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HEAT TRANSFER 

 
 

• WHAT IS HEAT TRANSFER?  
• HOW IS HEAT TRANSFERRED?  
• WHY IS IT IMPORTANT TO STUDY IT? 
 
• HOW IS HEAT TRANSFER DIFFERENT FROM 

THERMODYNAMICS 
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WHAT IS HEAT TRANSFER 

 
 

 

• HEAT TRANSFER IS ENERGY IN TRANSIT DUE TO 
A TEMPERATURE DIFFERENCE 

 
 
 
 
 

MODES OF HEAT TRANSFER 

 

• CONDUCTION  
• CONVECTION  
• RADIATION 
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CONDUCTION 

 
 
 
 
 
 

• Conduction through a solid or a stationary 
fluid 

 
 
 
 
 
 
 
 

T
1 T2 

 

q” 
 

Heat flow 
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CONVECTION 

 
 

 

• CONVECTION FROM A SURFACE TO 
A MOVING FLUID 

 
 

q  hT  Ts  

 
 
 

MOVING FLUID, T  
Ts   >  T 

 

 

q” 

 

  
  

Ts 
 

h (W/m2.K) 
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RADIATION 

 
 
 

 

• NET RADIATION HEAT EXCHANGE BETWEEN TWO 
SURFACES 

 
 
 
 
 
 
 
 

 q ” 

q2” 

 

T
1 

1 
 

 
 

 

T2 
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CONDUCTION – ATOMIC OR MOLECULAR ACTIVITY 

 
 
 
 

• A GAS WITH TEMPERATURE GRADIENT  
• NO BULK MOTION T1  > T2 

 
 
 

T 

T
1 

 
 

x
o 

q” 
 
 
 
 

 

x T2 
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FOURIER’S LAW OF CONDUCTION 

 
 

• 1-D Conduction 
 

qx k 
dT

 
 

dx 
 

 dT  
T2   T1 

  T
1 

  
 

  
 

      
 

 dx     L    T(x) 
 

 

      

T2    T1 

 
 

q k   
 

       
 

x     L 
      

 

           T
2 

 

   T1   T2 

 
 

q 
   

 

k 
       

 

       
 

x     L 

      
 

          L 
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CONVECTION 
 

Energy transfer due to 

 

Random Molecular Motion (Diffusion) 
Motion Of Fluid (Advection) Diffusion 
+ Advection - Convection 

 

Diffusion - Within The Velocity Boundary Layer 
Advection - Outside The Boundary Layer 
 

FLUID MECHANICS IS INDISPENSABLE FOR CONVECTION 

Boundary Layer Development 

u T 
 

y  

 
 

FLUID 
 

 
 
 
 
 

q
            Ts 
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u(y) T(y) 
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TYPES OF CONVECTION   
 

 20°C   
 

FORCED CONVECTION 5 m/s   
 

  AIR . 

20°C 

 

   Q 
 

     
 

     
  

 
 
 

NATURAL CONVECTION 

 
 
 
 

AIR 
. 

Warmer air 
 

 rising 
 

 Q  

  
  

 
 
 
 
 
 
 
 
 

BOILING AND CONDENSATION – involve phase change 
 
 

80°C  

Boiling 
 

Water  
100°C 
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Droplets 

Heating 
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NEWTON’S LAW OF COOLING 
 

q  h T  Ts  

 
 
 
 

• q” – positive – heat is transferred from the surface 
 

TS  > T 
 

• q”  – negative – heat is transferred to the surface 
 

TS  < T 
 

• h - f (surface geometry, fluid, nature of flow) 
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TYPICAL VALUES OF h 

 
 

 

Process h (W/m2.K) 

Free convection  

Gases 2-25 

Liquids 50-1000 

Forced Convection  

Gases 25-250 

Liquids 50-20000 

Boiling and condensation 2500-1,00,000 
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RADIATION 

 

• Energy emitted by matter that is at a finite temperature  
• Radiation – solid, liquid , gas  
• Energy of radiation – transported – E.M.Waves  
• No medium is required (vacuum is perfect medium) 
 

EMISSIVE POWER - Rate at which energy is released per unit area 

 
 

 

STEFAN-BOLTZMAN LAW 
 

Eb    Ts
4

 

 
 

Ts  – Absolute temperature of the surface (K) 
 

 - Stefan-Boltzman constant (5.67 x 10-8 

W/m2.K4) Eb – Emissive Power (W/m2)
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BLACK SURFACE – Stefan Boltzman Law 
REAL SURFACE – Less Than Black Surface 

 

E   Ts
4    

 - Emissivity 0    1
 

 Gas, T h q
conv 

 

  
 

G  E 
  

 
 
 
 
 
 
 
 
 
 
 
 

Surface of ,  and Ts 
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G - IRRADIATION – Rate at which radiation is incident 
on a unit area of the surface (receiving/sending) 

 

Gabs – ABSORPTION – A portion of the irradiation 
may be absorbed by the surface 

 

Gabs =  G 
 

0  1 
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RELATIONSHIP TO THERMODYNAMICS 

 

 

THERMODYNAMICS 
 

• equilibrium states of matter (no temp gradient) 
 
• amount of energy required in the form of heat for a 

system to pass from one equilibrium state to another 
 

HEAT TRANSFER 
 

• thermodynamic non-equilibrium process  
• rate at which heat transfer occurs 
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STEADY STATE CONDUCTION 

 

Objectives 
 

The aim of this lecture is to understand the Fourier's law of conduction 
(both physically and mathematically) and introduce various thermal 
properties like thermal conductivity and thermal diffusivity 
 

 

INTRODUCTION 
 

•Heat transfer has direction as well as magnitude. 

•The rate of heat conduction in a specified direction is proportional to 
the temperature gradient. 

 

•Heat conduction in a medium is three dimensional and time 
dependent 

 

T = f ( x,y,z,t )  

•Heat conduction in a medium is said to be 

–STEADY - temperature does not vary with time. 
 

–UNSTEADY (transient) - temperature varies with time 
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–  One dimensional 
 
 

T=f(x) or T=f(y) or T=f(z) 

 
 
 

 

–  Two dimensional 
 
 

T=f( x,y) or T=f(y,z) or T=f(x,z) 

 
 
 
 
 
 

–  Three dimensional 
 

T = f(x,y,z) 
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CONDUCTION RATE EQUATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A cylindrical rod of known material is insulated on its 
lateral surface. 

 

Its end faces are maintained at different temperatures 

with T1 > T2 



23 
 

The heat transfer rate qx depends upon, 

 
 

• The temperature difference, 
• The rod length, x 

  
 

T 

 

• The cross sectional area, A 
 
 
 

The heat transfer rate varies as, 

 

q"
x   A 

T  
 

x (2.1) 
 

  
  

 
 
 

the proportionality may be converted to an equality by 
introducing a coefficient that is a measure of the 
material behavior.  

Therefore, q"
x  


 k A (2.2)
 T 
x 
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where k is the thermal conductivity (W/m.K) 

 
 
 

Applying limits, 

 

lim  q"
x  lim  k A 

T 
 

x 
 

x 0 x0 
 

 
 
 
 

 

Therefore, 

q" k AdT
  

x 

 
 
 
 

(2.2a) 

 
 
 
 
 
 
 
 

 

(2.3) 

 
 
 

and the heat flux 

 
 

q"
x  

qx
 k 

dT (2.4)  

A dx 
 

    
 

 

 

The minus sign is necessary because heat is always transferred in 
the direction of decreasing temperature. 
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Fourier's law, as written in Equation 2.4, follows that is normal to the cross 
sectional area A called an isothermal surface as illustrated in Figure 2.2. 

 

T(x)  
 
 
 
 
 

T 
1 

 

Q" 
X 

T
2 

 
 

 

X 
 

Figure 2.2 Relation between co-Lordinate system, heat flow direction 
and temperature gradient in one dimension. 

 

Generalizing the conduction rate equation for three dimension gives, 

 

"  ˆ T ˆ T ˆ T  (2.4)
 

q  k T  k  i 
  j   k 

  
  

x y 

  
 

     z    
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• In Cartesian coordinates, the general expression for q" is 
 

 

" ˆ  " ˆ  " ˆ  " 

(2.5)
 

q  iq x  jq y  kqz 
 

 

 

• and from Equation 2.4a, it follows that, 
 
 

 

q"
x k 

T
; q"

y k 
T 

; q"
z  k 

T (2.6)  

x
 

z 

 

    y   
 

 
 
 
 
 
 
 

 

NOTE: Here we have assumed that, 
 

• The medium in which conduction occurs is isotropic. 
 
• The thermal conductivity is independent of the coordinate 

direction in an isotropic medium. 
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HEAT TRANSFER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT - 2 
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Objectives 

 

• One dimensional steady conduction in plane wall, composite wall and 
cylinder is introduced. The approach is to reduce the heat diffusion equation 
for the case chosen. 

   
• Using the appropriate boundary conditions, the heat diffusion equation is 

solved for temperature distribution and heat transfer rate is computed  
 
• Analogy between thermal and electrical systems is drawn in order to aid 

the solving of conduction problems on the basis of electrical circuits 
 
 

ONE-DIMENSIONAL STEADY STATE CONDUCTION 

 
 
 

• We treat situations for which heat is transferred by diffusion under one 
dimensional, steady state conditions.  

 
• In a one-dimensional system, temperature gradients exist along a single 

coordinate direction, and heat transfer occurs exclusively in that direction.  
 
• The system is characterized by steady state conditions if the temperature at 

each point is independent of time. 



29 
 

We begin our consideration of one-dimensional, steady state conduction 
by discussing heat transfer with no internal generation. 

 

 

THE PLANE WALL 
 

For one dimensional conduction in a plane wall, temperature is a function 
of the x coordinate only and heat is transferred exclusively in this direction. 

 

In Figure 2.5, a plane wall separates two fluids of different temperatures. 
 

 

Heat transfer occurs, 

• by convection from the hot fluid at T,1 to one surface of the wall at Ts ,1 
• by conduction through the wall, and  
• by convection from the other surface of the wall at Ts ,2  to the cold fluid atT,2. 
   

Let us first determine the temperature distribution, from which we can then 
obtain the conduction heat transfer rate. 
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Too,1 
 
 

Ts,1 Ts,2 
 

Too,2 
 
 
 
 
 

    h 
 

Too,1 h1  x=0 x=L 

 

Too,2  2 
  

 
 
 
 

Hot Fluid Cold Fluid 
 

FIGURE 2.5 HEAT TRANSFER THROUGH A PLANE WALL 
 
 

 

Temperature Distribution 

 

• The temperature distribution in the wall can be determined by solving the 
heat equation using proper boundary conditions. For steady state conditions 
with no energy source within the wall, the appropriate form of the heat 
equation is 
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d   T  
 0 

 
 

 

k
  (2.22)  

  
 

dx  x    
 

 

Integrating the above equation twice to obtain the general solution 
 

 

T  x   C1 x  C2 (2.23)
 
 

 

Applying boundary conditions of the first kind at x=0 and x=L to obtain the 
constants of integration,C1 and,C2. 
 

T  0   Ts ,1 AND T  L   TS ,2 
 
 

Applying the condition at x = 0 to the general solution, it follows that 

 

T
s ,1 
C

2 

Similarly, at x=L, 
T

  2  C1 L  C2  C1 L T 1 
 s ,  s ,  

which gives, 

T
s ,2  


 
T

s ,1 
 C1  

 
 

 L 
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substituting into the general solution, the temperature distribution is then 
 

 

T  x   Ts , 2   Ts , 1  

x 


 
T

s ,1 (2.24)
 

L 
 

 

From this result, it is evident that, for one dimensional, steady state conduction 
in a plane wall with no heat generation and constant thermal conductivity, the 
temperature varies linearly with x. 
 
