

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ASSIGNMENT

Course code	:	A30204			
Course title	:	Electrical Circuits			
Course					
structure		Lectures	Tutorials	Practical	credits
		04	01		
Course	:	Mr.T.Anil Kumar, ASSOCIATE PROFESSOR			
Coordinator					

ASSIGNMENT I					
	UNIT 1				
	SHORT ANSWER QUESTIONS				
Q NO.	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S		
1	Define the voltage, current ,power and energy.	REMEMBER	B,C		
2	If three capacitors are in series with 10F, 12F and 5F ,calculate the	APPLY	A,B		
	equivalent capacitance				
3	If three inductors are in series with 100mH, 25mH and 35mH,	APPLY	A,B		
	calculate the equivalent inductance.				
4	Write the properties of inductor and capacitor.	UNDERSTAND	B,C		
	DISCRIPTIVE ANSWER QUESTIONS	5	_		
1.	Derive the star –delta transformations.	UNDERSTAND	B,C		
2.	Write short notes on source transformation	REMEMBER	B,C		
3.	Classify the types of elements and explain in detail.	UNDERSTAND	B,C		
4.	Explain the voltage-currents relations in RLC parameters.	UNDERSTAND	B,C		
ANALYTICAL ANSWER QUESTIONS					
1.	In an circuit brach $AB = 20$ ohms, $BC = 20$ OHMS, $CD = 12$ OHMS,	APPLY	A,B		
	BD = 7 ohms and $DA = 6$ OHMS and an source of 100V in series				
	with 6 OHMS connected across A and C. use mesh analysis and find				
	the currents in each element and voltage drop across 6 ohms.				
2.	In an network branch $AD = 150V$, $AB = 10$ OHMS, $AC = 5$ OHMS,	APPLY	A,B		
	BD = 4 OHMS , $CD = 15$ OHMS and $BC = 8$ OHMS, apply nodal				
	analysis and find current through each element.				
3.	In an network branch $AD = 150V$, $AB = 11$ OHMS, $AC = 8$ OHMS,	APPLY	A,B		
	BD = 4 OHMS in series with 4A source, $CD = 9$ OHMS and $BC = 12$				
	OHMS, apply MESH analysis and find current through each element.				

4.	In an network consisting of AB terminals, firstly a branch across AB	APPLY	A,B
	is defined as 100V in series with 25 ohms, second branch 7 ohms and		
	third branch 50V in series with 15 ohms. Find the power consumed		
	by 7 ohms.		

	ASSIGNMENT II					
	UNIT 2					
	SHORT ANSWER QUESTIONS					
Q NO.	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S			
1.	Define peak, peak to peak, average, RMS and peak and form factor	REMEMBER	B,C			
	of sine wave.					
2.	Write the expressions of reactance offered by R,L,C.	REMEMBER	B,C			
3.	Draw the impedance and power triangle and explain.	UNDERSTAND	B,C			
4.	If frequency of supply is 100 rad/sec and is connected across 100 PF	APPLY	A,B			
	capacitor find reactance of capacitor.					
	DISCRIPTIVE ANSWER QUESTION	S	•			
1.	Steady state analysis of series RLC circuit.	EVALUATE	B,C			
2.	Steady state analysis of series RL circuit.	EVALUATE	B,C			
3.	Write short notes on concept of complex power.	EVALUATE	B,C			
4.	Represent the reactance offered by RLC and explain in detail.	UNDERSTAND	B,C			
	ANALYTICAL ANSWER QUESTION	IS				
1	In an ac circuit two parallel impedances are in series with Z1 across	APPLY	A,B			
	AB terminals , where AB terminals are fed by 200V 30 degrees.					
	Calculate total impedance, admittance and current flowing through					
	each element					
	Z1 = (3+3 j)ohms					
	Z2 = (2 + 6j)ohms					
	Z3 = (1 + 9j)ohms.					
2	In an ac circuit applied voltage is 100V 30 degrees total impedance	APPLY	A,B			
	of (5 + 8j) ohms, calculate source current, power factor, complex					
	power and circuit constants.					

