Electrical Circuits

Authors

Dr. D. Shobha Rani Professor and Controller of Examinations Department of EEE Institute of Aeronautical Engineering College Dundigal, Hyderabad-500043 Ms. S. Swathi Assistant Professor Department of EEE Institute of Aeronautical Engineering College Dundigal, Hyderabad-500043

All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the **Publisher**.

Information contained in this book has been published by **StudentsHelpline Publishing House** (P) Ltd., Hyderabad and has been obtained by its Authors from sources believed to be reliable and are correct to the best of their knowledge. However, the Publisher and its Authors shall in no event be liable for any errors, omissions or damages arising out of use of this information and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

COPYRIGHT REGISTRATION DIARY NUMBER: 5603/2019-CO/L

Head Office

326/C, 1st Floor, Surneni Nilayam Near B K Guda Park, S R Nagar, Hyderabad - 500 038, INDIA P.No:+91 40 23710657, 238000657 Fax: +91 40 23810657

Reg. Off

5-68, Pedda Gorpadu, Pakala, Tirupati, Chittoor - 517 112 AP, INDIA mail:studentshelpline.in@gmail.com www.studentshelpline.in

© StudentsHelpline Publishing House (P) Ltd.

First Edition-2019

ISBN 978-93-83959-61-7

- 424/- Student Edition
- 624/- Library Edition with HB

Printed at M/s StudentsHelpline Group, S R Nagar, Hyderabad-38 Published by Surneni Mohan Naidu for StudentsHelpline Publishing House (P) Ltd., Hyderabad - 38

Module-I: Introduction to Electrical Circuits

Circuit Concept: Basic definitions, Ohm's law at constant temperature, classifications of elements, R,L,C parameters, independent and dependent sources, voltage and current relationships for passive elements (for different input signals like square,ramp, saw tooth, triangular and complex), temperature dependence of resistance, tolerance, source transformation, kirchhoff's laws, equivalent resistance of series, parallel and series parallel network.

Module-II: Analysis of Electrical Circuits

Circuit Analysis: Star to Delta and Delta to Star transformation, Mesh analysis and Nodal analysis by Kirchhoff's laws, inspection method, super mesh, super node analysis. Network Topology: Definitions, Incidence Matrix, Basic Tie set and Basic cut set Matrices for Planar Networks, Duality and Dual Networks.

Module-III: Single Phase AC Circuits

Single Phase AC Circuits: Representation of alternating quantities, Instantaneous, peak, RMS, average, form factor and peak factor for different periodic waveforms, phase and phase difference, 'j' notation, Concept of reactance, impedance, susceptance and admittance, rectangular and polar form. Concept of power, real, reactive and complex power, power factor.

Steady state analysis: Steady state analysis of RL, RC and RLC circuits (in series, parallel and series parallel combinations) with sinusoidal excitation; Resonance: series and parallel resonance, concept of band width and Q factor.

Module-IV: Magnetic Circuits and Three Phase Circuits

Magnetic Circuits: Faraday's laws of electromagnetic induction, conpect of self and mutual inductance, dot convention, coefficient of coupling, composite magnetic circuit, analysis of series and parallel magnetic circuits. Theree Phase Circuits: Star and delta connections, phase sequence, relation between line and phase voltages and currents in balanced systems (both Y & Δ), three phase three wire and three phase four wire systems, analysis of balanced and unbalanced three phase circuits, measurement of active and reactive power.

Module-V: Components of Electrical Systems

Components of Electrical Systems: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, types of wires and cables, Earthing, Types of Batteries: Alkaline battery, Zinc-Carbon battery, dry cell battery, Nickel-Cadmium battery, lead acid battery, lithium ion battery, nickel metal hydride battery, important characteristics for batteries, applications, Elementary calculations for energy consumption.

