Hall Ticket No									Question Paper Code: AEC005
	٩T	т	ITE	:	F /			ГІС	

(Autonomous)

B.Tech IV Semester End Examinations (Regular) - May, 2018 **Regulation:** IARE – R16

ANALOG COMMUNICATIONS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) D	Define a system. Explain in detail about classification of systems.	[7M]
	(b) S	state auto correlation and cross correlation. Prove any two properties of cross correlation.	[7M]
2.	(a) D	Define the following	[7M]
		i. Signal bandwidth	
		ii. System bandwidth	
	i	iii. Transfer function of an LTI system	
	(b) D	Determine the convolution of the following signals by graphical method	[7M]
		i. x (t) = e^{-2t} u (t)	

ii. $h(t) = e^{-4t} u(t)$.

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Explain the demodulation of AM wave using envelope detector with necessary block diagram and waveforms. [7M]
 - (b) Explain the noise performance of Double Side Band Suppressed Carrier (DSBSC) system and obtain its figure of merit. [7M]
- 4. (a) Explain the generation of Double Side Band Suppressed Carrier (DSBSC) wave using balanced modulator with necessary block diagram, waveforms and mathematical expressions.

[7M]

- (b) An audio frequency signal $m(t) = 10Sin(2\pi 500t)$ is used to amplitude modulate a carrier of $c(t) = 50\sin(5\pi 10^5 t)$. Calculate [7M]
 - i. Modulation index
 - ii. Side band frequencies

iii. BW required

iv. Total power delivered to the load of 600Ω .

$\mathbf{UNIT}-\mathbf{III}$

5.	(a)	What is the significance of VSB signal and where does it find its application? Draw the free	equency
		response of a VSB modulation and give its justification.	[7M]
	(b)	What is quadrature null effect and how it can be eliminated.	[7M]
6.	(a)	Explain the generation of Single Side Band modulated signal using phase discriminator with neat block diagram, waveforms and necessary mathematical expressions.	method [7M]
	(b)	Explain the noise performance of Single Side Band modulation system.	[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the generation of Frequency Modulation (FM) waves using indirect method (Armstrong method) [7M]
 - (b) A carrier wave of frequency 100MHz and amplitude of 5V is frequency modulated by a sine wave of amplitude 20V and frequency 100 KHz. The frequency sensitivity of the modulator is 25 KHz/volt. Determine the approximate power, bandwidth of FM wave and write FM wave equation. [7M]

8.	(a) Classify the frequency modulation based on modulation index (β) parameter and C	ompare
	Narrow band FM and Wide band FM .	[7M]
	(b) What is Pre-emphasis and De-emphasis. Explain with neat diagrams.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	What are the types of sampling techniques and explain about Flat top sampling with neat dia and waveforms.								
	(b)	With neat block diagram explain the working principle of Tuned Radio Frequency (TRF) receiver. $[7M]$								
10.	(a)) Explain in detail about super heterodyne AM reciever and what is need of automatic gain contr (AGC) in receivers. [7N								
	(b)	Describe the receiver characteristics of following [7M] i. Selectivity ii. Fidelity iii. Sensitivity iv. Intermediate frequency								

v. Image frequency rejection ratio

 $-\circ\circ\bigcirc\circ\circ-$

Hall Ticket No	Question Paper Code: AEC005
INSTITUTE OF AERONAUTICAL ENG (Autonomous)	GINEERING
B.Tech IV Semester End Examinations (Supplementar Regulation: IARE – R16 Analog Communications	y) - June, 2018

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Explain linear time invariant system.	[7M]
	(b) Explain convolution and write the advantages of LTI system.	[7M]
2.	(a) What is continuous-time system and classification of systems based on the properties.(b) Define stability and causality. Write the properties of auto correlation.	[7M] $[7M]$
	(b) Define stability and causality. Write the properties of auto correlation.	

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) Explain the operation of the envelope detector with circuit diagram and wave form.	[7M]
	(b) Define amplitude modulation and write standard equation for its spectrum with a neat sket [tch. [7M]
4.	(a) Give comparison of amplitude modulation techniques [[7M]
	(b) Explain the operation of quadrature carrier multiplexing scheme with transmitter and recordiagram.	eiver [7M]
	$\mathbf{UNIT} - \mathbf{III}$	

