Dr. Rizwana

Professor of Freshman Engineering Institute of Aeronautical Engineering Dundigal, Hyderabad, Telangana - 500 043

All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without prior written permission from the **Publisher**.

Information contained in this book has been published by **StudentsHelpline Publishing House** (P) Ltd. , Hyderabad and has been obtained by its Authors from sources believed to be reliable and are correct to the best of their knowledge. However, the Publisher and its Authors shall in no event be liable for any errors, omissions or damages arising out of use of this information and specifically disclaim any implied warranties or merchantability or fitness for any particular use.

COPYRIGHT REGISTRATION DIARY NUMBER: 14073/2018-CO/L

Spectrum Techno Press, Hyderabad

Head Office

326/C, IInd Floor, Surneni Nilayam Near B K Guda Park, S R Nagar, Hyderabad - 500 038, INDIA P.No:+91 40 23710657, 238000657 Fax: +91 40 23810657

Reg. Off

5-68, Pedda Gorpadu, Pakala, Tirupati, Chittoor - 517 112 AP, INDIA mail:studentshelpline.in@gmail.com www.studentshelpline.org

© Spectrum Techno Press

First Edition-2018

ISBN 978-93-83470-04-4

279/- Student Edition

• 479/- Library Edition with HB

Printed at StudentsHelpline Group, S R Nagar, Hyderabad-38 <u>Publish</u>ed by Surneni Mohan Naidu for Spectrum Techno Press, Hyderabad - 38

Module-I: QUANTUM MECHANICS

Introduction to quantum physics, Black body radiation, Planck's law, Photoelectric effect, Compton effect, De-Broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Timeindependent Schrodinger equation for wave function, Born interpretation of the wave function, Schrodinger equation for one dimensional problems–particle in a box.

Module-II: INTRODUCTION TO SOLIDS AND SEMICONDUCTORS

Bloch's theorem for particles in a periodic potential, Kronig-Penney model (Qualitative treatment), Origin of energy bands. Types of electronic materials: metals, semiconductors, and insulators; Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Hall effect.

Module-III: LASERS AND FIBER OPTICS

Characteristics of lasers, Spontaneous and stimulated emission of radiation, Metastable state, Population inversion, Lasing action, Ruby laser, He-Ne laser and applications of lasers.

Principle and construction of an optical fiber, Acceptance angle, Numerical aperture, Types of optical fibers (Single mode, multimode, step index, graded index), Attenuation in optical fibers, Optical fiber communication system with block diagram.

Module-IV: LIGHT AND OPTICS

Huygens' principle, Superposition of waves and interference of light by wavefront splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer; Fraunhofer diffraction from a single slit, circular aperture and diffraction grating.

Module-V: HARMONIC OSCILLATIONS AND WAVES IN ONE DIMENSION

Mechanical and electrical simple harmonic oscillators, Damped harmonic oscillator, Forced mechanical and electrical oscillators, Impedance, Steady state motion of forced damped harmonic oscillator; Transverse wave on a string, the wave equation on a string, Harmonic waves, Reflection and transmission of waves at a boundary, Longitudinal waves and the wave equation for them, acoustics waves.

	Module-I: Quantum Mechanics	
1.0	Aims and Objectives	2
1.1	Introduction to Quantum Physics	2
1.2	Quantum Mechanics	3
1.3	Basic Postulates of Quantum Mechanics	3
1.4	Black Body Radiation	3
1.5	Planck's Law	6
1.6	Photoelectric Effect	9
	1.6.1 Characteristics of the Photoelectric Effect	9
1.7	Einstein's Photoelectric Equation	10
1.8	Laws of Photoelectric Effect	11
1.9	Applications of Photoelectric Effect	12
1.10	Compton Effect	12
1.11	Matter Waves and Particles	16
	1.11.1 Comparison of Wave and Particle	17
1.12	De-Broglie Hypothesis of Matter Waves	17
	1.12.1 De-Broglie Wavelengths in Particular Cases	20
	1.12.2 Solved Problem	22
	1.12.3 Applications of De-Broglie Matter Waves	29
	1.12.4 Properties of Particles (Matter Waves)	29
1.13	Phase and Group Velocities	30
	1.13.1 Phase Velocity	30
	1.13.2 Group Velocity	31
		1/11