 
 

Using Fourier's law, to determine the conduction heat transfer rate. That is, 
 
 
 

q
 x kA 

dT  
kA Ts ,1   Ts ,2  

(2.25)
 

 
 

   
 

  dxL  
 

 

Note that A is the area of the wall normal to the direction of heat transfer and 
for the plane wall, it is a constant independent of x. 
 

The heat flux is then, 
 

q"
x  

q
x 

 
k Ts ,1   Ts ,2  (2.26) 

A A  
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Equations 2.25 and 2.26 indicate that both the heat rate qx and heat flux are 
constants, independent of x. 

 

 

Thermal Resistance 
 

• There exists an analogy between the diffusion of heat and electrical charge.  
• Thermal resistance may be associated with the conduction of heat in the 

same fashion as an electrical resistance is associated with the conduction of 
electricity.  

• Defining resistance as the ratio of a driving potential to the corresponding 
transfer rate  

• it follows from Equation 2.25 that the thermal resistance for conduction is 
 

 

  
Ts ,1Ts ,2 

 (2.27) 
 

R   L 
 

   
 

t ,COND  q x 
 kA  

   
 

Similarly, for electrical conduction, Ohm's law provides an electrical 
resistance of the form 

 

 

 
Es ,1Es ,2 

 (2.28) 
 

R     L  
 

l  A  

e  
 

     
 



34 
 

Therefore, 
 

• the rate of heat transfer through a plane wall corresponds to the electric 
current  

• the thermal resistance corresponds to electrical resistance and  
• the temperature difference corresponds to voltage difference across the plane 

wall. (Figure. 2.6)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6 Analogy Between Thermal And Electrical Resistance Concepts 
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Consider convection heat transfer from a solid surface of area A (Figure 2.7) and 
temperature Ts to a fluid whose temperature sufficiently far from the surface is 
 

, with a convection heat transfer coefficient h. Newton's law of cooling 
for convection heat transfer rate 
 

 

The thermal resistance for convection is 
 

 q  hA Ts   T  
 (2.29)

 

   
 

R 
  

Ts  T   
1 (2.30) 

     

    
 

t ,CONV   q  h A   

      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.7 Schematic For Convection Resistance at a Surface 
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Consider steady one-dimensional heat flow through a plane wall of thermal 
conductivity k and thickness L that is exposed to convection on both sides to 
fluids at temperatures and with heat transfer coefficients h1and h2, 
respectively, as shown in Figure. 2.8. 

 

 

Too,1  
 

Ts,1 Ts,2 
 

Too,2 
 
 
 

 
    h 

 

Too,1 h1  x=0 x=L 

 

Too,2  2 
  

 
 
 

Hot Fluid  Cold Fluid 

qx   

Too,1    Ts,1 Ts,2 Too,2 

1 L 1 

h1 A k A h2A  

 

Figure 2.8 Thermal Resistance Network For Heat Transfer Through A Plane Wall 
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Under steady state conditions, we have 

 

 Rate of  Heat Convection   Rate of  Heat Conduction  Rate of  Heat Convection 
  

   
 int o the Wall   through the Wall   from the Wall 

 

q x  h1 A T ,1 Ts ,1   Ts ,1 Ts ,2  
 kA  h2 A Ts ,2  T ,2  (2.31)  
   

 

       L     
 

qx  
T,1Ts ,1

 
Ts ,1Ts ,2   

 
 Ts ,2T,2 

(2.32) 
 

1 L    1  
 

         
 

  h1 A  kA      h2 A  
  

 

In terms of the overall temperature difference, , and the total thermal 
resistance, Rtot the heat transfer rate may also be expressed as 

q 
  

T,1T,2  
 

x (2.33)  

  
 

In general, we can write   R
tot 

 

    
  

q   
TiTj 

 

 All resistances between the driving  T , Ti - Tj 
 

 
 

 

Equivalent thermal circuits concepts is used for more complex systems, such as 
composite walls (i.e. any number of series and parallel thermal resistances due 
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to layers of different materials). Consider the series composite wall of Figure. 
2.9. The one dimensional heat transfer rate for this system may be expressed as 
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qx    T,1 

T
,4      (2.34) 

          Rt 
       

 

                   
 

where 
T

,1 
T

,4 is the overall temperature difference and the summation
 

includes all thermal resistances. Hence,       
 

qx  
        T,1 

T
 ,4       (2.35) 

   L   L   L     

        
 

   1  A     B   C   1  
 

    
h

1 
A

   
k

 A 
A

   
k

 B 
A

    
k

C 
A

   
h

4 
A

  
 

    

Too,1 
                

 

      A B C         
 

       L  L L         
 

      Ts,1               
  

 

 
   s,2  

 

   T  
 

    Too,2 
 

    h 
 

Too,1 h1   x=0 x=L 
 

Too,2  2 
  

 
 
 

Hot Fluid Cold Fluid 

qx  

Too,1 Ts,1 T2 T3 Ts,4 Too,4  

1 LA LB LC 1 
 

h4A 

 

h1 A  kAA  kBA  kC A 
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Figure 2.9 Equivalent Thermal Circuit For A Series Composite Wall 
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Also, the heat transfer rate can be related to the temperature difference and 
resistance associated with each element. For example, 
 

   T 1  T  1  T  1  T2   T  T  
 

q    , s ,   s ,    2 3  ....  

x 
        

 

   
1

  L   L  (2.36)  

     
 

      A   B  
 

     
h

1 
A

    
k

 A 
A

    
k

 B 
A

  
  

 

 

With the composite systems, it is usually convenient to work with an 
overall heat transfer coefficient, U, which is defined by the expression 
analogous to Newton's law of cooling. Accordingly, 
 

q x  UA T (2.37)
 
 

where T is the overall temperature difference. 
 

From Equations 2.34 and 2.37 we see that UA = 1/Rtot. Hence, for the 
composite wall of Figure.2.9, 

U  

1 

 

       1        
 

                 
 

R A    L  L   L    (2.38)
 

 tot   1   A   B   C   1   
 

      
h

1   
k

 A   
k

 B   
k

C    
h

4   
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In general, we write 
 

R
tot  Rtot  

T  
1 (2.39) 

  
 

   qUA  
 

 
 

 

Composite walls may also be 
characterized by series-parallel 
configurations, such as that 
shown in Figure.2.10 

  
LE L F=L G  LH    

 

kE 

kF F 
 

 

  

H T2 
 

T   
 

1     
 

 E kG G k 
   

LF   

          
LE 

 kF (A/2) 
 

When there are multiple paths for heat transferqx 
   

 

k A    
 

between same T, resistance will be in parallel 
 E     

 

 T     
 

          1     
 

  q = q1 + q2          LG  

              
 

  
T 

   
T 

       kG (A/2) 
 


  L 

  
  L 

   
L

E 

   L
F  

   
  

     
 

f 

     k  (A/2) 
 

 

k f   A 2  

  g 

k g  A 2 

   kE (A/2) F  
 

            
 

       q T1       
 

Figure 2.10 Equivalent Thermal 
x      

LG 
 

   LE    
 

             
 

Circuits For A Series-Parallel Composite Wall kE (A/2)  kG (A/2) 
  

  

L
H 

 

kHA  

T2  
 
 
 
 

 

LG  

kG (A/2) 
 

T
2 

LG 

kG (A/2) 
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Contact Thermal Resistance: 
 

 In heat conduction analysis through composite walls, we have assumed 
"perfect contact" at the interface of two layers, and thus no temperature drop 
at the interface.

 This would be the case when the surfaces are perfectly smooth and they 
produce a perfect contact at each point.

 In reality, however, even flat surfaces that appear smooth to the eye turn out 
to be rather rough when examined under a microscope, as shown in Figure 
2.11, with numerous peaks and valleys.

 That is, a surface is microscopically rough no matter how smooth it appears to 
be. 

 
 

 

Layer 1 Layer 2 

 Interface 
 
 

T1=T2  
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• Ideal Thermal Contact 
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Layer 1 Layer 2 

 T1 
 

T2   

Interface  
 
 

 

• Actual Thermal Contact 
 

Figure 2.11 Temperature Distribution Along Two Solid Plates Pressed Against 
Each Other 

 
 

 

 When two such surfaces are pressed against each other, the peaks will 
form good material contact but the valleys will form voids filled with air.


 As a result, an interface will contain numerous air gaps of varying sizes that 

act as insulation because of the low thermal conductivity of air.
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Thus, an interface offers some resistance to heat transfer, and this 
" 

resistance per unit interface area is called thermal contactR,c  resistance, 

given by 
 
 

R"
t,c  

T1  T2 (2.40) 

q"
x 

 

   
 

 

 

 For solids whose thermal conductivities exceed that of the interfacial 
fluid, the contact resistance may be reduced by increasing the area of 
the contact spots.


 Such an increase may be effected by increasing the joint pressure 

and/or by reducing the roughness of the mating surfaces.

 The contact resistance may also be reduced by selecting an interfacial 

fluid of large thermal conductivity.

 In this respect, no fluid (an evacuated interface) eliminates conduction 

across the gap, thereby increasing the contact resistance.
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THE CYLINDER 

 

Consider a hollow cylinder, whose inner and outer surfaces are exposed to 
fluids at different temperatures (Figure. 2.12). For steady state conditions with 
no heat generation, the appropriate form of the heat equation, 

 
 

1  d   dT  (2.41) 
 

 
 

  kr    0  

   
 

r dr  dr   
 

 
 

where, for a moment k is treated as a variable. The physical significance of this 
result becomes evident if we also consider the appropriate form of Fourier's 
law. The rate at which energy is conducted across the cylindrical surface in the 
solid may be expressed as 

 

  dT 2 dT (2.42)
 

qr  kA   

 k (   rL )

dr 
 

 

  dr   
  

where A = 2πrL is the area normal to the direction of heat transfer. 
 
 

NOTE: Since, Equation 2.41 prescribes that the quantity 
kr

 

dT 

is independent of r, 
 

dr  
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it follows from Equation 2.42 that the conduction heat transfer rate qr(not 

the heat flux
q"

r ) is a constant in the radial direction. 
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Figure 2.12 Hollow Cylinder With Convective Surface Conditions 
 

 

Assuming the value of k to be constant, Equation 2.41 may be integrated twice 
to obtain the general solution 

 

T ( r )  C1 ln r  C2 (2.43) 
 

 

Applying the boundary conditions to the general solution, 
i.e. T(r1 ) = Ts,1 and T(r2 ) = Ts,2 we obtain, 
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T  C ln r   C 
s ,1 1 1 2  

Ts ,2   C1 ln r2   C2 

 

Solving for C1and C2 and substituting into the general solution, we then obtain 

 

T ( r )  
T  1  T  2  r 

 

s , s , ln   
 

 r1 
 

 

  
r
2 

 

 ln    
 

  
r

2   
  

 
 

 
  

T
s ,2 (2.44) 

 

 

 

NOTE: that the temperature distribution associated with radial conduction through 
a cylindrical wall is logarithmic, not linear, as it is for the plane wall. The 
logarithmic distribution is shown in Figure. 2.12. 
 
 
 

If the temperature distribution, Equation 2.44, is now used with Fourier's law, 
Equation 2.42, we obtain the following expression for the heat transfer rate:  

qr  

2 
L k

Ts ,1
T

s ,2  
 

    (2.45) 

  r2  
 

 

     
 

   ln     
 

    

r
1    
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From this result it is evident that, for radial conduction in a cylindrical wall, 
the thermal resistance is of the form 
 

   r2   
 

  ln   (2.46) 
 

R
t ,cond  

r
1 

 

2 Lk  
 

    
  

 
 
 

This resistance is shown in Figure. 2.12. Note that since the value of qr is 
independent of r , the foregoing result could have been obtained by using the 
alternative method, that is, by integrating Equation 2.42. 
 