	Chapter-I: Introduction to Electrical Circuits	
1.0	Objectives	2
1.1	Inroduction	2
1.2	Circuit Concept: Basic Definitions	2
1.3	Electric Current	5
1.4	Electric Potential	6
1.5	Potential Difference	7
1.6	Voltage and E.M.F	7
1.7	Power	8
1.8	Ohm's Law at constant temperature	8
	1.8.1 Limitations of Ohm's Law	9
	1.8.2 Applications of Ohm's Law	9
	1.8.3 Solved Problems	9
1.9	Classifications of Elements	12
1.10	R-L-C Parameters	13
	1.10.1 Resistance (R)	13
	1.10.2 Classification of Resistors	15
	1.10.3 Colour Coding of Resistors	16
1.11	Inductor (L)	16
	1.11.1 Classifications of Inductors	17
	1.11.2 Specifications of Inductor	18
	1.11.3 Conductivity	18
1.12	Concept of Capacitor	19
	1.12.1 Classifications of Capacitors	20
	1.12.2 Specifications of the Capacitor	21
	1.12.3 Comparison of Active and Passive Components	21
	1.12.4 Solved Problems	22

1.13	Voltage and Current Sources	24
1.14	Independent and Dependent Sources	25
	1.14.1 Solved Problems	27
1.15	Voltage current Relationships for Passive Elements	28
1.16	Temperature Dependence of Resistance	31
1.17	Temperature Co-efficient of Resistance	33
	1.17.1 Expression for Resistance at any Temperature	34
	1.17.2 Formula for Co-efficient of Resistance at any Temperature	35
	1.17.3 Solved Problems	37
1.18	Tolerance	42
	1.18.1 Tolerance in Resistors	42
	1.18.2 Tolerance in Capacitors	45
	1.18.3 Solved Problems	46
1.19	Source Transformation	48
	1.19.1 Solved Problems	49
1.20	Kirchhoff's Law's	53
	1.20.1 Kirchhoff's Current Law	54
	1.20.2 Kirchhoff's Voltage Law	55
	1.20.3 Application of Kirchhoff's Circuit Laws in the Analysis of Circuits	56
	1.20.4 Solved Problems	57
1.21	Series Resistance	62
	1.21.1 Equivalent Resistance for Series Connections	63
	1.21.2 Voltage Divider Rule	65
	1.21.3 Solved Problems	66
1.22	Resistance in Parallel	69
	1.22.1 Characteristics of a Parallel Circuits	71
1.23	Series-Parallel Combination	71
	1.23.1 Division of Current in Parallel Branch Circuit	72
	1.23.2 Comparison of Series and Parallel Circuits	75
	1.23.3 Solved Problems	76
1.24	Summary	88

1.25	Review	v Questions		89
1.26	Multip	le Choice Que	estions	92
		(Chapter-II: Analysis of Electrical Circuits	
2.0	Object	ive		96
2.1	Introdu	iction		96
2.2	Source	Transformat	ion	97
	2.2.1	Solved Prob	lems	98
2.3	Star to	Delta or Del	ta to Star Transformations	102
	2.3.1	Delta-Star T	ransformation	103
	2.3.2	Star-Delta T	ransformation	105
	2.3.3	Conversion	of Delta into Equivalent Star	106
	2.3.4	Conversion	of Star into Equivalent Delta	107
	2.3.5	Solved Prob	lems	108
2.4	Mesh	Analysis by K	Circhhoff's laws	120
2.5	Node	Analysis by K	Circhhoff's laws	132
	2.5.1	Concept of I	Nodal Analysis	133
	2.5.2	Nodal Analy	vsis Illustration	133
	2.5.3	Solved Prob	lems	134
2.6	Inspec	tion method		143
	2.6.1	Solved Prob	lems	144
	2.6.2	Nodal Equat	tions by Inspection Method	146
	2.6.3	Solved Prob	lem	147
2.7	Super	Mesh for DC	Excitations	148
	2.7.1	Solved Prob	lems	151
2.8	Super	node for DC I	Excitations	152
	2.8.1	Solved Prob	lems	153
2.9	Comp	arison of Mes	h and Nodal Analysis	155
2.10	Summ	ary		156
2.11	Review	w Questions		157
2.12	Multiple Choice Questions			159