	1.13.3	Group Velocity of De-Broglie Waves	33
	1.13.4	Relation between Group Velocity and Phase Velocity	35
1.14	Wave-p	particle Duality	36
1.15	Davisso	on and Germer Experiment	36
1.16	Wave Function		
	1.16.1	Time-independent Schrodinger Equation for Wave Function	41
	1.16.2	Schrodinger Time Dependent Wave Equation	43
	1.16.3	Schrodinger Time-Independent Equation from Time Dpendent	
		Schrodinger Wave Equation	45
1.17	Eigen F	Functions, Eigen Values	46
1.18	Interpre	etation of the Wave Functions	48
	1.18.1	Born Interpretation of Wave Function ψ	48
1.19	Physical Significance of Wave Function		
1.20	Particle in One-Dimensional Box (or)		
	Infinite Square Well (Infinite Potential Well)		
	1.20.1	Solved Examples	55
1.21	Applica	ations of Quantum Mechanics	58
1.22	Summa	ry	59
1.23	Review	Questions	59
1.24	Multipl	e Choice Questions	61
		Module-II: Introduction to Solids and Semiconductors	
2.0	Aims a	nd Objectives	65
2.1	Introduction		
2.2	Bloch's	Theorem for Particles in a Periodic Potential	66
2.3	Kronig- penney Model (Qualitative Treatment) 69		

2.4	Bonding		
	2.4.1	Differences between Ionic, Covalent and Metallic Bonds	75
2.5	Origin	of Energy Bands Formation in Solids	76
	2.5.1	Energy Band Theory	76
2.6	Types of	of Electronic Materials	77
	2.6.1	Conductors (Metals)	77
	2.6.2	Semiconductors	78
		2.6.2.1 Energy Band Diagram of Semiconductors	79
		2.6.2.2 Properties of Semiconductors	80
	2.6.3	Insulators	80
2.7	Classif	ication of Semiconductor Materials	81
	2.7.1	Intrinsic Semiconductors	81
	2.7.2	Extrinsic Semiconductors	82
	2.7.3	Classification of Extrinsic Semiconductor	82
	2.7.4	Differences between Intrinsic and Extrinsic Semiconductors	84
	2.7.5	Differences between N-type and P-type Semiconductors	84
	2.7.6	Majority and Minority Carriers in P and N Type Materials	85
2.8	Density	y of Electrons in an Intrinsic Semiconductors	86
2.9	Density	y of Holes of an Intrinsic Semiconductor	87
2.10	Carrier	Concentration with Temperature in an Intrinsic Semiconductor	89
2.11	Carrier	Concentration of an Extrinsic n-type Semiconductor	91
2.12	Carrier	Concentration of Extrinsic p-type Semiconductor	93
2.13	Donor	and Acceptor Impurities	95
2.14	Charge	Densities in a Semiconductor	97
2.15	Fermi	Level in a Semiconductor having Impurities	99

	2.15.1 Fermi Level in Intrinsic Semiconductor	99	
	2.15.2 Fermi Level in n- Type Semiconductor	101	
	2.15.3 Fermi Level in p-Type Semiconductor	102	
	2.15.4 Fermi Level in P-type Extrinsic Semiconductor	102	
2.16	Conductivity of a Semiconductor	104	
2.17	Carrier Generation and Recombination	105	
2.18	Hall Effect	110	
2.19	Solved Problems	114	
2.20	Applications	122	
2.21	Summary	122	
2.22	Multiple Choice Questions	124	
	Module-III: Lasers and Fiber Optics		
3.0	Aims and Objectives	128	
3.1	Introduction	128	
3.2	Characteristics of a Laser 129		
3.3	Ordinary Light and Laser Light 131		
3.4	Principle and Production of Lasers	131	
	3.4.1 Absorption of Laser	132	
	3.4.2 Spontaneous Emission	133	
	3.4.3 Stimulated Emission	134	
3.5	Comparison of Spontaneous and Stimulated Emission	135	
3.6	Metastable State	135	
3.7	Population Inversion	136	
3.8	Laser Action 138		
3.9	Einstein Co-efficients 138		
Х			