 
 

Consider now the composite system of Figure 2.13. Recalling how we treated 
the composite plane wall and neglecting contact resistances between the 
interface, the heat transfer rate may be expressed as 
 

qr   
           

T
 ,1 


 
T

 ,2           
 

 

 

 

  r2
     r3 

    r4 
 

 

 

 (2.47)
 

       
 

 1 ln r   ln r  ln r  1 
 

  
     1    

 2     3   
   

 
 

 

 r1  L h1
 

 k A  L 
        

 r4  L h4
 

 

  2  2   2  k B  L    2  kC  L    2   
 

                        
 

                        
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The above result may also be expressed in terms of an overall heat transfer 
coefficient. That is, 
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qr  

T
 ,1 

T
 ,4 

UA
T,1

T
,4 (2.48) 

 
 

  

R
tot  

  

If U is defined in terms of the inside area, A1=2πr1L Equations 2.47 and 
2.48 may be equated to yield 

 
 

         1           (2.49) 

                 
 

U   1 

  

 r2 
  

 r3 
  

 r4 
  

 

 
r1  

r1  
r1  

r1    1 
 

   

k A 

ln  

k B 

ln  

kC 

ln        
 

  h1   

r
1   

r
2   

r
3  r4  h4 

   

Note: 
 

• UA is constant, while U is not  
• In radial system q” is constant, while q is not 



54 
 

 
  T 

 

  s,4 
 

 
T2

T3 
 

Ts,1

 
 

r r 
 

r 2 3   r
 

1  4
  

 

Too,1 h1  
 
 
 
 

 Too,4 h4  
 
 

Too,1  
 

Ts,1 

 

T2  

T3   

Ts,4 

 

 qr  
 

 
 

Too,4  

 

 Too,1                         s,4 , 
 

                     3     T    Too 4  
       T s,1     T2     T              

 

                                       
 

   1     ln(r2/r1)   ln(r3/r2)   ln(r4/r3)  1      
 

  

h 
12   r l 2   k l    2   k l  2   k l  h42    r l  

 

                       

      1        A     B     C 4  
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Figure 2.13 Temperature Distribution For A Composite Cylindrical Wall 
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Objectives 
 

 One dimensional steady conduction in sphere is introduced
 The approach is to reduce the heat diffusion equation for the case chosen.

 Using the appropriate boundary conditions, the heat diffusion equation is solved 

for temperature distribution.
 Concept of critical radius of insulation is presented.
 

THE SPHERE 

 

Consider a hollow sphere, whose inner and outer surfaces are exposed to fluids 
at different temperatures (Fig. 2.14).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.14 Conduction in a spherical shell 
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For steady state conditions with no heat generation, the appropriate form of 
the heat equation, 

 

1  d   2 dT  0 (2.50) 

  

 

 

 kr
    

 2    
 

r   dr   dr    
 

 

where, for a moment k is treated as a variable. The physical significance of this 
result becomes evident if we also consider the appropriate form of Fourier's 
law. The rate at which energy is conducted across the cylindrical surface in the 
solid may be expressed as 
 
 

  dT 4 2 dT (2.51)
 

qr  kA  )   

 k (   r 

dr 
 

 

  dr     
 

 

where A =4πr2 is the area normal to the direction of heat transfer. Since, Equation 
2.50 states that the quantity kr 2 dT is independent of r, it follows  

dr 

from Equation 2.51 that the conduction heat transfer rate qr (not the heat flux 

qr") is a constant in the radial direction. 
 
 
 

Assuming the value of k to be constant, Equation 2.50 may be integrated twice 
to obtain the general solution 
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T r   
C1  C2 (2.52) 

   
 

  r    
 

Applying, the following boundary conditions  
 

T(r1 ) = T s,1 and T(r2 ) = T s,2         
 

we then obtain 

 
C1  C 

 
 

T  
 

   
 

s ,1    r 2  
 

       
 

 1    
 

T  C1  C  
 

  
 

s ,2    r2 
2  

 

       
 

 

Solving for C1and C2 and substituting into the general solution, we then obtain 

T ( r )  Ts ,1  

T
s ,1 


 
T

s ,2  1
 

1  (2.53) 
 

     

 
  

 
  



 

   


   

 

 1 1  
r

1  r   
 

     
 

  
r

2  
r

1        
 

Note that the temperature distribution associated with radial conduction 
through a spherical wall is not linear, as it is for the plane wall under the same 
conditions. 
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If the temperature distribution, Equation 2.53, is now used with Fourier's law, 
Equation 2.51, we obtain the following expression for the heat transfer rate: 
 

qr   

4 
 k Ts ,1  Ts ,2  

(2.54) 



 
1  

1 


 

 
 

   
 

     
 

  
r

1
r

2     
 

From this result it is evident that, for radial conduction in a spherical wall, the 
thermal resistance is of the form  

 
  

1  
1 

 
 

 

    
 

R   r1
r
2   (2.55) 

 

t ,cond   4 k  
 

       
 

 
 
 
 

Note that since the value of qr is independent of r , the above result could 
have been obtained by using the alternative method, that is, by integrating 
Equation 2.51. 
 
 

 

Spherical composites may be treated in much the same way as composite 
walls and cylinders, where approximate forms of the total resistance and 
overall heat transfer coefficient may be determined 
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dT  
q"

x  
200 103

  2000 K  M  

dx k 
 

 

 100  
   

Case (b): In this case temperature decreases in the positive direction of x, and 
hence temperature gradient would be negative, and therefore Fourier 
equation becomes, 

     
 q"

x k 
dT      

 

Integrating, 

  dx 
    

 

             
 

               
 

   L        T2     
 

    q"
x  dx k  dT   

 

   0         T1     
 

  T  T       600  400    

q"
x   k 

2 1  
 100

     

 200 KW  M2
 

 

  L 
  0.1 

  
 

            
 

  dT  
q"

x  
200 103

 2000 K  M  

     
 

  dx   k    100     
  

 
 

Case (c): In this case temperature increases in the positive direction of x, and 
hence temperature gradient would be positive, and therefore Fourier equation 
becomes, 

" 
dT

 

q x   k  
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Integrating, 

     L    T
2   

 

      q"
x  dx  k  dT   

 

    0     
T

1   
 

  
T  T    

600  400  
 

 

q"
x   k 

2 1  
 100 

  

 200 KW  M2
 

 

   L 
  0.1 

 
 

          
 

  dT  
q"

x   
200 103

  2000 K  M  

   

k 
 

 

   dx 100    
  

 
 
 

Comments: 
 

1. In case (a), the direction of heat transfer is in the negative direction of x .  
2. In case (b), the direction of heat transfer is in the positive direction of x  
3. In case (c), the direction of heat transfer is in the negative direction of x . 
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TRANSIENT HEAT CONDUCTION 

 
 
 
 

STRUCTURE 

Introduction 

Lumped System Analysis 

Criteria Of The Lumped System Analysis 

Transient Heat Conduction In Large Plane Walls, Long 

Cylinders, And Spheres 

Transient Heat Conduction In Semi-infinite Solids 
 

Transient Heat Conduction In Multidimensional Systems 
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TIME DEPENDENT CONDUCTION - Temperature history 
inside a conducting body that is immersed suddenly in a 
bath of fluid at a different temperature. Ex: Quenching of 
special alloys 

 
 

 

The temperature of such a body varies with time as well as 
position. 

T(x,y,z,t) 
 

(x,y,z) - Variation in the x,y and z directions 

t - Variation with time 
 
 

 

In this chapter, we consider the variation of temperature 
with time as well as position in one and multi-dimensional 
systems. 
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LUMPED SYSTEM ANALYSIS 

 

COPPER BALL WITH UNIFORM TEMPERATURE 
 

 
o 

70 C o 

70 C  
o 

o 70 C 
70 C o 

 70 C 
o 

70 C 

 
 

Temperature of the copper ball changes with time, 
but it does not change with position at any given 
time. 

 
 
 

Temperature of the ball remains uniform at all 
times 
 

POTATA TAKEN FROM BOILING WATER 

 
 
 

o  
o 65 C  

60 C 
o  

75 C o 

 70 C 

 o 

 60 C 

 

Large potato put in a vessel with boiling water. 

 
 

 

After few minutes, if you take out the potato, 
temperature distribution within the potato is not 
even close to being uniform. 
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Thus, lumped 
system 
analysis is not 
applicable in 
this case. 
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Hot metal forging that is initially at a uniform temperature Ti and is 
quenched by immersing it in a liquid of lower temperature T < Ti 

 
 

T 
T<0 

 

i 
 

 T=Ti 
  

 
 

 

Liquid  

 
 

 E
out   qconv 

 

 
 

T(t)  

T  Ti
t 


0

   

T T t  
 
 
 

During a differential time interval dt, the temperature of the body 
rises by a differential amount dT. An energy balance of the solid for 
the time interval dt can be expressed as 

 Heat transfer int o 
 

 

 body during dt 

  

the  The increase inthe energy 

  
  

  of the body during dt 

 

 
 
  

 
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 h A(T T )dt  V C p dT
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 h A(T T )dt  V C p dT
 T T

 

 VCP  d  
 

 

h As 

 

dt 

 

    
 

t = 0 and T(0) = Ti  VCP 
 

     h As 
 

  

V - Body volume 

As - surface area 

 - density of the body material
Cp - specific heat of the body material 

 
 
 
 
 

 d t 

i Ti T 

 

 
  dt 

 

 

 


i 0  

  

VC P       
 T T     

 

 ln     t 
 

   h A
s  

  

       
 

h A 
 

 
    

 
 

 exp  
 


t 

 

   
i Ti T  

 

s 
   

i 
    VC P   

 

             
 

               
 

 

 1   
 

  
Rt - Resistance to convection heat transfer  


 

 V C p  Rt Ct 
 

h A Ct - Lumped thermal capacitance of the solid 
 

 s   
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Transient Temperature Response of Lumped Capacitance Solids 

 

  

VC 
p 
  

 

   R C  

  
 

 hAs 
  t  t 

 

    
 

    
  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
t ,1 t , 2 


t ,3 


t , 4 

 

 
 

The rate of convection heat transfer between the body and its environment 
at that time can be determined from Newton's law of cooling 
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Q  h As T (t ) T  
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CRITERIA OF THE LUMPED SYSTEM ANALYSIS 

Biot number Bi      

Bi  

hLc 
 

        
 

          

 

   
 

          

k 

 

              
 

Bi  
    h 

 
T  

Convection at the surface of the body  
 

  

k L T Conduction withinthe body 

 

        
 

         c        
 

  Lc      
Conduction resis tan ce withinthe body 

 

Bi  k    
  

 

           

   

Convective resis tan ce at the surface of the body 
 

 1      
   

h 
 

Lumped system analysis is exact when Bi = 0 

 

Generally, accepted norm for assuming lumped system 
 

analysis 

 
 

Bi  0.1 
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Spherical Copper 

Ball 

k = 401W/m K  

D = 12cm 

 

 D3

Lc  
V   

6   
 D   0.02 m 

 

     

 D2
 

 

6 

 
 

   A      
 

Bi  
h Lc  15 0.02  0.00075  0.1  

  
 

    k    401    
 

 
 
 
 

 

Small bodies with higher thermal conductivities and low 
convection coefficients are most likely to satisfy the criterion for 
lumped system analysis 
 

Heat conduction in a specified direction n per unit surface area 
is expressed as 

q  k 
T

 
 

n 
 

Larger the thermal conductivity  the smaller the temperature gradient 
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h  2000W mC 
 o

 

50 C 

 

85 oC 
o 

110 C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Convection 
 
 
 
 

 

When the convection coefficient h is high and k is low, large 
temperature differences occur between the inner and outer regions 
of a large solid 
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Physical significance of the Fourier number 
 

   t  k L2 ( 1 / L ) T  The rate at whichheat is conducted across L of a body of volume L3
L2CP/ t3TL3TherateatwhichheatisstoredinabodyofvolumeL 

 

 

 L  
 

L L  
 

Q   
 Q

conducted 

 
 

  
 

 Fourier Number: = 


2
t
  

Qconducted
 

 

 
L Q 

 

 

stored 

 

Q
st 

 
   

What constitutes an infinitely large plate or an infinitely long cylinder ? 
 

