Electrical Circuit Analysis

Authors

Dr. V. Chandra Jagan Mohan

Associate Professor Department of EEE Institute of Aeronautical Engineering College Dundigal, Hyderabad-500043

Mr. T. Anil Kumar

Assistant Professor Department of EEE Institute of Aeronautical Engineering College Dundigal, Hyderabad -500043

All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the **Publisher**.

Information contained in this book has been published by **StudentsHelpline Publishing House (P) Ltd. , Hyderabad** and has been obtained by its Authors from sources believed to be reliable and are correct to the best of their knowledge. However, the Publisher and its Authors shall in no event be liable for any errors, omissions or damages arising out of use of this information and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

COPYRIGHT REGISTRATION DIARY NUMBER: 5606/2019-CO/L

Seven Hills International Publishers, Hyderabad

A Part of StudentsHelpline Publishing House (P) Ltd. (An ISO 9001 : 2015 Certified Company)

Head Office

326/C, III Floor, Surneni Nilayam

Near B K Guda Park, S R Nagar, Hyderabad - 500 038, INDIA P.No:+91 40 23710657, 238000657 Fax: +91 40 23810657

Reg. Off

5-68, Pedda Gorpadu, Pakala, Tirupati, Chittoor - 517 112 AP, INDIA mail:studentshelpline.in@gmail.com www.studentshelpline.org

© Seven Hills International Publishers, Hyderabad

First Edition-2019

ISBN 978-93-88096-14-0

424/- Student Edition

624/- Library Edition with HB

Printed at StudentsHelpline Group, S R Nagar, Hyderabad-38 Published by Surneni Mohan Naidu for Seven Hills International Publishers, Hyderabad - 38

Electrical Circuit Analysis

Module-I: Introduction to Electrical Circuits

Circuit Concept: Basic definitions, Ohm's law at constant temperature, classifications of elements, R, L, C parameters, independent and dependent sources, Kirchhoff's laws, Equivalent Resistance of series, Parallel and series parallel networks.

Analysis of Electrical Circuits: Source Transformation, Star to Delta and Delta to Star transformation, Mesh analysis and Nodal analysis by Kirchhoff's laws, inspection method, super mesh, super node analysis.

Module-II: AC Circuits

Single Phase AC Circuits: Representation of alternating quantities, Instantaneous, peak, RMS, average, form factor and peak factor for different periodic waveforms, phase and phase difference, 'j' notation, Concept of reactance, impedance, susceptance and admittance, rectangular and polar form. Concept of power, real, reactive, apparent power and complex power, power factor. Analysis of single phase AC Circuits consisting of R, L,C, RL, RC and RLC combinations.

Module-III: Magnetic Circuits and Network Theorems

Faraday's laws of electromagnetic induction, conpect of self and mutual inductance, dot convention, coefficient of coupling, composite magnetic circuit, analysis of series and parallel magnetic circuits, behaviors of series and parallel resonant networks.

Theorems: Zero Current Theorem, Tellegen's, Superposition, Reciprocity, Voltage Shift Theorem, Thevenin's, Norton's, Maximum power transfer and Milliman's and compensation theorems for DC excitations.

Module-IV: Solution of First and Second Order Networks

Inditial conditions, transient response of RL, RC and RLC series circuits with DC excitation, differential equation and Laplace transform approach.

Module-V: Two Port Network Parameters

Two port network parameters: Z,Y,ABCD, nybrid and inverse hybrid parameters, conditions for symmetry and reciprocity, inter relationships of different parameters, interconnection(series, parallel and cascade) of two port networks, image parameters.