\square	Chapter-III:Network Topology	

3.0	Objective	164		
3.1	Introduction			
3.2	Definition			
3.3	Graph			
3.4	Tree	171		
3.5	Incidence Matrix	173		
	3.5.1 Procedure for Constructing Incidence Matrix	173		
	3.5.2 Properties of Incidence Matrix	173		
	3.5.3 Solved Problems	175		
3.6	Basic Tie set Matrices for Planar Networks	180		
	3.6.1 Solved Problems	183		
3.7	Cut-Set and Tree Branch Voltages	194		
	3.7.1 Solved Problems	199		
3.8	Duality and Dual Networks	208		
	3.8.1 Solved Problems	212		
3.9	Summary	229		
3.10	Review Questions	229		
3.11	Multiple Choice Questions	231		
	Chapter-IV: Single Phase AC Circuits			
4.0	Objective	236		
4.1	Introduction	236		
4.2	Important Definitions	236		
4.3	Comparison of Alternating Current and Direct Current	240		
4.4	The sinusoidal waveform	240		
	4.4.1 Significance of Sine Wave	242		
	4.4.2 Different Forms of EMF Equation	242		
4.5	Representation of Alternating Quantities	242		
	4.5.1 Instantaneous Values	242		
	4.5.2 RMS (or) Virtual (or) Effective Value of AC	243		
	4.5.3 Average (or) Mean Value of AC	244		

	4.5.4 For	n Factor	246
	4.5.5 Peal	c Factor	246
	4.5.6 Peal	x Value (or) Time Period of A.C	246
	4.5.7 Solv	ved Problems	247
4.6	Phase Relat	ions	251
	4.6.1 Pha	se	251
	4.6.2 Pha	se Difference	252
	4.6.3 Solv	ved Problems	254
4.7	Representat	ion of an AC Quantity by a Rotating Vector	255
4.8	J-operator (or) J Notation	256
	4.8.1 Solv	ved Problems	258
4.9	Polar and re	ctangular form of Complex Numbers	258
4.10	Phasor Alge	ebra	259
4.11	Impedance	Complex Number	260
4.12	Admittance	261	
4.13	Concept of	Reactance	262
4.14	Impedance		263
4.15	Susceptance	2	264
4.16	Admittance		264
4.17	Mathematic	al Representation of Phasors	265
4.18	Solved Prob	lems	266
4.19	Concept of	Real, Reactive Power	269
4.20	Apparent Po	ower and Complex Power	270
4.21	Power Fact	or	272
	4.21.1 Solv	ved Problems	273
4.22	AC Circuit		274
	4.22.1 AC	Through Pure Resistance	274
	4.22.2 AC	Through Pure Inductance	275
	4.22.3 AC	Through Capacitance	276
4.23	Representat	ion of AC Series Circuits	277

	4.23.1 RL Series Circuit	277	
	4.23.2 RC Series Circuit	279	
	4.23.3 RLC Series Circuit	281	
4.24	Representation Parallel AC Circuits	283	
	4.24.1 RL Parallel Circuit	283	
	4.24.2 RC Parallel Circuit	284	
	4.24.3 RLC Parallel Circuit	285	
4.25	Solved Problems	286	
4.26	Advantages of Alternating current over Direct current	293	
4.27	Disadvantages of A.C over D.C	294	
4.28	Summary	294	
4.29	Review questions	295	
4.30	Multiple Choice questions	297	
	Chapter-V: Resonance		
5.0	Objectives	302	
5.1	Introduction	302	
5.2	Stedy State Concept	302	
5.3	Steady state analysis of RL, RC and RLC Series Circuits	303	
	5.3.1 RL Series Circuit	303	
	5.3.2 RC Series Circuit	306	
	5.3.3 RLC Series Circuit	308	
5.4	Representation Parallel AC Circuits	310	
	5.4.1 RL Parallel Circuit	310	
	5.4.2 RC Parallel Circuit	311	
	5.4.3 RLC Parallel Circuit	312	
5.5	AC parallel circuits	313	
	5.5.1 Solved Problems	314	
5.6	Resonance	328	
5.7	Resonance in Series Circuit	329	
5.8	Parallel Resonance in RLC Circuit	333	
5.9	Q - Factor, Selectivity and Bandwidth 33		