A plate whose thickness is small relative to the other dimensions can be modeled as an 
infinitely large plate, except very near the outer edges. 

 

But the edge effects on large bodies are usually negligible, and thus a large plane wall such as 
the wall of a house can be modeled as an infinitely large wall for heat transfer purposes. 
Similarly, a long cylinder whose diameter is small relative to its length can be analyzed as an 
infinitely long cylinder. 
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 Q   0   

   
 

    

 exp  Bi , F  

 

 
Q

i    

      
 

Bi  
hV , F  

 t
 

 
 

   
 

   A k 0 L2
  

 

      
 

    s   c  
 

 k
 c p

 
 

BiF  
hLc . k   t 

 

     
 

0 k 
 c 

  L2
     

p 

 
 

      c 
 

 ht      hAt
 

Lc c p 

 

V c p 
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TRANSIENT HEAT CONDUCTION IN SEMI-INFINITE SOLIDS 

 

 

• A  semi-infinite  solid  is  an  idealised  body  that  has  a  single 
plane  surface  and  extends  to  infinity  in  all  directions. 

This  idealised  body  is  used  to  indicate  that  the 
 

temperature change in the part of the body in which we 

 

are 
 

interested (the region close to the surface) 

 

is 

 

due 

 

to 

 

the 
 

thermal conditions on a single surface. 

 

• Ex: Earth – temperature variation near its surface 

 

Thick wall – temperature variation near one of its surfaces 

 

• For short periods of time, most bodies can be modeled as 
 

semi-infinite solids since heat does not have sufficient time 
to penetrate deep into the body and the thickness of the 
body does not enter into the heat transfer analysis. 
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  
 
 
 
 
 
 
 

Plane  

Surface 

 x 
 

 
 

h 

 
 

T 
 

  
  

Schematic of the semi-infinite medium 



78 
 

HEAT TRANSFER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT -  3
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CONVECTIVE HEAT TRANSFER 
 

20°C 

5 m/s  

 

AIR . 

20°C 

 

 Q 
 

 
 
 

 

a) Forced Convection 

 

AIR Warmer air 
 

. 

rising 

 

Q 
  

 
 
 
 
 
 

 

b) Free Convection 

 

No convection 
 

current 
 

AIR 

 
 
 
 

 

Convection heat transfer involves 

• fluid motion  
• heat conduction 
 

 

The fluid motion enhances the heat 
transfer, since it brings hotter and cooler 
chunks of fluid into contact, initiating 
higher rates of conduction at a greater 
number of sites in fluid. Therefore, the rate 
of heat transfer through a fluid is much 
higher by convection than it is by 
conduction. In fact, the higher the fluid 
velocity, the higher the rate of heat 
transfer. 
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c) Conduction 
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Convection heat transfer strongly depends on 
 

• fluid properties dynamic viscosity , thermal conductivity k, 
density and specific heat  

• fluid velocity V  
• Geometry and the roughness of the solid surface  
• Type of fluid flow (such as being laminar or turbulent). 
 

NEWTON’S LAW OF COOLING 
 

Qconv   hAs Ts  T  
 
 

h = Convection heat transfer coefficient 
As = Heat transfer surface area 

Ts = Temperature of the surface 

T= Temperature of the fluid sufficiently far from the surface 

LOCAL HEAT FLUX q 
conv 

 

qconv hl Ts  T  
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hl is the local convection coefficient 
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TOTAL HEAT TRANSFER RATE Qconv 
 

 
dAs Qconv    Ts   T   hl dAs 

 

Q
conv  


  qconv 

 A
s    A 

 

  

1 

 s 
 

 

h  

  
h

l 
dA

s 

 

 A  
 

  s  A 
 

    s 
  

Local and total convection transfer (a) Surface of arbitrary shape. (b) Flat plate. 
 
 
 

 
q” 

U  ,T 
 

V ,T dAs  

 
 

   
  

q” 
 
 

As, Ts 
 

 

As, Ts 
 

L 
x dx 
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A fluid flowing over a stationary surface comes to a complete stop 
at the surface because of the no-slip condition. 
 
 

Uniform Relative velocity 
 

approach of fluid layers 
 

velocity, V Zero velocity  

 
 

 at the surface 
  

 
 
 
 
 
 
 
 
 
 
 
 

Solid Block 
 
 
 
 
 

 

A similar phenomenon occurs for the temperature. When two bodies at 
different temperatures are brought into contact, heat transfer occurs until 
both bodies assume the same temperature at the point of contact. 
 
 
 

Therefore, a fluid and a solid surface will have the same temperature at the 
point of contact. This is known as NO-TEMPERATURE-JUMP CONDITION. 



85 
 

An implication of the no-slip and the no-temperature jump conditions 
is that heat transfer from the solid surface to the fluid layer adjacent 
to the surface is by pure conduction, since the fluid layer is motionless, 

 

qconv   qcond  k fluid  
T

 
 

dy
 y0 

T represents the temperature distribution in the fluid  T yy0is the 
temperature gradient at the surface. 

 

 hl  Ts  T  

 

q
conv 

  

 
k

 fluid T yy0 

h 

Ts  T 
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Nu  
hL

c k 

 

  

NUSSELT NUMBER 

 

k is the thermal conductivity of the fluid 

Lc is the characteristic length 

 
 
 

 

Heat transfer through a fluid layer of Heat transfer through the fluid layer 
 

thickness L and temperature difference 
 

will be by convection when the fluid 
 

 
 

T2 involves some motion and by
 

 conduction when the  fluid layer is
  

  motionless.  
 

 .   

qcond   k 
T

 

 

Fluid Q q  hT 
 

layer 
 conv  L  

   
  

   q
conv

 

hT  hL 

 
 

 T1   
 

T = T2 – T1 q 
 k T  L  k  Nu 

 

  
 

   cond     
 

 
 

Nusselt number - enhancement of heat transfer through a fluid layer as a result of 
convection relative to conduction across the same fluid layer. Larger the Nusselt 
number, the more effective the convection. 
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Nu = 1 for a fluid layer - heat transfer across the layer by pure conduction 



88 
 

Internal and external flows 

 

EXTERNAL FLOW - The flow of an unbounded fluid over a surface such 
as a plate, a wire, or a pipe 
 

INTERNAL FLOW - flow in a pipe or duct, if the fluid is completely 
bounded by solid surfaces 
 
 
 
 
 
 
 
 
 
 
 

External flow 

Air 
 
 
 
 
 
 
 
 
 
 

 

Internal flow 

Water 
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Laminar versus Turbulent Flow 

 

Some flows are smooth and orderly while others are rather chaotic. The highly 
ordered fluid motion characterized by smooth streamlines is called laminar. The flow 
of high-viscosity fluids such as oils at low velocities is typically laminar. 
 

The highly disordered fluid motion that typically occurs at high velocities 
characterized by velocities fluctuations is called turbulent. The flow of low-viscosity 
fluids such as air at high velocities is typically turbulent. The flow regime greatly 
influences the heat transfer rates and the required power for pumping 
 
 
 
 
 

Laminar 
 

Dye 
 

 

Pipe 

 

Transitional  

Q = VA  Dye Streak 
   

    
 
 
 
 
 

Turbulent 

Smooth well rounded 

Entrance  
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Os or e Rey olds i 88 ’s, dis o ered that the flo regi e depe ds ai ly o the 

ratio of the inertia forces to viscous forces in the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Reynolds number can be viewed as the ratio of the inertia forces 
to viscous forces acting on a fluid volume element. 

 

 Inertia forces  VLc    VLc 

Re  

Viscous   



91 
 

One, Two and Three Dimensional Flows 

 

V(x, y, z) in cartesian or V(r, , z) in cylindrical coordinates 

 

velocity profile 
 

(remains unchanged) 
 

 

 V(r ) 
r

 z 
 
 
 
 
 
 
 
 

 

One-dimensional flow in a circular pipe 
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Turbulent flow 
 

u 
 

 
 
 
 
 

u  u  u 
v  v  v 
  

  

u'
 P  

  
 

 P 

 

 

 

P 

 

u  
 

     

 T  

 

   T  T 
 

 
 
 
 
 
 
 
 

Time (t) 

 

The eddying motion in turbulent flow causes significant fluctuations 
in the values of velocity, temperature, pressure, and even density (in 
compressible flow). 
 

  

  

  
 

      

  
u  

 

 t  y
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 t   u v  
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Random eddy motion of groups of particles resembles the random motion 
of molecules in a gas-colliding with each other after traveling a certain 
distance and exchanging momentum and heat in process. 

 

Therefore, momentum and heat transport by eddies in turbulent boundary 
layers is analogous to the molecular momentum and heat diffusion. 

 
               

 

       

 

   

  C p 

  T 
 

 

         

qt v  T kt 

  

      
 u  

 

 

  

 
    

 

  

t 

 

y 

 
 

t 
 u v  y      

 

              
  

 t  - Turbulent viscosity - momentum transport by turbulent eddies
kt - Turbulent thermal conductivity - thermal energy transport by turbulent eddies. 

 

Total shear stress and total heat flux can be expressed 
conveniently as 

 
         

 

    

 

  

  

      
 

   

 

  

t  

u   u        

 y  y    
 

 

t otal 

   

 M  

  

M 

 

t 

 
 

                  
 

    

   Cp   H 

        
 

q
total    k  k t  

T  
T  H  kt 

  Cp  

  y
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       y           
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Eddy motion and thus eddy diffusivities are much larger than their 
molecular counterparts in the core region of a turbulent 
boundary layer. 

 

The eddy motion loses its intensity close to the wall, and diminishes 
at the wall because of the no-slip condition. 

 

Therefore, the velocity and temperature profiles are nearly uniform 
in the core region of a turbulent boundary layer, but very steep 
in the thin layer adjacent to the wall, resulting in large velocity 
and temperature gradients at the wall surface. 

 

Therefore, the velocity and temperature profiles are nearly uniform 
in the core region of a turbulent boundary layer, but very steep 
in the thin layer adjacent to the wall, resulting in large velocity 
and temperature gradients at the wall surface. 
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VELOCITY BOUNDARY LAYER 

 

V Laminar boundary-layer Transition Turbulent boundary-layer 
 

 
  

region U 
  

U
 

 
Turbulent layer  

 
y  

 
 

Buffer layer   
Laminar layer  

 
x  

x
cr Boundary-layer thi k ess, δ 

 

Relative velocity of 
V fluid layers  

U   V  
INVISCID FLOW REGION  

 

 

0.99V  

  Zero velocity at the BOUNDARY  LAYER 
 

δ 

 surface  
 

 (No slip condition) REGION 
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Development of a boundary layer on a surface is due to the no-slip condition 
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Surface Shear Stress  

 

u
 

 

 

     
 

       
 

               
 

   

s 

            
 

     

y 

 

y0 

   
 

          
 

          
 

Skin friction coefficient  
   C 

  V 2      
 

 s f 2 

     
 

        
 

           
 

Friction force over the entire surface 

F f  C f As 

 V 2 
 

           2 
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THERMAL BOUNDARY LAYER 

 

 Free Stream 

Uniform T 

Temperature T  
 
 

 

 

Ts 

 Thermal 
 

t boundary layer 
 

    
 

    
 

 

Ts  0.99( T  Ts ) 
 
 

Thermal boundary layer on a flat plate (the fluid is hotter than the plate surface) 
 
 

 

The thickness of the thermal boundary layer, at any location along the 
surface is define as the distance from the surface at which the 
temperature difference T – Ts equals 0.99(T– Ts). 
 