- 5. (a) Explain the generation of Single Side Band modulated signal using frequency discriminator method with neat block diagram and waveforms and necessary mathematical expressions. [7M]
 - (b) Compare AM, DSBSC and SSBSC modulation schemes in terms of power, bandwidth, modulation efficiency, carrier suppression and applications. [7M]
- 6. (a) Explain Vestigial Side Band Modulation with the help of waveforms and mathematical expressions. What is the need for VSB transmission? What is the transmission bandwidth? [7M]
 - (b) Explain the demodulation of SSBSC wave using synchronous detector with necessary block diagram and mathematical expressions. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) What are the advantages of frequency modulation? Give relationship between frequency and phase modulation. [7M]
 - (b) With a block diagram approach, explain the generation of wideband FM wave by first generating narrowband FM wave. [7M]
- 8. (a) Determine Fourier transform for $\exp(t-3) + \exp(t+3)$. [7M]
 - (b) Explain the operation of discriminator with circuit diagram and characteristics for the demodulation of FM signals. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9. (a) With a circuits and characteristics, explain the importance of pre-emphasis and de-emphasis in FM system. [7M]
(b) A 400watt carrier is modiulated to a depth of 75% calculate the frequency the total power in modulated wave. [7M]
10. (a) What is local oscillator? Explain intermediate frequency amplifier. [7M]
(b) Explain Super heterodyne receiver with a neat block diagram. [7M]

 $-\circ\circ\bigcirc\circ\circ-$

Hall Ticket	No											Question Paper Code: AEC005
2 0 0 0	INS	STI	TU	JTE	ΞO	F /						
TARE								Au	ton	om	ous)
POR LINE R	Tech	IV	Sem	heste	r Er	nd E	vam	inat	ions	(Re	وليت	r / Supplementary) - May 2019

B.Tech IV Semester End Examinations (Regular / Supplementary) - May 2019

Regulation: IARE – R16 ANALOG COMMUNICATIONS

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit **All Questions Carry Equal Marks** All parts of the question must be answered in one place only

UNIT - I

1.	(a)) Explain distortion less transmission through a system. Determine the relation between and convolution.								
	(b)	Find the even and odd components of the following signals								
		(i) $X(t) = e^{j2t}$								
		(ii) $X(t) = \cos(\omega_o t + \pi/3)$								
		$(iii)X(t) = \sin 2t + \sin 2t \cos 2t + \cos 2t.$	[7M]							
2.	(a)	Explain the difference between a time invariant system and time variant system?	[7M]							
	(b)	Find the Fourier transforms of	[7M]							
		i) $\cos wt u(t)$								
		ii) $\sin wt u(t)$								

iii)
$$\cos(wt+\phi)$$

iv) e^{jwt}

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) What is the principle of Amplitude Modulation(AM)? Derive expression for the AM wave and draw its spectrum. [7M]
 - (b) Calculate the percentage modulation employed assuming no distortion. The rms value of the antenna current before modulation is 10A and after modulation is 12A. [7M]
- 4. (a) With the help of the block diagram explain the operation of ring modulator for DSBSC wave generation.

[7M]

(b) An AM system with envelope detection is operating at threshold. Determine the power gain in decibels needed at the transmitter to produce (S/N) = 30 dB for tone modulation with m = 1.

[7M]

UNIT - III

- (a) Explain with block diagram, the phase discrimination method of generating SSB modulated 5.waves. Why VSB system is widely used for TV broadcasting- Explain? [7M]
 - (b) Calculate the power transmitted if it is transmitted as SSB for AM transmitter of 1KW power is fully modulated. [7M]

- 6. (a) Explain the coherent detection of SSB waves and write the advantages & disadvantages of SSB modulation. [7M]
 - (b) Determine i) output frequency spectrum ii) output frequency for a single frequency input $f_m = 5.6$ kHz of the balanced ring modulator, a carrier frequency $f_c = 400$ kHz, and a modulating signal frequency range $f_m = 0$ to 8kHz.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Differentiate between Frequency Modulation(FM) and Phase Modulation(PM). Show that FM can be derived using PM and vice versa. [7M]
 - (b) A sinusoidal wave of amplitude 10volts and frequency of 1 kHz is applied to FM generator that has a frequency sensitivity constant of 40 Hz/volt. Determine the frequency deviation and modulating index. [7M]
- 8. (a) Explain principle of Armstrong method of FM wave generation. [7M]
 - (b) Design Armstrong FM generator for the generation of WBFM signal with $\Delta f = 75$ kHz and $f_c = 100$ MHz, using the narrow band carrier as 100 kHz and second carrier as 9.5 MHz. Find the suitable multiplying factors. Assume the message signal is defined in the range, 100Hz 15KHz.

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Discuss the factors influencing the choice of the intermediate frequency of radio receivers. Explain the principle operation of a super heterodyne receiver. [7M]
 - (b) Determine the recovered baseband for a TRF receiver turned to 1000 KHz AM radio broadcast signal by a variable tuned circuit with 1 KHz bandwidth. Find the bandwidth when receiver is returned to 1550 KHz and 550 KHz [7M]
- 10. (a) State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. Define Nyquist rate and Nyquist interval. [7M]
 - (b) The signal $x(t) = \cos 5\pi t + 0.3 \cos 10\pi t$ is instantaneously sampled. Determine the maximum interval of the sample. [7M]

 $-\circ\circ\bigcirc\circ\circ-$