Electrical Circuit Analysis

	Chapter-I: Introduction to Electrical Circuits				
1.0	Objective and Outcomes x 2				
1.1	Introduction 2				
1.2	Circuit concept: Basic definitions 2				
1.3	Electric Current 5				
1.4	Electric Potential 7				
1.5	Potential Difference 7				
1.6	Voltage and E.M.F	8			
1.7	Power	8			
1.8	Ohm's Law at constant temperature				
	1.8.1 Limitations of Ohm's Law	9			
	1.8.2 Applications of Ohm's Law	10			
	1.8.3 Solved Problems	10			
1.9	Classifications of Elements	13			
1.10	R-L-C Parameters	14			
	1.10.1 Resistance (R)	14			
	1.10.2 Classification of Resistors	16			
	1.10.3 Colour Coding of Resistors	17			
1.11	Inductor (L)	17			
	1.11.1 Classifications of Inductors	18			
	1.11.2 Specifications of Inductor	19			
	1.11.3 Conductivity	19			
1.12	Concept of Capacitor	19			
	1.12.1 Classifications of Capacitors	21			
	1.12.2 Specifications of the Capacitor	21			
	1.12.3 Comparison of Active and Passive Components	22			
	1.12.4 Solved Problems	22			
1.13	Standard symbols for electrical components	25			
1.14	Fuse	27			
	1.14.1 Need	28			
	1.14.2 Rating	28			
	1.14.3 Requirements of a Fuse	29			
	1.14.4 Fusing Materials	29			
	1.14.5 Classification of Fuses	30			
1.15	Voltage and Current Sources	32			
1.16	Independent and Dependent Sources	34			

	1.16.1 Solved Problems	36
1.17	Kirchhoff's Laws	37
	1.17.1 Solved Problems	40
1.18	Series Resistance	43
	1.18.1 Equivalent Resistance for Series Connections	44
	1.18.2 Voltage Divider Rule	47
	1.18.3 Solved Problems	48
1.19	Resistance in Parallel	52
	1.19.1 Characteristics of a Parallel Circuits	54
1.20	Series-Parallel Combination	54
1.21	Division of Current in Parallel Branch Circuit	55
	1.21.1 Solved Problems	58
	1.21.2 Comparison of Series and Parallel Circuits	61
1.22	Solved Problems on Series and Parallel Circuit	61
1.23	Summary	73
1.24	Review Questions	73
1.25	Multiple Choice Questions	75
	Chapter-II: Analysis of Electrical Circuits	
2.0	Objective and Outcomes	78
2.1	Introduction	78
2.2	Source Transformation	79
	2.2.1 Solved Problems	80
2.3	Star to Delta or Delta to Star Transformations	84
	2.3.1 Delta-Star Transformation	85
	2.3.2 Star-Delta Transformation	87
	2.3.3 Conversion of Delta into Equivalent Star	89
	2.3.4 Conversion of Star into Equivalent Delta	89
	2.3.5 Solved Problems	91
2.4	Mesh Analysis by Kirchhoff's laws	104
2.5	Node Analysis by Kirchhoff's laws	116
	2.5.1 Concept of Nodal Analysis	117
	2.5.2 Nodal Analysis Illustration	117
	2.5.3 Solved Problems	118
2.6	Inspection Method	
	2.6.1 Solved Problems	129
	2.6.2 Nodal Equations by Inspection Method	130
	2.6.3 Solved Problems	131
2.7	Super Mmesh for DC Excitations	132
	2.7.1 Solved Problems	135
2.8	Super node for DC Excitations	137
	2.8.1 Solved Problems	138

2.9	Comparison of Mesh and Nodal Analysis 1				
2.10					
2.11	Review Questions	142			
2.12	Multiple Choice Questions	144			
	Chapter-III: AC Circuits				
3.0	0 Objective and Outcomes				
3.1	Introduction				
3.2	Important Definitions				
3.3	Comparison of Alternating Current and Direct Current				
3.4	The sinusoidal waveform				
	3.4.1 Significance of Sine Wave	154			
	3.4.2 Different Forms of E.M.F Equation	154			
3.5	Representation of Alternating Quantities	154			
	3.5.1 Instantaneous Values	154			
	3.5.2 RMS (or) Virtual (or) Effective Value of AC	155			
	3.5.3 Average (or) Mean Value of AC	157			
	3.5.4 Form Factor	158			
	3.5.5 Peak Factor	159			
	3.5.6 Peak Value (or) Time Period of A.C	159			
	3.5.7 Solved Problems	160			
3.6	Phase relations				
	3.6.1 Phase	164			
	3.6.2 Phase Difference	165			
	3.6.3 Solved Problems	167			
3.7	Representation of an AC Quantity by a Rotating Vector				
3.8	J-operator (or) J Notation				
	3.8.1 Solved Problems	171			
3.9	Polar and rectangular form of Complex Numbers	171			
3.10	Phasor Algebra	172			
3.11	Impedance Complex Number				
3.12	Admittance of Complex Number				
3.13	Concept of reactance 1				
3.14	Impedance 17				
3.15	Susceptance 1				
3.16	Admittance				
3.17	Mathematical Representation of Phasors				
3.18	Solved Problems 18				
3.19	Concept of Real, Reactive Power	183			
3.20	Apparent Power and Complex Power	184			
3.21	Power Factor	186			
	3.21.1 Solved Problems	187			

