSO3	
CO 1	3	3	2		2	3		
CO 2	3	3	2		2	3		
CO 3	3	2	2	1	2	3	1	
CO 4	3	3	2	2	2	3		
CO 5	2	3	3			3	1	

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning					Pro	gram	Outcor	nes						am Sp utcom	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2											2	2	

Course Learning					Pro	gram (Outcor	nes						am Sp utcom	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 2	3	2											3	2	
CO 3		3	2										1	3	
CO 4		3											3		
CO 5	2	3	2											3	
CO 6		3	2											3	
CO 7	3	2	1										2	3	
CO 8	2	3	1										2	3	
CO 9	2	3	1		1								1	3	1
CO 10		2	3										2	3	1
CO 11		2	3										3	2	
CO 12	3	2			2									3	
CO 13	3	2	2										2	3	
CO 14	2	3											3		
CO 15	3	2			2								1	1	
CO 16	3	2											2	3	
CO 17		3	3											3	
CO 18	1		3												1

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO 3,PO 5	SEE Exams	PO 1,PO 2, PO 3,PO 5	Assignments	PO 1,PO 2, PO 3,PO 5	Seminars	-
Laboratory Practices	PO 1,PO 2, PO 3,PO 5	Student Viva	PO 1,PO 2, PO 3,PO 5	Mini Project	-	Certification	-

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Week-1	OPERATORS AND EVALUATION OF EXPRESSIONS
 b. Write a c. Write a values a d. Write a e. Write a expression i. (x + y) 	C program to check whether a number is even or odd using ternary operator. C program to perform the addition of two numbers without using + operator. C program to evaluate the arithmetic expression $((a + b / c * d - e) * (f - g))$. Read the b, c, d, e, f, g from the standard input device. C program to find the sum of individual digits of a 3 digit number. C program to read the values of x and y and print the results of the following ions in one line: y / (x - y) y)(x - y)
Week-2	CONTROL STRUCTURES
 b. A Fibona and 1.Su program c. Write a G supplied d. A charac entered i case. The Characte A – Z 65 Special s If cost pric determin 	C program to find the sum of individual digits of a positive integer. acci sequence is defined as follows: The first and second terms in the sequence are 0 bsequent terms are found by adding the preceding two terms in the sequence. Write a C to generate the first n terms of the sequence. C program to generate all the prime numbers between 1 and n, where n is a value by the user. ter is entered through keyboard. Write a C program to determine whether the character s a capital letter, a small case letter, a digit or a special symbol using if-else and switch e following table shows the range of ASCII values for various characters. ers ASCII values 6-90 a $-z 97 - 122$ $0-9 48 - 57symbols 0-47, 58 - 64, 91 - 96, 123 - 127be and selling price of an item is input through the keyboard, write a program todetermine the seller has made profit or incurred loss. Write a C program to determinethe profit or loss incurred in percentage.$
Week-3	CONTROL STRUCTURES
the opera statemen b. Write a (sum = 1 c. Write a (d. Write a (C program, which takes two integer operands and one operator from the user, performs ation and then prints the result. (Consider the operators +, -, *, /, % and use switch t). C program to calculate the following sum: -x2/2! + x4/4! - x6/6! + x8/8! - x10/10! C program to find the roots of a quadratic equation. C program to check whether a given 3 digit number is Armstrong number or not. C program to print the numbers in triangular form
Week-4	ARRAYS
 b. Write a 0 i. Ado ii. Mul c. Write a 0 d. Write a 0 	C program to find the second largest integer in a list of integers. C program to perform the following: lition of two matrices litiplication of two matrices C program to count and display positive, negative, odd and even numbers in an array. C program to merge two sorted arrays into another array in a sorted order. C program to find the frequency of a particular number in a list of integer.

Week-5	STRINGS
i. To i ii. To c b. Write a C c. Write a C e. Write a C	 C program that uses functions to perform the following operations: nsert a sub string into a given main string from a given position. delete n characters from a given position in a given string. C program to determine if the given string is a palindrome or not. C program to find a string within a sentence and replace it with another string. C program that reads a line of text and counts all occurrence of a particular word. C program that displays the position or index in the string S where the string T begins, or esn't contain T.
Week-6	FUNCTIONS
i. To f ii. To f b. Write C i. To f ii. To s c. Write a C	programs that use both recursive and non-recursive functions Find the factorial of a given integer. Find the greatest common divisor of two given integers. programs that use both recursive and non-recursive functions print Fibonacci series. solve towers of Hanoi problem. C program to print the transpose of a given matrix using function. C program that uses a function to reverse a given string.
Week-7	POINTERS
b. Write a Cc. Write a Cd. Write a C	C program to concatenate two strings using pointers. C program to find the length of string using pointers. C program to compare two strings using pointers. C program to copy a string from source to destination using pointers. C program to reverse a string using pointers.
Week-8	STRUCTURES AND UNIONS
i. Rea ii. Wri iii. Add iv. Mul struc b. Write a C name, ba Print the c. Create a pass a struc d. Create a Write a C e. Write a C	C program that uses functions to perform the following operations: ding a complex number ting a complex number lition and subtraction of two complex numbers tiplication of two complex numbers. Note: represent complex number using a cture. C program to compute the monthly pay of 100 employees using each employee's usic pay. The DA is computed as 52% of the basic pay. Gross-salary (basic pay + DA). employees name and gross salary. Book structure containing book_id, title, author name and price. Write a C program to ructure as a function argument and print the book details. union containing 6 strings: name, home_address, hostel_address, city, state and zip. C program to display your present address. C program to define a structure named DOB, which contains name, day, month and ng the concept of nested structures display your name and date of birth.
Week-9	ADDITIONAL PROGRAMS
 progressi computes does not error methe sum. b. 2's compthe bits a 	C program to read in two numbers, x and n, and then compute the sum of this geometric ion: $1+x+x^2+x^3++x^n$. For example: if n is 3 and x is 5, then the program s1+5+25+125. Print x, n, the sum. Perform error checking. For example, the formula make sense for negative exponents – if n is less than 0. Have your program print an ssage if n<0, then go back and read in the next pair of numbers of without computing Are any values of x also illegal? If so, test for them too. Delement of a number is obtained by scanning it from right to left and complementing all after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C to find the2''s complement of a binary number.