For the special case of Ts = 0, we have T = 0.99 at the outer edge of the 
thermal boundary layer, which is analogous to u = 0.99 for the velocity 
boundary layer. 
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 Shape of the temperature profile in the thermal boundary layer dictates 
the convection heat transfer between a solid surface and the fluid flowing 
over it.


 In flow over a heated (or cooled) surface, both velocity and thermal 

boundary layers will develop simultaneously.

 Noting that the fluid velocity will have a strong influence on the 

temperature profile, the development of the velocity boundary layer 
relative to the thermal boundary layer will have a strong effect on the 
convection heat transfer.

 

PRANDTL NUMBER 

 

The relative thickness of the velocity and the thermal boundary layers is 
described by the dimensionless parameter Prandtl number, defined as 

 
 

Pr  

Molecular diffusivity of momentum 

 

 

 

C p 
 

    
 

Molecular diffusivity of heat  k 
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  Pr n n is positive exponent  

 
 

t 
 

  

Pr  1 for gases  both momentum and heat dissipate through the 
fluid at about the same rate 

Heat diffuses very quickly in liquid metals (Pr < 1) 
 

Heat diffuses very slowly in oils (Pr > 1) relative to momentum 
Therefore, thermal boundary layer is much thicker for liquid metals 
and much thinner for oils relative to the velocity boundary layer. 
 

t for Pr  1 

t for Pr  1 

t for Pr  1 

 
 
 
 
 

 
 

Pr  
Molecular diffusivity of momentum 

 
 
 
Cp 

 

     

Molecular diffusivity of heat  k 
 

   
 



103 
 

NATURAL CONVECTION 

 
 
 
 

 

Warm 

rising air  

 
 
 
 
 
 
 
 

 

Cooling of boiled egg in a 

cooler environment by 
 

 
 
 

Cool air 

 
 
.  

Q 

 

natural convection 

 

 
 

Hot Egg 
 
 
 
 
 
 

The motion that results from the continual replacement of the heated 
air in the vicinity of the egg by the cooler air nearby is called a natural 
convection current 
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Heat transfer that is enhanced as a result of this natural convection 
current is called natural convection heat transfer 
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Natural convection occurs because of the presence of 

a. Density difference 
b. Gravity 
 
 

There is no gravity in space. Therefore, there is no natural convection 
heat transfer in a spacecraft, even if the spacecraft is filled with 
atmospheric air. 

 

In heat transfer studies, the primary variable is temperature. 
Therefore, we need to express net buoyancy force in terms of 
temperature differences. 

 
 

 

Density difference is to be expressed in terms of temperature 
difference, which requires a knowledge of a property that represents 
 

the variation of the density of a fluid with temperature at constant 
pressure . 
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The property which provides this information is volume expansion 
coefficient, β 
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v  
   
T P   

                      
 

                      
 

                      
 

                       

                      
 

                      
 

      

 v  

            
 

                  
 

                     
 

       T P 
         

21°C 

 
 

                
 

       

21°C 

          
 

 °         °      
 

 20 C          20 C      
 

 100 kPa     100 kPa     100 kPa     100 kPa  
 

 1 kg      1 kg     1 kg     1 kg  
 

                     
 

                     
 

 a) A Substance with a large β    b) A Substance with a small β 
  

 
 
 

Coefficient of volume expansion is a measure of change in volume of 
the substance with temperature at constant pressure 
 

 

 

1  dV  

 

1  d  
 

   
  

  
  

 

   


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 V  dT P   dT P 
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Equation of motion and Grashoff number 

 

Consider a vertical hot body immersed in a quiescent cold fluid 
 
 

Ts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v  0 

 
 

 
 

Temperature Assumptions   
 

profile 
  

 

• Natural convection Flow is laminar 
 

 
 

T • Flow is two dimensional  
 

 Velocity • Flow is steady   
 

 profile • Fluid is Newtonian and properties 
 

v  0 are constant   
 

 • one exception: the density 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

y 

 
 

Boundary 

layer 
 

Stationary 

Fluid at T 

Ts 

 

difference between the fluid inside 
and outside the boundary layer that 
gives rise to the buoyancy force and 
sustains flow (This is known as 
Boussinesq approximation) 
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 x 
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    u  
v  0       

 

             
 

    x  y        
 

 u  u   P 2 u 2 u 
 

 
              

  v 
   

   

2   
 

2  

 u 

x 

  

x 



x y 


 

  y       
  

 v  v  P 2 v 2 v   
 

 
           g 

 

  v 
  

  

2   
 

2  

 u 

x 

 

y 



x y 


 

  y       
  

  
 u T 

 

 x 

 

 v 
T


y

  

 2T 
 

   
 

 

2 
 

 

x 

 

   
 

 

2
  

 T  

y 2   

 

u v  Complete x-momentum equation vanishes 
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 v  v  P  2 v 2 v  
 

 
           

 
 

  v 
  

  

2   
 

2  g 
 

 u 

x 

 

y 



 x  y 

 
 

  y        
 

 2v   2v  ; P   dP



 x 22y      dyy
 

 v  v  dP  2v  
 

 
  v 

   

  

  g 
 

    
 

 u 

x 

 

dy  x 
2

 

 

  
y    

  

dP Hydrostatic pressure gradient dictated by the reservoir fluid of density 
 

 

dx 
 

 

  
 dP   g 

 

dx 

 v  v  2 v 
 

 
       

 

  v 
  

 

2      g 
 

 u 

x
 

 x
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  y    
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     u  
v  0    

 

            
 

     x  y         
 

 v   v      2 v    
 

 
     

             
 

  v 
    

   

2      g 
 

 u 

x 

    

 x
 

   y          
 

   T      T   2T 
 

   
      v 

      

   
 

            2 
 

   u 

x 

      

x 

 
 

        y     
  

   g   Body force term – flow is driven by the density field 
 

  generated by temperature field 
 

 1  dV  1  d   1     
 

 
   

  
  

   
    

 

     

 T  T 

 

 V  dT P   dT P 
  

    T T  
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  v   v  2 v   
 

 
        

      
 

    v 
   

 

2   g T  T  
 

 u  

x 

   

 x 

 

    y      
 

 u 
v  v 

v  
2 v  g T  T   

    
 

   x 
 y 

  x 2 
 
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Governing equations and boundary conditions 
 

u   v 0 

x y 

 
 

u 
v  v 

v  
2 v  g T  T  

 

   
 

 x 
 y 

  x 2 
  

 

      
 

  u 
T  v 

T  
2T   

 

    

x 2 

 
 

   x y    
 

u  v  0 ;T  Ts at  x  0  
 

v  0 ;T  T at x  
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Similarity approach 

 

   *    x    *    y*    u     *  v   * T  T   
 

  x 
   

   ; y 
  

    

; u   
    ; v 

   
   ;T 

   
      

 

                       

Ts   T 

  
 

       L        L   

u
         

u
        

 

                     u*
   

v*
   0 

              
 

                     

x*
 

 

y*
 

              
 

                                           
 

  v *      v *       12v *    g T   T L3
   T * 

 

u* 

    v * 
       

               

  
     s   c  

 
 

x * 

            

 x * 

2        

 

2    2
 

       y *ReL                 ReL 
 

 g T   T L3
                                        

 

   s      c   Grashoff number 
                

 

   

 2 

                      
 

                                              
 

  u* 
v *  v * 

v *  
1 

 
2 v * 

  
  Gr  


T *   

 

       
 2 

   
 

      

x *
      

y *Re    x *
2        
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 
Re

L     
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• The role played by the Reynolds number in forced convection is 
played by the Grashoff number in natural convection  
• Grashoff number provides the main criterion in determining 
whether the fluid flow is laminar or turbulent in natural convection  
• For vertical plates, critical Grashoff number is around 109 
 
 

Gr
  1 

Re 
2

 
 
 

Gr
  1 

Re 
2

 
 

Gr 1 
 

Re 2 
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Forced convection 
dominates 

 
 
 
 
 
 
 
 
 

 

Natural convection 
dominates 

 
 
 
 
 
 
 
 

 

Both natural 
convection and 
forced are 
important 
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NATURAL CONVECTION OVER SURFACES 

 
 
 

Nu  
hL

c  C GrL Pr n  
CRaL

n k 
 
 
 

 

Ra 
  Gr  Pr  

g  Ts  T  L3
c Pr  

    

 

 2 

 

 L L  
 

 
 
 
 
 
 
 

 

Properties of fluid are calculated at mean film 
temperature 

T f TsT 2 
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Criteria for forced and natural convection 

 
 

 

Forced convection dominates 

Gr
  0.1 

  

Re 2 

Natural convection dominates 

Gr
  10 

  

Re 2 

 

Both Natural and Forced convection dominate 
 

0.1  

Gr
 10 

 

Re 2 
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Natural convection can inhibit or enhance heat transfer depending on 
the directions of buoyancy induced flow and forced convection motion 

 

Hot plate Cold plate 
 

Buoyant flow 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forced 

 
 
 
 
 
 
 

 

Forced 

flow  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forced  
flow 

flow 
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Assisting flow Opposing flow 
Transverse flow
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Nu
combined     Nu n

forced   Nu
natural

n 1n
 

 
 
 
 
 

 

+ is for assisted flow 
-is for opposing flow  
n = 3 for vertical surfaces  
For other geometries, n = 3 - 4 
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HEAT TRANSFER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT -   4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
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TWO PHASE FLOW AND HEAT 

TRANSFER 

 
 
 

Phase: macroscopic state of matter which is 
homogeneous in chemical 

 

composition and physical 
structure Ex: Gas, Liquid and solid 

 
 
 

 

Gas-Liquid – steam and water 
air and water 

 

Liquid-Solid- plasma and platelets (Blood) 

 

Liquid-Liquid – Oil and water 

 

2 
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Liquid-Vapor transformation – BOILING 

TL  > Tsat at a given pressure 

 
 

 

Vapor-Liquid transformation – CONDENSATION 

Tv  < Tsat at a given pressure 

 
 

Boiling and Condensation (Convection) 

 

 Latent Heat of Vaporization

 Surface Tension of the liquid-vapor interface

 Properties of the fluid in each phase

 
 
 
 

 

3 
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Typical values of the convection heat transfer coefficient 

 
 
 
 
 
 
 

Process h  
 

 W/m2.K  
 

   
 

Free convection 

2-25 
 

 

Gases 
 

 

50-1000 
 

 

Liquids 
 

 

  
 

   
 

Forced convection 

25-250 
 

 

Gases 
 

 

50-20,000 
 

 

Liquids 
 

 

  
 

   
 

Convection with phase change 2500-100,000  
 

Boiling and Condensation   
 

  4 
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Boiling: the process of addition of heat to a liquid 
such a way that generation of vapor occurs. 

 
 
 
 

Evaporation Air  

 
 
 
 

 

Evaporation 
 

occurs at the liquid-vapor interface 

Pv < Psat of the liquid at a given temp 

 

 

Water 
 

20° C 

 
 

evaporation involves no bubble 
formation or bubble motion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 
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Boiling 
 

Water  
100°C 

 
 
 
 

Heating 
 
 
 
 
 
 
 
 
 

P = 1 atm  
 
 
 
 
 
 
 

Water Bubbles 
 

Tsat = 100°C 110°C  

 
 

 Heating element 
 

 

Boiling occurs at a solid-liquid 
interface occurs at a solid-
liquid interface 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Boiling occurs when a liquid is 
brought into contact with a 
surface at a temperature above 
the saturation temperature of 
the liquid 

 
 
 
 
 

6 
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Qboiling = h (Tw – Tsat) W/m2
 

 
 

Free and Forced convection depends on 

 
 

• density, specific heat, viscosity and thermal conductivity of 
the fluid 
 

Boiling Heat Transfer depends on 

 

• density, specific heat, viscosity and thermal conductivity of liquid 
 
• Latent heat of vaporization 
 
• Surface tension at the liquid-vapor interface 
 
 
 
 
 
 
 
 
 
 
 

 

7 
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Bubbles exist because of the surface tension at the 
liquid vapor interface due to the attraction force on 
molecules at the interface toward the liquid phase. 