3.22	AC Circuit	188	
	3.22.1 AC Through Pure Resistance	188	
	3.22.2 AC Through Pure Inductance	189	
	3.22.3 AC Through Capacitance	190	
3.23	Representation of AC Series Circuits	191	
	3.23.1 RL Series Circuit	191	
	3.23.2 RC Series Circuit	193	
	3.23.3 RLC Series Circuit	195	
3.24	Representation Parallel AC Circuits	198	
	3.24.1 RL Parallel Circuit	198	
	3.24.2 RC Parallel Circuit	199	
	3.24.3 RLC Parallel Circuit	200	
3.25	Solved Problems	201	
3.26	3.26 Advantages of Alternating Current over Direct Current		
3.27	Disadvantages of A.C over D.C	210	
3.28	Summary	211	
3.29	Review Questions	211	
3.30	Multiple Choice Questions	213	
	Chapter-IV: Magnetic Circuits		
4.0	Objectives	218	
4.1	Introduction	218	
4.2	Magmetic Circuit	218	
4.3	Important Definitions	221	
	4.3.1 Solved Examples	226	
4.4	Electromagnetic Induction	229	
4.5	Faraday's Law of Electromagnetic Induction	230	
	4.5.1 Faraday's First Law	231	
	4.5.2 Faraday's Second Law	231	
	4.5.3 Applications of Faraday's Law	231	
	4.5.4 Integral Form of Faraday's Law	232	
	4.5.5 Differential Form of Faraday's Law	232	
	4.5.6 Solved Examples	233	
4.6	Direction of Induced E.M.F. and Current	237	
	4.6.1 Lenz's Law	237	
	4.6.2 Fleming's Right Hand Rule	238	
	4.6.3 Fleming's Left-Hand Rule	239	
4.7	Induced E.M.F	240	
	4.7.1 Dynamically Induced E.M.F	240	
	4.7.2 Statically Induced E.M.F	241	
4.8	Motional Electromotive Force	244	

4.10 Self and Mutual Inductance 246
4.10.1 Self Inductance 246
4.10.2 Mutual Inductance 246
4.10.3 Solved Example 248
4.11 Dot Convention 253
4.11.1 Solved Problems 256
4.12 Co-efficient of Coupling 257
4.12.1 Solved Problems 259
4.13 Composite Magnetic Circuit 263
4.14 Analysis of Series and Parallel Magnetic Circuits 265
4.14.1 Analysis of Series Magnetic Circuits 266
4.14.2 Analysis of Parallel Magnetic Circuits 267
4.14.3 Magnetic Leakage (or) Leakage Flux 268
4.14.4 Solved Examples 269
4.15 Comparison between Magnetic and Electric Circuits 283
4.16 Resonance 285
4.16.1 Resonance in Series circuit 285
4.16.2 Parallel Resonance in RLC Circuit 290
4.16.3 Q - Factor, Selectivity and bandwidth 294
4.16.4 Selectivity, Bandwidth and Q-factor of a Series Circuit 294
4.16.5 Selectivity, Bandwidth and Q-factor of Parallel Resonant Circuit 297
4.16.6 Compare Series and Parallel Resonance Circuits 299
4.16.7 Solved Problems 299
4.17 Summary 30 9
4.18 Review Questions 310
4.19 Objective Questions 312
Chapter-V: Network Theorems
5.0 Objective and Outcomes 318
5.1 Introduction 318
5.2 Tellegen's Theorem 318
5.2.1 Solved Problems 320
5.3 Superposition Theorem 324
5.3.1 Solved Problems 326
5.4Reciprocity Theorem342
5.4.1 Solved Problems 344
5.5 Thevenin's Theorem 354
5.5.1 Solved Problems 357
5.6 Norton's Theorem 369
5.6.1 Solved Problems 371
5.7 Maximum Power Transfer Theorem 385
viii

