Fundamentals of Electrical Engineering

Authors

Dr. P Sridhar

Professor and Head Department of EEE Institute of Aeronautical Engineering, Dundigal, Hyderabad, TS-500043 Dr. D Shobha Rani Pro fessor Department of EEE & Controller of Examinations Institute of Aeronautical Engineering Dundigal, Hyderabad, TS-500 043

All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the **Publisher**.

Information contained in this book has been published by **StudentsHelpline Publishing House** (P) Ltd., Hyderabad and has been obtained by its Authors from sources believed to be reliable and are correct to the best of their knowledge. However, the Publisher and its Authors shall in no event be liable for any errors, omissions or damages arising out of use of this information and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

COPYRIGHT REGISTRATION DIARY NUMBER: 14013/2018-CO/L

Spectrum University Press, Hyderabad

A Part of StudentsHelpline Publishing House (P) Ltd. (An ISO 9001 : 2015 Certified Company)

Head Office

326/C, 1st Floor, Surneni Nilayam Near B K Guda Park, S R Nagar, Hyderabad - 500 038, INDIA P.No:+91 40 23710657, 238000657 Fax: +91 40 23810657

Reg. Off

5-68, Pedda Gorpadu, Pakala, Tirupati, Chittoor - 517 112 AP, INDIA mail:studentshelpline.in@gmail.com www.studentshelpline.org

© Spectrum University Press

First Edition-2018

ISBN 978-93-83640-21-8

- 280/- Student Edition
- **480/-** Library Edition with HB

Printed at StudentsHelpline Group, S R Nagar, Hyderabad-38 Published by Surneni Mohan Naidu for Spectrum University Press, Hyderabad - 38 Module-I: Introduction to Electrical Circuits

Circuit Concept: Basic definitions, Ohm's law at constant temperature, classifications of elements, R,L,C parameters, Standard symbols for electrical components, Fuses, independent and dependent sources, Kirchhoff's laws, Equivalent Resistance of series, Parallel and series parallel networks.

Module-II: Analysis of Electrical Circuits

Circuit Analysis: Source Transformation, Star to Delta and Delta to Star transformation, Mesh analysis and Nodal analysis by Kirchhoff's laws, inspection method, super mesh, super node analysis.

Module-III: AC Circuits

Single Phase AC Circuits: Representation of alternating quantities, Instantaneous, peak, RMS, average, form factor and peak factor for different periodic waveforms, phase and phase difference, 'j' notation, Concept of reactance, impedance, susceptance and admittance, rectangular and polar form. Concept of real, reactive, apparent power and complex power, power factor in single phase AC circuits consisting of R, L,C, RL, RC and RLC combinations.

Module-IV: Network Topology

Definitions, Graph, Tree, Incidence Matrix, Basic cut set and Basic Tie set Matrices for Planar Networks, Duality and Dual Networks.

Module-V: Network Theorems

Theorems: Tellegen's, Superposition, Reciprocity, Thevenin's, Norton's, Maximum power transfer and Milliman's and compensation theorems for DC excitations.

Fundamentals of Electrical Engineering

		Module-I: Introduction to Electrical Circuits	
1.0	Objectiv	ve and Outcomes	2
1.1	Introduc	ction	2
1.2	Circuit	Concept: Basic Definitions	2
1.3	Electric	Current	5
1.4	Electric	Potential	7
1.5	Potentia	al Difference	7
1.6	Voltage	and E.M.F	8
1.7	Power		8
1.8	Ohm's l	Law at Constant Temperature	8
	1.8.1	Limitations of Ohm's Law	9
	1.8.2	Applications of Ohm's Law	10
	1.8.3	Solved Problems	10
1.9	Classifi	cations of Elements	13
1.10 R-L-C Parameters			14
	1.10.1	Resistance (R)	14
	1.10.2	Classification of Resistors	16
	1.10.3	Colour Coding of Resistors	17
1.11	Inducto	r (L)	18
	1.11.1	Classifications of Inductors	19
	1.11.2	Specifications of Inductor	20
	1.11.3	Conductivity	20
1.12	Concep	t of Capacitor	20
	1.12.1	Classifications of Capacitors	22
	1.12.2	Specifications of the Capacitor	22
	1.12.3	Comparison of Active and Passive Components	23
	1.12.4	Solved Problems	23

1.13	Standar	d Symbols for Electrical Components	27
1.14	Fuse		29
	1.14.1	Need	30
	1.14.2	Rating	30
	1.14.3	Requirements of a Fuse	31
	1.14.4	Fusing Materials	31
	1.14.5	Classification of Fuses	32
1.15	Voltage	and Current Sources	35
1.16	Indepen	ndent and Dependent Sources	36
	1.16.1	Solved Problems	39
1.17	Kirchho	off's Laws	39
	1.17.1	Solved Problems	43
1.18	Series I	Resistance	46
	1.18.1	Equivalent Resistance for Series Connections	47
	1.18.2	Voltage Divider Rule	49
	1.18.3	Solved Problems	51
1.19	Resista	nce in Parallel	55
	1.19.1	Characteristics of a Parallel Circuits	57
1.20	Series-F	Parallel Combination	57
1.21	Division	n of Current in Parallel Branch Circuit	58
	1.21.1	Solved Problems	61
	1.21.2	Comparison of Series and Parallel Circuits	64
1.22	Solved	Problems on Series and Parallel Circuit	65
1.23	Summa	ry	77
1.24	Review	Questions	77
1.25	Multiple	e Choice Questions	78
		Module-II: Analysis of Electrical Circuits	
2.0	Objecti	ve and Outcomes	82
2.1	Introduc	ction	82
2.2	Source'	Transformation	83
	2.2.1	Solved Problems	84
vi			