	5.9.1	Selectivity, Bandwidth and Q-factor of a Series Circuit	337
	5.9.2	Selectivity, Bandwidth and Q-factor of Parallel Resonant Circuit	339
5.10	Compare series and parallel resonance circuits		
5.11	Tank circuit-LC oscillations		
5.12	Solved	Problems	343
5.13	Summa	ry	352
5.14	Review	Questions	352
5.15	Multipl	e Choice Questions	354
		Chapter-VI: Magnetic Circuits	
6.0	Objectiv	ves	358
6.1	Introduc	ction	358
6.2	Magnet	ic Circuit	358
6.3	Importa	nt definitions	361
	6.3.1	Solved Examples	365
6.4	Electro	Magnetic Induction	368
6.5	Faraday	's Law of Electromagnetic Induction	369
	6.5.1	Faraday's First Law	369
	6.5.2	Faraday's Second Law	370
	6.5.3	Applications of Faraday's Law	370
	6.5.4	Integral Form of Faraday's Law	370
	6.5.5	Differential Form of Faraday's Law	371
	6.5.6	Solved Examples	372
6.6	Directio	on of Induced E.M.F. and Current	374
	6.6.1	Lenz's Law	375
	6.6.2	Fleming's Right Hand Rule	376
	6.6.3	Fleming's Left-Hand Rule	376
6.7	Induced	I E.M.F	377
	6.7.1	Dynamically Induced E.M.F	377
	6.7.2	Statically Induced E.M.F	378
6.8	Motion	al Electromotive Force	380
6.9	Time Va	arying Magnetic Fields	381
Х			

6.10	Self and Mutual Inductance	382
	6.10.1 Self Inductance	382
	6.10.2 Mutual Inductance	383
	6.10.3 Solved Example	384
6.11	Dot Convention	389
	6.11.1 Solved Examples	392
6.12	Co-efficient of coupling	393
	6.12.1 Solved Problems	394
6.13	Composite Magnetic Circuit	398
6.14	Analysis of Series and Parallel Magnetic Circuits	401
	6.14.1 Analysis of Series Magnetic Circuits	401
	6.14.2 Analysis of Parallel Magnetic Circuits	402
	6.14.3 Magnetic Leakage (or) Leakage Flux	403
	6.14.4 Solved Examples	404
6.15	Comparison between Magnetic and Electric Circuits	417
6.16	Summary	418
6.17	Review Questions	419
6.18	Objective Questions	421
	Chapter-VII: Three Phase Circuits	
7.0	Objectives	426
7.1	Introduction	426
7.2	Important Definitions	426
7.3	Three-Phase Circuits	427
7.4	Generation of Three-Phase Voltages	428
7.5	Phase Sequence	430
7.6	Interconnection of Phases	431
	7.6.1 Star and Delta Connections	431
7.7	Relation between Line and Phase Voltages and Currents in Balanced System	432
	7.7.1 Relationship between Line, Phase Values & Expression for Power	
	for Balanced Star Connection	433