3.10	Active Medium		
3.11	Pumping		
3.12	Pumping Level Schemes		
3.13	Classifi	cation of LASERS	143
	3.13.1	Ruby Laser	143
	3.13.2	Hellium-Neon Gas Laser (He-Ne Gas Laser)	146
	3.13.3	Comparison of Ruby and He-Ne Laser	148
3.14	Applica	ations of Lasers	149
	3.14.1	Laser Welding	151
	3.14.2	Cutting	151
	3.14.3	Drilling	152
3.15	Solved	Problems	152
3.16	Constru	action of Optical Fibers	155
	3.16.1	Features of Optical Fibers	156
	3.16.2	Principle and Working of an Optical Fiber	156
	3.16.3	Total Internal Reflection	157
	3.16.4	Acceptance Angle and Numerical Aperture	158
3.17	Types o	f Optical Fibers	160
	3.17.1	Step Index Fibers	163
	3.17.2	Graded Index Fibers	164
	3.17.3	Differences between Single and Multi-mode Fiber	165
	3.17.4	Differences between Step Index and Graded Index Fibers	166
3.18	Optical	Fiber Communication System	166
3.19	Attenuation in Optical Fibers 10		
3.20	Applica	tions of Optical Fibers	170
	3.20.1	Fiber Optics in Medicine	170

3.21	Advantages of Optical Fibers		
3.22	Solved Problems		
3.23	Summa	ry	175
3.24	Review	Questions	176
3.25	Multipl	e Choice Questions	177
		Module-IV: Light and Optics	
4.0	Aims a	nd Objectives	182
4.1	Introdu	ction	182
4.2	Huyger	as Principle	182
4.3	Interfer	rence of Light	183
4.4	Princip	le of Superposition	184
4.5	Coherence, Temporal and Spatial Coherence		
4.6	Conditions for Interference of Light		
4.7	Phase Difference and Path Difference		
4.8	Types of	of Interference	189
4.9	Divisio	n of Wave Front	189
	4.9.1	Theory of Interference	189
	4.9.2	Fresnel's Bi-prism	190
	4.9.3	Interference Fringes with White Light	193
	4.9.4	Determination of the Thickness of a Thin Sheet of a	
		Transparent Material by Fresnel's Biprism	194
	4.9.5	Phase Change on Reflection: Stoke's Treatment	195
	4.9.6	Lloyd's Mirror Experiment	196
	4.9.7	Comparison of Biprism and Lloyd's Mirror	198
4.10	Solved	Problems	198

4.11	Young's Double Slit Experiment	201
	4.11.1 Solved Problems	204
4.12	Interference by Division of Amplitude	206
4.13	Interference by a Plane Parallel Film Illuminated by a Plane Wave	206
4.14	Oblique Incidence of a Plane Wave on a Thin Film due	
	to Reflected and Transmitted Light (Cosine Law)	207
4.15	Colour Production in Thin Films	209
4.16	Need of an Extended Source	209
4.17	Non-reflecting Films	210
4.18	Interference by a Plane Parallel Illuminated by a Point Source	212
4.19	Interference by a Film with Two Non-parallel Reflecting Surfaces	
	(Wedge Shaped Film)	213
4.20	Determination of Diameter of Wire	215
4.21	Newton's Rings in Reflected Light with and without	
	Contact between Lens and Glass Plate	216
4.22	Newtons's Rings in Transmitted Light (Haidinger Fringes)	219
4.23	Determination of the Wavelength of Sodium Light using Newton's Rings	220
4.24	Determination of Refractive Index of Liquid by Newton's Method	221
4.25	Newton's Rings with Both Curved Surfaces	222
4.26	Michelson Interferometer	223
4.27	Comparison of Newton's Rings and Michelson's Rings	225
4.28	Solved Problems	225
4.29	Diffraction	232
	4.29.1 Diffraction of Light	233
4.30	Distinction between Fresnel and Fraunhoffer Diffraction	233
 4.31	Fraunhoffer Diffraction-Diffraction due to Single Slit	234
		xii