 c. Write a C program to convert a Roman numeral to its decimal equivalent. E.g. Roman number CD is equivalent to 400. Week-10 PREPROCESSOR DIRECTIVES a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to compute the volume for spheres of radius 5, 10 and 15 meters. b. Define a macro that receives an array and the number of elements in the array as arguments Write a C program for using this macro to print the elements of the array.
 a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to compute the volume for spheres of radius 5, 10 and 15 meters. b. Define a macro that receives an array and the number of elements in the array as arguments
this macro to compute the volume for spheres of radius 5, 10 and 15 meters.b. Define a macro that receives an array and the number of elements in the array as arguments
 c. Write symbolic constants for the binary arithmetic operators +, -, *, and /. Write a C program to illustrate the use of these symbolic constants.
Week-11 FILES
 a. Write a C program to display the contents of a file. b. Write a C program to copy the contents of one file to another. c. Write a C program to reverse the first n characters in a file, where n is given by the user. d. Two files DATA1 and DATA2 contain sorted lists of integers. Write a C program to merge the contents of two files into a third file DATA i.e., the contents of the first file followed by those o the second are put in the third file. e. Write a C program to count the no. of characters present in the file.
Week-12 COMMAND LINE ARGUMENTS
 a. Write a C program to read arguments at the command line and display it. b. Write a C program to read two numbers at the command line and perform arithmetic operations on it. c. Write a C program to read a file name at the command line and display its contents.
Text Books:
 Byron Gottfried, "Programming with C", Schaum's Outlines Series, McGraw Hill Education, 3 Edition, 2017. E. Balagurusamy, "Programming in ANSI C", McGraw Hill Education, 6th Edition, 2012.
Reference Books:
 B. A. Forouzan, R. F. Gillberg, "C Programming and Data Structures", Cengage Learning, India, 3rd Edition, 2014. W. Kernighan Brian, Dennis M. Ritchie, "The C Programming Language", PHI Learning, 2nd Edition, 1988. Yashavant Kanetkar, "Exploring C", BPB Publishers, 2nd Edition, 2003. Schildt Herbert, "C: The Complete Reference", Tata McGraw Hill Education, 4th Edition,
2014.
 R. S. Bichkar, "Programming with C", Universities Press, 2nd Edition, 2012. Dey Pradeep, Manas Ghosh, "Computer Fundamentals and Programming in C", Oxford University Press, 2nd Edition, 2006. Stephen G. Kochan, "Programming in C", Addison-Wesley Professional, 4th Edition, 2014.
Web References:
 https://www.bfoit.org/itp/Programming.html https://www.khanacademy.org/computing/computer-programming https://www.edx.org/course/programming-basics-iitbombayx-cs101-1x-0 https://www.edx.org/course/introduction-computer-science-harvardx-cs50x
E-Text Books:
 http://www.freebookcentre.net/Language/Free-C-Programming-Books-Download.htm http://www.imada.sdu.dk/~svalle/courses/dm14-2005/mirror/c/ http://www.enggnotebook.weebly.com/uploads/2/2/7/1/22718186/ge6151-notes.pdf

XVI. COURSE PLAN:

Week No.	Topics to be covered	Course Outcomes	Reference
1	Operators and Evaluation of Expressions	CO 1, CO 2, CO 3, CO 4, CO 5	T1:2.11-3.5
2	Control Structures	CO 1, CO 2, CO 3, CO 6	T1: 6.1-6.11
3	Control Structures	CO 1, CO 2, CO 3, CO 6	T1: 6.1-6.11
4	Arrays	CO 1, CO 2, CO 3, CO 7	T1: 9.1-9.4
5	Strings	CO 1, CO 2, CO 3, CO 8	T1: 9.5
6	Functions	CO 1, CO 2, CO 9, CO 10	T1: 7.1-7.6
7	Pointers	CO 1,CO 11, CO 13	T1:10.1- 10.10
8	Structures and Unions	CO 14	T1:11.1-11.7
9	Additional Programs	CO 17, CO18	R1:4.2
10	Preprocessor Directives	CO 12	T1: 14.5
11	Files	CO 15, CO 16	T1:12.1-12.6
12	Command Line Arguments	CO 12	T1: 14.2

The course plan is meant as a guideline. Probably there may be changes.

Prepared by:

Dr. M Purushotham Reddy, Assistant Professor

HOD, CSE