 
 
 
 
 

 

Surface tension  Temperature 

 

Surface tension = 0 at critical temperature 

 

No bubbles at supercritical pressures and temperatures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

8 
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BOILING 

 

• Pool Boiling 
 
• Flow Boiling (Forced Convection Boiling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Heating  

 

Pool Boiling 

 
 
 
 
 

POOL BOILING: 

 

The fluid is stationary 

 

 

Motion of the fluid is due to 
natural convection currents 
 
 
 

Motion of the bubbles under the 
influence of buoyancy. 

 

 

9 
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Flow boiling 
 
 
 
 
 
 
 

 

H
ea

ti
ng

 

 
 
 

Fluid is forced to move in a heated 
pipe or surface by external means 
such as pump 

 
 

Flow boiling is always accompanied by 
other convection effects. 
 

 
 
 
 
 
 

Pool and Flow Boiling is classified as 

 

• Subcooled Boiling 
 
• Saturated Boiling 
 
 
 
 
 
 
 
 
 

10 
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P = 1 atm  
 
 
 
 
 
 

 

Subcooled water 80° C 
 
 
 

107° C     Bubble  

 
 
 

Subcooled Boiling 

 

T
bulk of liquid 

< T
sat 

 

 
 
 
 

Heating  
 
 
 

Saturated Boiling 

 
 

° 
T

bulk of liquid 
> T

sat Saturated water 100 C 

 

107° C     Bubble  
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Heating 
11
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BOILING REGIMES AND BOILING CURVE 

 

Nukiyama – 1934 

 

Boiling Regimes 

 

 Natural Convection Boiling

 Nucleate Boiling

 Transition Boiling

 Film Boiling
 
 
 
 
 
 
 
 
 
 
 
 

 

12 
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Typical Boiling Curve for water at 1 atm pressure 

 
 

Natural convection Nucleate Transition Film 
 

boiling boiling boiling boiling 
 

 Bubbles 
Maximum . 

 

 

(critical) heat flux 
q

 max 
 

 Collapse  

    

 in the C  
 

   
 

106
 liquid  E

  
 
 
. 

q boiling  W  m 2 

105
 

B 
 
 

 

104
  

Bubbles rise 
 D  

 

A     
 

  to the free  Leidenfrost point,  
 

  

surface 
  

 

     
 

103
      

 

~5 10 ~30 100 ~120 1000
 

 
 

T  Ts   Tsat  C 
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100° C 

 

103° C 
 
 
 

Heating 
 

Natural convection  
boiling  

 
 
 
 
 
 
 
 

100° C 
 

110° C 
 
 
 

Heating 
 

Nucleate boiling 

 

Natural convection Boiling 

 

Governed by natural convection currents 

 
 

Heat transfer from the heating surface to 
the fluid is by natural convection 
 
 
 
 
 
 

 

Nucleate Boiling 

 

The stirring and agitation caused by the entrainment of 
the liquid to the heater surface is primarily responsible 
for the increased heat transfer coefficient and heat flux 
in the region of nucleate boiling. 

 
 

High heat transfer rates are achieved 
in nucleate boiling 

 

 

14 
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100° C 
 

180° C 
 
 

 

Heating 
Vapour pockets 

 

Transition Boiling (Unstable film boiling) 

 
 

Heat flux decreases because of larger fraction 
of heater surface is covered by a vapor film 
which acts as a insulation because of the low 
thermal conductivity of the vapor relative to 
the liquid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

100° C  
 

400° C 
 
 

 

Heating 
Vapour film 

  

Film Boiling 

 
 

The presence of a vapor film between the 
heater surface and the liquid is responsible 
for the low heat transfer rates 

 
 

Heat transfer rate increases with increasing 
excess temperature as a result of heat transfer 
from the heated surface to the liquid through 
the vapor film by radiation, which becomes 
significant at higher temperatures. 

15 
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Various boiling regimes during boiling of methanol 
on a horizontal 1-cm-diameter steam-heated 
copper tube 

 
 
 

a. Nucleate boiling 
b. Transition boiling 
c. Film boiling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16 
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1. Natural convection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Individual bubble regime  

 
 
 
 
 
 
 
 
 

Onset of boiling  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Regime of slugs and bubble  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Transition film boiling 5. Stable film boiling 17 
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Bubble nucleation – Boiling Inception 

 

The process of bubble formation is called nucleation 

 
 
 
 

 

Trapped pockets of gas  
 

 

Liquid 
 
 
 
 
 
 

 

Rough wall 
 

 

Enlarged view of a boiling surface 
 
 

The cracks and crevices do not, of themselves, constitute nucleation 
sites for the bubbles: they must also contain pockets of gas, probably 
air trapped when the vessel was filled with the liquid. It is from these 
pockets of trapped air that the vapor bubbles begin to grow during 
nucleate boiling 

18 
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HEAT TRANSFER IN NUCLEATE BOILING 

 

 

Nu = f (Re, Pr) 

Nu  

hL 

;  Re  

 f uL 

;   Pr  


 f 
C

 Pf 
 

k f 
 f 

k f  

      
 

 

Velocity is taken as the liquid velocity in towards the surface which 
is to supply the vapour which is being produced, so 

q 

u ~  

h
 fg 


 f 

Length scale is taken to be 
 

       1  
 


 

 

   

 

  
 

    2  
 

L ~        
 

 

g(  
f  

g 
   

 

 ) 
  

 

    19
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During boiling, disturbances of all wavelengths are present, there 
will be some disturbances at small wavelength and long wavelength 
that will amplify and cause the interface to be unstable. 

 
 

Condition for the interface instability of a motionless liquid 
overlaying a motionless vapour region 
 
 

   

(  f   g 

1 
 

   

)g 
 

 

 

   2
 

 c  

       

 

     

 

 
 

         
 

This condition is called Rayleigh-Taylor Instability 
 

CRITICAL WAVENUMBER    p = 1 bar;  = 0.058988  N/m 
 

       
1  

 

 

   


     

 

 

 

  

f = 958.63; g = 0.59034 kg/m3
 

 

  2
 

L   2       

20 

 

      
 

c 
 g(  f   g )  
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 
    Lc = 16 mm 
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      1          1   

 

    

  

 


 

 

 f uL 

 

f 
 

q   
 


  

 f 
C

 Pf 

 

 hL  h  2  2 
 

Nu          ;  Re            ;   Pr   
 

    
 f 


 f 

 h
 fg 


 f 

   
 

 k f  k f  g(  f   g )    g(  f   g )  
k

 f 
 

                    
  

     Nu  

1  Re 1n  Pr m       
     C

 sf 

      

                  
  

Tw  Tsat  

 


 

q 
      

nC
 pf  


 f 1m  
C

 pf 

 C 

       
             

         
 f  

h
 fg 

   

g (  f   g 

  

  
h

 fg    st     )   k f  

                  
 

n = 0.33 and 1+m = 1 for water and 1.7 for other fluids 

 

Cst is the surface-fluid constant. It depends on both the surface and the fluid. Typical values 
are between 0.0025 and 0.015. 

 

For a given Tsat, the heat flux is proportional to (Cst )-3. Since Cst can vary by a factor of 10, 
the heat flux can vary by a factor of 1000 
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APPLICABLE ONLY FOR CLEAN SURFACES 21 
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FILM BOILING 
 
 
 
 

 

Vapour film                             Liquid  
 
 
 
 
 

 

       d 
 

 Liquid       
 

Hot surface        
 

    Vapour film    
 

 

g  f   g g hfg k g3
 

 1 Properties at temperature 
 

  4 

 

  T
sat 

 

h  0.62  
  

T   Tw  

 

g  Tsat  d 

 

  

   

2 

 
 

      
  

       Effective  latent  heat of  vapourisation 

hfg 
  

C pg T  
  

h
 fg 1  0.68 

       

     
 

     h      allowing for the effect of superheat 
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    fg  22 
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Taking the example for steam-water at 1 bar, for which 

= 100 C;Tw = 700 C;Tsat = 600 C;hfg  = 2256000 J/kg 
 

kg = 0.046 W/m.K;g = 21  10-6 Pa.s;g = 0.32 kg/m3; 

f = 1000 kg/m3; d = 0.02 m 

physical properties are evaluated at 400 C.  Then from above eqn,  

h = 142 W/m2.K  and so q” = h Tsat = 85000 W/m2 
 
 
 
 

    B 
C 

 

    

ϕc 
 

 

g  f   g g hfg k g
3

 

1  
 

  4 Heat flux  
 

h  0.62     
 


g  
T

sat  
d

 
  

 

   

A 

 

   
 

 
 
 

T
sat 

 
 
 

Critical heat flux for water at 1 bar is around 1.25 MW/m2 So, although the tube is very 
hot, it is carrying only a fraction of the critical heat flux. So we around point A on the 
boiling curve (See Fig.12). The point C, which has the same heat flux as at point B, can be 
found. The temperature at C will be so high that radiative heat transfer is very important 

23 

 T
sat 
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h  h     a h ;    a  
3

  

film boiling 

  
 

total   radiative   4 
 

           
 

   T 4 T 4    = surface emissivity 
 

h   w sat  
      

 

        
 

radiative      

 = 5.67  10 

-8 2   4
 

   
T

w 

T
sat   

 W/m .K 
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COMPLETION OF THE BOILING CURVE 

 

B  
 
 
 
 
 
 

s c a l e )   

ϕ  ( l o g 

C 
 

 
 

 
 
 

(Idealized) 
A 

 
 
 

Tsat (log scale) 

 
 
 
 
 

The transition boiling region is the 
main region not yet considered. 

 

Actually comparatively little is 
known, and one assumption made is 
that the transition boiling line (B to 
 

C) is the straight line connecting B 
and C when plotted (as above) on a 
log-log graph. 