4.32	Fraunhoffer Diffraction due to Single Slit and Circular Aperture 237					
4.33	Comparison Single-slit and Double-slit Diffraction Pattern					
4.34	Fraunh	ofer Diffraction due to Double Slit	239			
	4.34.1	Missing Orders in Double Slit Fraunhofer Diffraction Pattern	243			
4.35	Frunho	fer Diffraction Pattern with N Slits (Diffraction Grating)	244			
	4.35.1	Missing Orders (or) Absent Spectra	247			
	4.35.2	Maximum Number of Orders with a Diffraction Grating	248			
	4.35.3	Formation of Multiple Spectra with Grating	249			
	4.35.4	Determination of Wavelength of Light in Normal Incidence Method	S			
		using Diffraction Grating	250			
	4.35.5	Dispersive Power of a Grating	251			
	4.35.6	Wavelength of Light in Oblique Incidence Methods using				
		Diffraction Grating	252			
4.36	Differe	nce between Interference and Diffraction	253			
4.37	Solved	Problems	254			
4.38	Summary 25					
4.39	Review Questions 2					
4.401	Multiple Choice Questions 2					
	Module-V: Harmonic Oscillations and Waves in One-dimension					
5.0	Aims a	nd Objectives	264			
5.1	Introduc	ction	264			
5.2	Simple	Harmonic Motion	264			
	5.2.1	Types of Simple Harmonic Motion	265			
	5.2.2	Characteristics of the Simple harmonic motion	266			
	5.2.3 Time Period					

	5.2.4	Frequency	269
	5.2.5	Phase	270
	5.2.6	Time Period of Simple Pendulum	270
	5.2.7	Laws of Simple Pendulum	272
	5.2.8	Solved Problems	272
5.3	Mechar	ical and Electrical Simple Harmonic Oscillator	274
	5.3.1	Simple Harmonic Motion(S.H.M) as a Projection of Uniform	
		Circular Motion	277
	5.3.2	Graphical Representation of SHM (Displacement, Velocity	
		and Acceleration Curves)	279
	5.3.3	Energy of Simple Harmonic Oscillator	281
	5.3.4	Solved Examples	282
5.4	Dampeo	d Harmonic Oscillator	292
	5.4.1	Energy and Power Dissipation in Damped Harmonic Oscillator	297
	5.4.2	Methods of Describing the Damping of an Oscillator	298
	5.4.3	Solved Problems	300
5.5	Forced	Mechanical and Electrical Oscillators, Impedance,	
	Steady	State Motion Forced Damped Harmonic Oscillator	308
	5.5.1	Resonance	312
	5.5.2	Sharpness of Resonance	314
	5.5.3	Power Absorption by Forced Oscillator	316
	5.5.4	Power Dissipation by Driven Oscilltor	317
	5.5.5	Bandwidth of Resonance Curve	318
	5.5.6	Solved Problems	320
5.6	Wave M	Iotion	322

5.7	Transve	rse Wave on a String	325
	5.7.1	Transverse Wave Propagation along a Streched String	326
5.8	Wave E	quation on a String	328
5.9	Harmon	ic Wave	329
	5.9.1	Solved Problems	331
5.10	Reflecti	on and Transmission of Waves at a Boundary	334
5.11	Longitu	dinal Waves and the Wave Equation for them	335
	5.11.1	Wave Equation and Expression for Velocity	336
5.12	Acoustics Waves		337
	5.12.1	Acoustics of Buildings	338
	5.12.2	Sabine's Formula	339
5.13	Summar	ry	340
5.14	Review Questions		
5.15	Multiple	e Choice Questions	341