	5.7.1 Solved Problems	386		
5.8	Milliman Theorem	394		
	5.8.1 Solved Problems	396		
5.9	Compensation Theorem	399		
	5.9.1 Solved Problems	401		
5.10	Summary	406		
5.11	Review Questions			
5.12	Multiple Choice Questions	410		
	Chapter-VI: Solution of First and Second Order Networks			
6.0	Objectives	416		
6.1	Introduction 41			
6.2	Important Definitions 41			
6.3	Transient Response 41			
6.4	The Voltage and Current Relationships for Impulse, Step and Ramp Functions	418		
6.5	Initial Conditions	420		
	6.5.1 Procedure for Evaluating Initial Conditions	423		
	6.5.2 Solved Examples	424		
6.6	Transient Responce of RL Circuit	427		
	6.6.1 Solved Examples	430		
6.7	Transient Response of RC Circuit			
6.8	Transient Response of RLC Circuit	439		
	6.8.1 Solved Examples	441		
6.9	Differential Equations of First-order Networks	449		
	6.9.1 Initial Conditions	449		
	6.9.2 Final Conditions	451		
6.10	Laplace Transformation	451		
6.11	Properties of Laplace Transform 4			
6.12	Useful Laplace Transforms	455		
6.13	Steps to find Transient Response using Laplace Trnsform	456		
6.14	Circuit Elements in the s-Domain	456		
	6.14.1 Resistor in the s-Domain	456		
	6.14.2 Inductor in s-Domain	456		
	6.14.3 Capacitor is s-Domain	457		
6.15	DC Response of RC Series Circuit	458		
	6.15.1 Solved Examples	459		
6.16	DC Response of R-L Series Circuit	461		
	6.16.1 Solved Examples	463		
6.17	DC Response of An R-L-C Series Circuit	467		
	6.17.1 Solved Examples	468		
6.18	Summary	472		

6.19	Review Questions		
6.20) Multiple Choich Questions		
		Chapter-VII: Two Port Network Parameters	
7.0	Objectives		
7.1	Introduction		
7.2	Two Port Network Parameters		
7.3	Z-para	meters (Impedance Parameters)	481
	7.3.1	Solved Examples	483
7.4	Y-para	meters (Admittance Parameters)	488
	7.4.1	Solved Examples	490
7.5	Abcd-p	parameters (Transmission Parameters)	495
	7.5.1	Solved Examples	496
7.6	Hybrid	Parameters (H-parameters)	502
	7.6.1	Solved Examples	503
7.7	Inverse	e Hybrid Parameters or G- Parameters	509
7.8	Inter R	elationships of Different Parameters	510
	7.8.1	Relationship between Z and Y parameters	510
	7.8.2	Relationship between Y and h parameters	512
	7.8.3	Relationship between ABCD and h parameters	512
	7.8.4	Relationship between Z and h parameters	512
	7.8.5	Relationship between Z and ABCD parameters	513
	7.8.6	Relationship between Y and ABCD parameters	514
	7.8.7	Conversion of Parameters	514
	7.8.8	Solved Examples	515
7.9	Conditions for Symmetry and Reciprocity		525
	7.9.1	Reciprocity and Symmetry in Z-parameter Representation	525
	7.9.2	Reciprocity and symmetry in Y parameter represen-tation	526
	7.9.3	Reciprocity and Symmetry in ABCD parameter representation	527
	7.9.4	Reciprocity and Symmetry in h-Parameter Representation	528
	7.9.5	Solved Examples	529
7.10	Interco	nnection (series, parallel and cascade) of two port networks	536
	7.10.1	Series interconnection of two port network	537
	7.10.2	Parallel connection of two port net work	538
	7.10.3	Cascade Connection of Two Port Networks	539
	7.10.4	Solved Examples	540
7.11	Image	Parameters	548
7.12	Solved	Examples	551
7.13	Summa	ary	552
7.14	Review	Questions	552
7.14	Multip	le Choice Questions	555

x