 

Upto A Natural convection heat transfer  
   

A Onset of natural convection boiling  
   

A to B Nucleate boiling heat transfer  
   

B Critical heat flux  
   

B to C Transition boiling  
   

C Minimum film boiling temperature  
   

C onwards Film boiling 25 
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RADIATION: PROCESSES AND PROPERTIES 

 

• Thermal radiation requires no matter 
 
• Applications: Industrial heating, cooling and drying 

processes, energy conversion methods – fossil fuel 
combustion and solar radiation 

 
 
 
 

OBJECTIVES 

 
 

• MEANS BY WHICH THERMAL RADIATION IS GENERATED 
 

•SPECIFIC NATURE OF RADIATION 

 

•MANNER IN WHICH RADIATION INTERACTS WITH MATTER 



158 
 

 

Person 

30° C Fire  

900° C   

Air  

5° C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unlike conduction and convection, heat transfer by 
radiation can occur between two bodies, even when they 
are separated by a medium colder than both. 
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Solar radiation reaches the earth after passing through cold 
air layers at high altitudes. 
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FUNDAMENTAL CONCEPTS 

• TS 
> T

sur
  

• No conduction or convection - still solid will cool  
• Solid gets cooled – emission of thermal radiation form the surface 

of the solid 
 

Radiation 

cooling of a 

heated solid 

  

surroundings 
 
 

 

T
Sur 

 

Vacuum 
 

 

Radiation from Surface radiation  

surroundings 
 

emission  

 
 

 
 
 
 
 
 

 

T
s 
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Radiation – propogation of electromagnetic waves 

 

J.C.Maxwell – accelerated charges or changing electric currents give 
rise to electric and magnetic fields. These moving fields are called 

ELECTROMAGNETIC WAVES OR ELECTROMAGNETIC RADIATION 

 

Electro-magnetic Radiation – energy emitted by matter as a result of 
the changes in the electronic configurations of the atoms or molecules 

 

Characteristics of E.M.Radiation     
 

•Frequency (Hz – 1/sec) 

 
c 

 
 

•Wavelength  (m) 
  

  
 

 

 

In Vacuum co = 2.998 x 108 m/s 

 

c  
c

o 

 

n – Index of refraction  

    
 

c – speed of propogation of wave in that medium 

    
 

  n 
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 
c

 

 

c  
c

o 

n  
 

 

Material n 

Air and most gases 1.0 

Glass 1.5 

Water 1.33 
 
 
 
 

 

OBSERVATIONS 

 

 & c – Depend On The Medium Through Which Wave Travels 
 

 - Independent of the medium Depends only on the 
source
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Electromagnetic Radiation: Propogation of a discrete packets of 
energy called photons or quanta 

 

Each photon of frequency  is considered to have an energy of 

 
 
 

e  h  
hc
 

 

 

h = 6.625 x 10-34 J.s – Planck’s Constant 

 

Energy of the photon – inversely proportional to its wavelength 

 

Shorter wavelength radiation possess larger photon energies 

 
 

No wonder, we try to avoid very short wavelength radiation such as 
gamma rays and X-rays since they are highly destructive 
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Wavelength range of different colours 
 
 
 

 

Color Wavelength Band (  m) 
   

Violet 0.40 - 0.44 
   

Blue 0.44 - 0.49 
   

Green 0.49 – 0.54 

Yellow 0.54 - 0.60 
   

Orange 0.60 - 0.67 
   

Red 0.63 - 0.76 
     

Solar radiation: 

 

Electromagnetic radiation emitted by 
sun Wavelength band – 0.3 - 3m 

Half range is in the visible range 

Other half range is in the ultraviolet and infrared range 
 

IN HEAT TRANFER, WE ARE INTERESTED IN ENERGY EMITTED BY 
BODIES DUE TO THEIR TEMPERATURE ONLY – THERMAL RADIATION 
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ELECTROMAGNETIC SPECTRUM 
  

Visible 
 
 

 

R
e

d
 

 

Y
e

llo
w
  

G
re

en
 

 

B
lu

e 

 

V
io

le
t  

 
 
 
 
 
 

 

X rays 

 
 
 
 
 

 

Infrared 
 

Ultraviolet 
 
 

Gamma rays 

 

Microwave 
 

Thermal radiation 
 

 

10-5 10-5
 10-5 10-5

 10-5 1 10 10-5 10-5
 10-5

 

    Wavelength , m    

109
 108

 107
 106

 105
 104

 103
 102

 10 1  

Wavenumber η, cm-1
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1019 1018
 1017 1016 1015 1014 1013 1012

 1011 

Frequency , Hz 
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ALL BODIES EMIT RADIATION – RADIATION AT 
ABSOLUTE ZERO TEMP – ZERO 
 

THERMAL RADIATION – Rate at which energy is emitted by matter as 
a result of its finite temperature 
 
 
 
 
 
 
 
 

Plants 
 
 
 
 
 
 
 
 
 

 

Furniture 

 
 
 
 
 
 
 
 
 

Walls 
 
 

 

People 

 

 
 
 
 
 
 
 

MECHANISM OF EMISSION – energy released as a result 
of oscillations of many electrons that constitute matter 
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• Radiation is a volumetric phenomena  
• Radiation is considered as surface phenomena  
• Radiation – interior molecules – absorbed by adjoining 

molecules 
 

• Radiation that is emitted from a solid or a liquid originates 
from molecules that within a distance of 1 m from the 
exposed surface 
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Radiation emission 
 
 
 
 
 
 
 
 
 

Radiation emission 
 
 
 
 

Gas or  

Vacuum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

High Temperature gas or 
semi-transparent medium 
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Solid or liquid 
 
 
 
 
 
 
 

Emission Process 

 

a. Volumetric Phenomenon 
 
b. Surface Phenomenon 
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DESCRIPTION OF THE THERMAL RADIATION 
 

Spectral Distribution 
 

• Emitted Radiation – continuous, non-uniform distribution of 
mono-chromatic (single wavelength) components  

• Spectral distribution depends on 
• Nature of the emitting surface 
• Temperature of the emitting surface 

 
 

Directionality 

Directional 
 

distribution  

Spectral  

 
 

distribution  
 

Wavelength  
 

(a) (b) 
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Spectral distribution
 Directional distribution 
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RADIATION INTENSITY 

 
 
 

Radiation emitted by a surface propagates in all directions 

 
 
 
 

Radiation incident on the surface may come from different 
directions 

 
 
 
 

Response of the surface to the radiation depends on the 
direction 

 
 

 

Directional effects – concept – RADIATION INTENSITY 
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SOLID ANGLE d 
 

• Emission of radiation from a differential area dA1 into a 
solid angle d subtended by dAn at a point on dA1 

(a) z  
 

n  

  dAn 

 
r , ,  

 

 

 

 

 
 

   
 

     
 

 
 
 

 

r 
 
 
 

dA1                 d 
 

y 
 
 

 

dAn 

x 

 
 

 
 

d  

 
 

steridians ( sr )  
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 r 2 
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Plain angle 
 
 
 

r 
 
 
 
 
 

dl 
 

 

d  
dl

 
 

r  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plain Angle, α 

  

Solid angle 
 
 

r 
 
 
 
 
 
 
 
 
 
 

d 
dA

n 
 

r 2 dAn  

 

Solid angle 

ω 
 
 

Surface  
area, S 

 

 

 

Quantifying the slice of a pizza Quantifying the slice of a water 
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of plane angle  melon of solid angle d 
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Differential area dAn is normal to (, ) direction as in figure 
dAn is normal to the direction of viewing since dAn is viewed 
from the center of the sphere 

d  
dA

n 
 

r 
2

 

dAn  ( rd )( r sin d ) 

 
 

 

 d  
dAn

  sin d d 

r 
2

 
 

 

n  
 
 
 

dA  r 2  sin  d d   
 

n    
 

r  sin rd 

 r
 

  
 

r r  sin  d   
 

    
 

d    
 

dA1 
d  dAn

 

 

2 
 

 r 
 

 



180 
 

 
 
 

 dAs  
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Solid angle of a sphere 
 

 2   
 

A
n  
dA

n  r 
2

 sindd 2r 
2

 sind  2r 
2

  cos  

 




 0   4r 
2

 

 

 
 

 
 

sphere   0  0  0 
 

 

An   4r 
2

 
 

For a sphere with unit radius, solid angle is 4 
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Differential solid angle d subtended by a differential surface area dA 
when viewed from a point at a distance r from dA is expressed as 

d  
dA

n   
dA cos

 


 

r 
2

 r 
2

 
 

where  is the angle between the normal to the surface and the 
direction of viewing, and thus dAn= dAcos is the normal (or 
projected) area to the direction of viewing 
 
 

 

Small surfaces viewed from relatively a large distances can approximately treated as 
differential areas in solid angle calculations. For example, the solid angle subtended 
 

by 6 cm2 plane surface when viewed from a point at a distance of 90 cm along the normal of the 
surface 

 
An  6  7.41  10 4  sr  

 

90 
2

 

 

 r 
2

  
 

If the surface is tilted so that the normal of the surface makes an angle of 60 with 
the line connecting the point of viewing to the centre of the surface, the projected 
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area would be dAn = dAcos = 6 cos60 = 3 cm2 and the solid angle in this case 
would be half of the value just determined. 
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INTENSITY OF EMITTED RADIATION 

• Consider the emission of radiation by a differential area element dA1of a surface  
• Radiation is emitted in all directions into the hemispherical surface and the 

radiation streaming through the surface area dAn is proportional to the 
solid angle d subtended by area dAn  

• Radiation is also proportional to the radiating area dA1 as seen by an observer on 
dAn , which varies from a maximum of dA1 when dAn is at the top directly 
above dA1 ( = 0) to a minimum of zero when dAn is at the bottom ( = 0)  

• The effective area of dA1for emission in the direction of  is projection of dA1 on a 
plane normal to  , which is dA1cos 

 

 Radiation emitted into 

 direction   ,  

0     2 I e   ,  

0    2  

 dAn 

  

 r   

dA
1  dφ 
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Radiation intensity for emitted radiation Ie(,) is defined as the rate 
at which the radiation energy dq is emitted in the (,) direction per 
 

unit area normal to this direction and per unit solid angle about this 
direction 

 

Ie  ,   

dq 

 

dq W  m 2 sr  
 

  
 

dA1 cos   d dA1 cos   sin d d 

 

   
  

Radiation flux for emitted radiation is the EMISSIVE POWER (E) – rate 
at which radiation energy is emitted per unit area of the emitting 
surface which is expressed in the differential form 

 

dE  
dq  Ie  , cos  sin d d 
dA1  

Hemisphere above the surface intercepts all the radiation rays emitted by the 

surface,  the  emissive  power  from  the  surface  into  the  hemisphere 
 

surrounding it is given by 2 / 2  
 

   
 

E  
dE  Ie,cossinddW   m2 
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 hemisphere   0  0  
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The intensity of radiation emitted by a surface, in general, varies with 
direction (especially with zenith angle . But, many surfaces in practice 
can be approximated as DIFFUSE. For a diffusely emitting surface, the 
intensity of emitted radiation is independent of direction and thus Ie= 
constant 

 

2 /2 /2 

  cos  si n d d  2  cos  si n d 
 0  0     0         

 

  

2 

  / 2 
  

 cos 2 

  / 2 
 

      
 

  
 
  si n 2 d     

       
 

 2  0    2    0  

            
 

  
 cos   cos 0  

 1  1    

   
 

 2    2   
 

2 / 2 

 , cos  sin d dW m 2  
E   Ie 

 

E
 
dEIe 
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hem isp here00        
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 1  W   W   1  W   
 

G   1000  .m 5  0m 1000  .m 20  5m   1000  .m 25  20m  0  

     
 

 2  m 2   m 2   2  m 2   
  

G  2500  15000  2500 W m 
2  

G  20000 
W

 
 

m 2 
 
 
 
 

Comments: Generally, radiation sources do not provides such a regular 
spectral distribution for the irradiation. However, the procedure of 
computing the total irradiation from knowledge of the spectral 
distribution remains the same, although evaluation of the integral is 
likely to involve more detail. 
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HEAT TRANSFER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT - 5
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ϵ-NTU APPROACH : 
 

Known: inlet fluid temperatures, fluid mass flow rates, type and size of 
the heat exchanger 
 

Predict outlet temperature of hot and cold stream in a specified 
HE Task is to determine 

• Heat transfer performance of a specified heat exchanger  
• If a heat exchanger available in storage will do the job 
 

To solve this type of problem by LMTD approach would be tedious 
because of numerous iterations required. 
 

Kays and London – Effectiveness NTU approach to avoid iterations 
(1955) 
 

EFFECTIVENESS 

 
 

.  

Q Actual heat transfer rate 
 

Qmax Maximum possible heat transfer rate 
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Actual heat transfer rate 

. 


T

c ,inChTh ,in
T

h ,out
 

Q  C c  Tc ,out
 

. . 
  