	7.7.2	Relationship between Line and Phase Values and Expression for	
		Power for Balanced Delta Connection	435
	7.7.3	Comparison between Star and Delta Systems	436
	7.7.4	Solved Examples	437
7.8	Advan	tages of Star and Delta Connected Systems	442
7.9	Three	Phase Three Wire and three Phase Four Wire System	442
	7.9.1	Three phase three wire systems	442
	7.9.2	Three Phase four Wire Systems	444
7.10	Analys	sis of Balanced Three-Phase Circuits	444
	7.10.1	Solved Examples	447
7.11	Analys	sis of Unbalanced Three Phase Circuits	453
	7.11.1	Circulating Current in Unbalanced Δ -connected Sources	456
	7.11.2	Solved Examples	456
7.12	Symm	etrical Components	458
	7.12.1	Three-phase Circuits with Unbalanced Sources and Balanced Loads	458
7.13	Measu	rement of Power in 3-Phse Circuits Two Wattmeter Method-Balanced	
	Load		459
	7.13.1	Power Factor - Balanced 3-phase load	460
	7.13.2	Advantages of Two Wattmeter Method	461
	7.13.3	Disadavantages of Two Wattmeter Method	462
	7.13.4	Soolved Examples	462
7.14	Summ	ary	472
7.15	Review	v Questions	472
7.16	Multip	le Choice Questions	474
		Chapter-VIII: Components of Electrical Systems	
8.0	Object	ives	480
8.1	Introdu	action	480
8.2	Definit	tions	480
8.3	Fuses		481
	8.3.1	Types of Fuses	482
	8.3.2	Advantages and Disadvantages of Fuses	483

8.4	Switch Fuse Units		
8.5	Circuit Breaker		485
	8.5.1 The Trip-Circu	it	485
8.6	Miniature Circuit Brea	ker	486
	8.6.1 Advantages, D	isadvantages and Applications	487
8.7	Earth Leakage Circuit	Breaker (ELCB)	488
	8.7.1 Advantages an	d Disadvantages	488
8.8	Moulded Case Circuit	Breaker	489
	8.8.1 Features		490
	8.8.2 Advantages an	d Disadvantages	490
8.9	Wires and Cables		491
	8.9.1 Types of Wires	5	491
	8.9.2 Types of Cable	es	491
8.10	Earthing		493
	8.10.1 Necessity of Ea	arthing	494
8.11	Components of Earthin	ng System	495
8.12	Types of earthing		497
8.13	Advantages of Earthin	501	
8.14	Uses of earthing		
8.15	Batteries		501
8.16	Lead-Acid Battery		502
	8.16.1 Working Princi	ple of Lead-Acid Cell	504
	8.16.2 Maintenance of	f Lead-Acid Batteries	506
	8.16.3 Applications of	Lead-Acid Batteries	507
8.17	Alkaline Batteries		507
	8.17.1 Nickel-Iron Alk	caline Cell	507
	8.17.2 Electrical Char	racterictics	508
	8.17.3 Advantages and	d Disadvantages	508
8.18	Comparison Between I	Lead-Acid and Nickel-Iron Alkaline Cell	509
8.19	Nickel-Cadmium Cell		510

	8.19.1 Working	511
	8.19.2 Electrical Characteristics	511
	8.19.3 Advantages and Disadvantages	511
8.20	Nickel-metal Hydride Battery	511
	8.20.1 Construction	512
	8.20.2 Cell Reactions	513
	8.20.3 Features	513
	8.20.4 General Characteristics	514
	8.20.5 Self Discharge Characteristics	514
	8.20.6 Recharging Characteristics	515
	8.20.7 Safety Precautions	516
	8.20.8 Applications	516
8.21	Zinc-carbon battery	516
	8.21.1 Construction	516
	8.21.2 Chemical Reactions	517
	8.21.3 Applications	518
8.22	Dry Cell Battery	518
	8.22.1 Applications	519
8.23	Lithium-ion battery	519
	8.23.1 Construction	519
	8.23.2 Electrochemistry	520
	8.23.3 Applications	521
8.24	Capacity of A Battery	522
	8.24.1 Factors Affecting Capacity of a Battery	523
8.25	Efficiency of A Battery	523
	8.25.1 Solved Problems	524
8.26	Energy consumption	527
	8.26.1 Solved Problems	527
8.27	Summary	528
8.28	Review Questions	528
8.29	Multiple Choice Questions	529