2.3	Star to Delta or Delta to Star Transformations		
	2.3.1	Delta-Star Transformation	90
	2.3.2	Star-Delta Transformation	91
	2.3.3	Conversion of Delta into Equivalent Star	93
	2.3.4	Conversion of Star into Equivalent Delta	94
	2.3.5	Solved Problems	95
2.4	Mesh A	nalysis by Kirchhoff's Laws	109
2.5	Node A	nalysis by Kirchhoff's Laws	122
	2.5.1	Concept of Nodal Analysis	122
	2.5.2	Nodal Analysis Illustration	123
	2.5.3	Solved Problems	124
2.6	Inspecti	on Method	134
	2.6.1	Solved Problems	136
	2.6.2	Nodal Equations by Inspection Method	137
	2.6.3	Solved Problems	138
2.7	Super M	fesh for DC Excitations	139
	2.7.1	Solved Problems	142
2.8	Super no	ode for DC Excitations	144
	2.8.1	Solved Problems	145
2.9	Compar	ison of Mesh and Nodal Analysis	147
2.10	0 Summary		
2.11	Review	Questions	149
2.12	Multiple	e Choice Questions	151
		Module-III: AC Circuits	
3.0	Objectiv	ve and Outcomes	156
3.1	Introduc		156
3.2	Importa	nt Definitions	156
3.3	Compar	ison of Alternating Current and Direct Current	160
3.4	The Sin	usoidal Waveform	160
	3.4.1	Significance of Sine Wave	162
	3.4.2	Different Forms of E.M.F Equation	162
			vii

3.5	Represen	ntation of Alternating Quantities	162
	3.5.1	Instantaneous Values	162
	3.5.2	RMS (or) Virtual (or) Effective Value of AC	163
	3.5.3	Average (or) Mean Value of AC	165
	3.5.4	Form Factor	166
	3.5.5	Peak Factor	167
	3.5.6	Peak Value (or) Time Period of A.C	167
	3.5.7	Solved Problems	168
3.6	Phase R	elations	173
	3.6.1	Phase	173
	3.6.2	Phase Difference	173
	3.6.3	Solved Problems	176
3.7	Represe	ntation of an AC Quantity by a Rotating Vector	176
3.8	J-operate	or (or) J Notation	177
	3.8.1	Solved Problems	180
3.9	Polar an	d Rectangular form of Complex Numbers	180
3.10	Phasor A	Algebra	181
3.11	Impedan	nce Complex Number	182
3.12	Admitta	nce of Complex Number	183
3.13	Concept	of Reactance	184
3.14	Impedar	nce	185
3.15	Suscepta	ance	186
3.16	Admitta	nce	186
3.17	Mathem	atical Representation of Phasors	187
3.18	Solved F	Problems	189
3.19	Concept	of Real, Reactive Power	192
3.20	Apparen	t Power and Complex Power	194
3.21	Power F	Factor	195
	3.21.1	Solved Problems	196

3.22	AC Circ	uit	198
	3.22.1	AC Through Pure Resistance	198
	3.22.2	AC Through Pure Inductance	199
	3.22.3	AC Through Capacitance	200
3.23	Represe	ntation of AC Series Circuits	201
	3.23.1	RL Series Circuit	201
	3.23.2	RC Series Circuit	203
	3.23.3	RLC Series Circuit	205
3.24	Represe	ntation Parallel AC Circuits	208
	3.24.1	RL Parallel Circuit	208
	3.24.2	RC Parallel Circuit	209
	3.24.3	RLC Parallel Circuit	210
3.25	Solved H	Problems	212
3.26	26 Advantages of Alternating current over Direct current		
3.27	Disadva	ntages of A.C over D.C	222
3.28	28 Summary		
3.29	29 Review Questions		
3.30	0 Multiple Choice Questions		
		Module-IV: Network Topology	
4.0	Objectiv	ve and Outcomes	230
4.1	Introduc	tion	230
4.2	Definitio	ons	230
4.3	Graph		235
4.4	Tree		237
4.5	Incident	ee Matrix	239
	4.5.1	Procedure for Constructing Incidence Matrix	239
	4.5.2	Properties of Incidence Matrix	239
	4.5.3	Solved Problems	241
4.6	Basic Ti	e set Matrices for Planar Networks	246
	4.6.1	Solved Problems	249

5.0	5.8.1 Solved Problems	380
5.8	Milliman Theorem	378
	5.7.1 Solved Problems	371
5.7	Maximum Power Transfer Theorem	369
	5.6.1 Solved Problems	355
5.6	Norton's Theorem	353
	5.5.1 Solved Problems	341
5.5	Thevenin's Theorem	338
	5.4.1 Solved Problems	328
5.4	Reciprocity Theorem	326
	5.3.1 Solved Problems	310
5.3	Superposition Theorem	308
5.2	5.2.1 Solved Problems	304
5.2	Tellegen's Theorem	302 302
5.0	Objective and Outcomes Introduction	302 302
5.0	Module-V: Network Theorems	302
4.11	Multiple Choice Questions	298
	Review Questions	297
4.9	Summary	296
	4.8.1 Solved Problems	280
4.8	Duality and Dual Networks	276
	4.7.1 Solved Problems	266
4.7	Cut-Set and Tree Branch Voltages	261