  

 

  

T
max 

T
h ,inTc ,in 

Maximum heat transfer takes 

place when 

• the cold fluid is heated to the 

inlet temperature of the hot fluid 
 

• the hot fluid is cooled to the inlet 

temperature of the cold fluid 

 
 
 
 
 

These two limiting conditions will not be reached simultaneously unless 
CC=CH 
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When CC  CH, the fluid with the smaller heat capacity would experience 
maximum temperature and the heat transfer would come to a halt 
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Hot water 
 

70C 
 

2 kg / s 
 
 
 
 
 
 
 
 
 
 

 

Th,i   70
o

 C 
 
 

 

T
c ,o 

  

 Cold water  C p   4.18kJ / kg .deg .C  
 

      
 

     10C Ch  mhC ph  2  4.18  8.36 kW / deg C  
 

     

8 kg / s 

 
 

         
 

       
 

  
 

         
 

     H2O Cc   mcC pc   8  4.18  33.44 kW / deg C  
 

          

      

  

  
 

        
 

      Q
max,1  mhC ph Th,i  Tc ,i  8.3670 10  501.6kW

 
 

       
 

        

 10  2000.4kW 

 

      Qmax,2  mcC pc Th,i  Tc ,i  33.4470
 

          
 

      Considering Qmax,1  501.6kW  compute  Tc ,o  
 

        o

C 

 

     501.6kW   mcC pc Tc ,o  Tc ,i  33.44  Tc ,o  10 Tc ,o   25 
 

          
 

      Considering Qmax,2  2000.4kW  compute  Th,i  
 

   
T

h ,o     
 

        o  
 

     2000.4kW   mhC ph Th,o  Th,i  8.36  70  Th,i  Th,i  170  C 
 

   T  10
o

 C     
 

    c ,i Hence, the cold water will go on transferring heat to hot 
 

       
  

water until cold water temperature reaches 25C, by this 
time the hot water would have reached already 10C, 
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Derivation of ε – NTU for Parallel flow heat exchanger 

.   
 

 
Q  

Actual heat transfer rate 
 

 
 

 

Maximum possible heat transfer rate 

 

Q
max 

 

  
 

Q   Qmax    Cmin Th ,i   Tc ,i  
  

T
h ,o 


 
T

c,o          1     1       Ch   Cc  

         

UAs 

         

 

       mhCph mcCpc  

       

 

           

 

 

ln  T
h ,i 


 
T

c,i 

               
 

         
m

h
Cp

h mc Cpc       
 

 T  T      UAs 
  Cc 

                
 

ln  h ,o  c,o       1             
 

   T 

                      
 

  T      C 

c 

  C 

h 

              
 

  h ,i  c,i                        
 

            . 


C
cTc ,out

T
c ,inChTh ,in

T
h ,out 

  
 

            Q   
 

     T   T  

C
c  T  T            

 

                  
 

      h ,o h ,i   C
h 

  c ,o  c ,i            
 

 
   C 

              
            

 

   c T  T    T 
            

 

 T 
  

    
    

   
 

           
 

ln


 

  h ,i  

Ch 
c ,oc ,i       c,o  UAs 

 C
c 

   
 

                
 

                     1    
 

                           
 

 

    T
h ,i 


 
T

c,i 
          

 

          
 

                
C

cCh      
 

                                   
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                                   
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     T 
  T    

C 
c 

 T     T 
   T 

                   
 

  T  
     

  
       

      
  

 

                    
 

ln


 

 h ,i     c,i        c,i     

Ch 

  c ,oc ,i      c,o   UAs 

 

Cc 

     
 

                                   
 

    
  1  

 

    
 

 

 
                T

h ,i 
 

 
T

c,i 
                   

 
    

Cc 
        

 

                                         Ch       
 

  
 

 

 

 T 

 

 

 
 

     Cc 
  T           UAs       Cc 

               
 

ln 1  1    

   c ,o       c ,i  

 

 

 1  
               

 

          T 

                       
 

      C 

h 

T            C 

c 
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   h ,i c,i   h  
 

 Q     Cc 

T
c ,o  


 
T

c ,i 


    

T
c ,o  


 
T

c ,i         

C
m in            

 

 

   


                  


        

  

                  
 

Q   C 
m in 
T     T    T  T       C

c 
           

 

 m a x        h ,i       c ,i         h ,i    c ,i                      
 

      Cc 
  

                 UAs   
    Cc   

                  
 

         Cm in                               
 

ln 
 1  
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 
       

1  
      

 
                   

                                                
 

1           
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C
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C
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C
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C
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 

        


   

 C 
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 C 

m in 
  C
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  1           
 

       

   

1  
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    
 

              

C
h   

C
c                                    

C
m a x    
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Number of transfer units (NTU) 

 

NTU  
UAs  

UAs 
 

 

  

 

 C
m in  

 mC p c 
 

    m in 
  

• Non-dimensional thermal size of the heat exchanger  
• Heat transfer unit heat capacity of fluid  
• For specified values of Cmin and U  

• NTU – measure of heat transfer surface area  
• Larger NTU – larger the heat exchanger 

c  
C

m in 
 

m a x  

  f c , NTU 



201 
 

Effectiveness relation for heat exchanger: NTU = UAS/CMIn 

and 
C

 


 
C

 min 
C

 max 
 .   .  

Kays and London 
 


  m C

 P    
m C

P   
 

    min  max  
   

Heat exchanger type 

 

1 Double pipe: 

Parallel –flow 
 
 

Counter flow 
 
 

2 Shell and tube :  

One shell pass 

2, 4,…tube passes 

 

3 Cross flow (single pass)  

Both fluid unmixed 

Cmax mixed, 

Cmin unmixed 

Cmin mixed 

Cmax unmixed 

 

4 All heat 
exchangers with C=0 

  

Effectiveness relation 

    
 NTU 

 
1  C 

        
 

 
1  exp             
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
       

  
 

           NTU 1  C 2 
 

       1  exp     
 

  2  1  C 1  C 2                   
 

               
 

            NTU 1  C 2   
 

       1  exp     
 

                    
  

 NTU 0.22 
exp C NTU 0.78   1 

 
 

  1  exp    

 
 

 C   
 

  
1

 1  exp 1  C 1  exp  NTU 

C
 

  1  exp  1 1  exp  C NTU   

    

   
C 

  


 

         
 

 
 

  1  exp( NTU )



202 
 

100  
 
 
 
 

 

80 
 
 
 
 
 

% 60  

ɛ,
 

 

 
 

E
ff

ec
tiv

en
es

s 40  

 
 

 
Tube fluid 

 

 

20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shell fluid 

 

 
 
 

 

0  
1 2 3 4 5 

 

Number of transfer units NTU = AsU/Cmin 

 

Parallel Flow 



203 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

E
ff

ec
ti

ve
n

es
s 

ɛ,
 %

 

 
100 
 
 
 
 

 

80 
 
 
 
 
 
 

60 
 
 
 
 
 
 

40 
 
 
 
 
 
 

20 
 
 
 
 
 
 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Shell fluid  

 
 
 
 

Tube fluid 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 2 3 4 5 
 

Number of transfer units NTU = AsU/Cmin 

 

Counter Flow 



204 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

E
ff

ec
ti

ve
n

es
s 

ɛ,
 %

 

 
100 
 
 
 
 
 
 

80 
 
 
 
 
 
 

60 
 
 
 
 
 
 

40 
 
 
 
 
 
 

20 
 
 
 
 

 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Shell-side fluid  
 
 

 
Tube-side fluid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 2 3 4 5  

Number of transfer units NTU = AsU/Cmin 

 

One-shell pass and 2,4,6….tube passes 



205 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E
ff

ec
ti

ve
n

es
s 

ɛ,
 %

 

 
100  
 
 
 
 

 

80 
 
 
 
 
 
 

60 Shell fluid 
 
 
 
 

 

40 
 
 
 
 
 

Tube fluid 
20 

 
 
 
 
 
 

0  
1 2 3 4 5  

Number of transfer units NTU = AsU/Cmin 
 

 

Two-shell passes and 4,8,12….tube passes 



206 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E
ff

ec
ti

ve
n

es
s 

ɛ,
 %

 

 
100 
 
 
 
 
 
 

80 
 
 
 
 
 
 

60 
 
 
 
 
 
 

40 
 
 
 
 
 
 

20 
 
 
 
 

 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Cold fluid  
 
 
 
 
 
 

 

Hot fluid 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 2 3 4 5 
 

Number of transfer units NTU = AsU/Cmin 

Cross- flow with both fluids unmixed 



207 
 

100  
 

 

4 

 

80 2 

 
 

 

1.33 
 
 

% 60  
 

ɛ,
 

 
 

  
 

E
ff

ec
tiv

en
es

s 40 Mixed fluid  

 
 

  
 

 
 
 
 
 
 

20 
 

Unmixed fluid 
 
 

 

0  
1 2 3 4 5

 Number of transfer units NTU = AsU/Cmin  
 



208 
 

Cross- flow with one fluid mixed and other unmixed 
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1  

 

COUNTER - FLOW 
 
 
 
 
 
 

 

 CROSS- FLOW WITH BOTH 
 

FLUIDS UNMIXED 
 

ɛ 0.5 
 

PARALLEL- FLOW 
 
 
 
 
 

(FOR C =1 ) 
 
 
 
 
 
 

 

1 2 3 4 
5

 

NTU = UAs/Cmin 
 

For a given value of NTU and c = CMIN/Cmax, the counterflow HE has the 
highest effectiveness, followed closely by the cross flow HE with both 
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fluids unmixed. Lowest effectiveness is encountered in parallel flow 
HE 
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•capacity ratio varies between 0 to 1. 

 

c = 0  c = CMIN/Cmax  0 Cmax , - CONDENSER AND 

BOILER c = 1  c = CMIN/Cmax  1;  is lowest 
 
 
 
 
 
 
 
 
 
 

  1  e NTU
 

 

All heat exchanger 
with C = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

NTU  
UA

s 
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C
min 
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•  ranges from 0 to 1. It increases rapidly with NTU for small values (upto 
NTU = 1.5) but rather slowly for larger values. 

 

•High  is desirable from heat transfer point of view but undesirable from 
economic point of view. Hence, NTU larger than 3 is not justified. 

 
 

 

• For a given value of NTU and c = CMIN/Cmax, the counterflow HE has the 
highest effectiveness, followed closely by the cross flow HE with 

 

both fluids unmixed. Lowest effectiveness is encountered in parallel 
flow HE 

 

•  is independent of capacity ratio c for NTU values of less than 0.3 

 

• capacity ratio varies between 0 to 1. 
 

c = 0  c = CMIN/Cmax  0 Cmax , - CONDENSER AND 

BOILER c = 1  c = CMIN/Cmax  1;  is lowest 
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Effectiveness relation for heat exchanger: NTU = UAS/CMIn 

and 
 
C

 min 
  .   .       

 

C 
C

 max 
  

m C
 P    m CP  Kays and London 

 

Heat exchanger type    min   max      
 

      Effectiveness relation 
 

       
 

1 Double pipe:        ln 1    1  C   

        
 

Parallel –flow 
     

NTU  
    

 

     1  C   
 

          
   

Counter flow 

 

2 Shell and tube :  

One shell pass 

2, 4,…tube passes 

 

3 Cross flow (single pass)  

Both fluid unmixed 

Cmax mixed, 

Cmin unmixed 

Cmin mixed 

Cmax unmixed 
 
 

4 All heat exchangers 

  

NTU  
  1      1    

 

     ln      
 

     

C  1 

  
 

    C  1     
 

     

 

    
 

 1    2   1  C   1  C 2  
 

NTU       ln            
 

               
 

 

1  C 

2     

  1  C  1  C 

2 
 

    2   
   

   ln  1  C  
 

NTU  ln 
 

 
 

 
   

 
  

1 
     

 

  

C 

    
 

        
 

    1  C 
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
 

ln C ln  1
 

NTU   
C 

 

NTU  ln 1    

 
 
 
 
 
 

 
 
 

 

 

with C=0 
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DESIGN AND CHOICE OF HEAT EXCHANGER 

 

 

• HEAT TRANSFER RATE  
• PUMPING POWER - PRESSURE DROP  
• COST  
• SIZE AND WEIGHT  
• TYPE  
• MATERIALS 