	ASSIGNMENT III					
	UNIT 3					
0.110	SHORT ANSWER QUESTIONS					
Q NO.	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMV	PO'S			
1.	Define locus diagram.	REMEMBER	B,C			
2.	Define resonance, series and parallel resonance.	REMEMBER	B,C			
3.	Define flux density, field intensity, reluctance, permenance.	REMEMBER	B,C			
4.	Define q-factor, cut off frequency and bandwidth.	REMEMBER	B,C			
	DISCRIPTIVE ANSWER QUESTIONS	8				
1.	Explain the voltage wave forms of series RLC circuit with	UNDERSTAND	B,C			
	resonance phenomenon.					
2.	Draw the locus diagram of series RC with C variable.	UNDERSTAND	B,C			
3.	Derive the expressions for cut off frequencies and bandwidth of	UNDERSTAND	B,C			
	series RLC circuit.					
4.	Explain the concept of composite circuit in detail.	UNDERSTAND	B,C			
	ANALYTICAL ANSWER QUESTION	S				
1	An iron ring 10cm dia and 15cm2 in cross section is wound with	APPLY	A,B			
	250 turns of wire for a flux density of 1.5 wb/cm2 and permeability					
	500. Find the exciting current the inductance and stored energy.					
	Find corresponding quantities when there is a 2mm air gap.					
2	A constant voltage at a frequency of 1MHz is applied to an inductor	APPLY	A,B			
	in series with a variable capacitor when the capacitor is set to					
	500PF, the current has the max value while it is reduced to one half					
	when capacitor is of 600PF. Find resistance, inductance and Q					
	factor of inductor.					

	ASSIGNMENT IV				
	UNIT 4				
	SHORT ANSWER QUESTIONS				
Q NO.	QUESTION TO BE ANSWERED	BLOOM'S	PO'S		
		TAXANOMY			
1.	Define graph,tree,co-tree,link and twig.	REMEMBER	B,C		
2.	Write the rules to form incidence matrix.	UNDERSTAND	B,C		
3.	Write the rules to form tie-set matrix.	UNDERSTAND	B,C		
4.	Write the rules to form cut-set matrix.	UNDERSTAND	B,C		
DISCRIPTIVE ANSWER QUESTIONS					
1.	Explain the concept of dual and duality with an example.	UNDERSTAND	B,C		
2.	Form the tie-set matrix for any network and form the mesh equations.	UNDERSTAND	B,C		

3.	Form the cut-set matrix for any network and form the nodal equations.	UNDERSTAND	B,C
4.	Form the incidence matrix for any network and also explain the method to	UNDERSTAND	B,C
	form the graph from incidence matrix		
	ANALYTICAL ANSWER QUESTIONS		
1	In an network between AB 2 ohms, BC 2 H, CA 5F, AD 8F, BD 10 ohms	APPLY	A,B
	and DC 5F form the dual network for the original one.		
2	In an circuit branch AB = 10 OHMS, BC = 20 OHMS, CD = 15 OHMS,	APPLY	A,B
	BD = 8 ohms and $DA = 5$ OHMS and an source of 100V in series with 5		
	OHMS connected across A and C. form incidence matrix and write degree		
	of each node.		

	ASSIGNMENT V			
	UNIT 5			
	SHORT ANSWER QUESTIONS			
Q NO.	QUESTION TO BE ANSWERED	BLOOM'S TAXANOMY	PO'S	
1.	Is super-position theorem applicable for power measurement are not.	UNDERSTAND	B,C	
2.	State tellegen's theorem.	REMEMBER	B,C	
3.	Give the condition for maximum power transfer.	UNDESTAND	B,C	
4.	Write the importance fo compensation theorem.	UNDERSTAND	B,C	
	DISCRIPTIVE ANSWER QUESTIONS			
1	State and prove maximum power transfer theorem with AC excitation.	REMEMBER, UNDERSTAND	B,C	
2	State and prove the tellegen's theorem	REMEMBER, UNDERSTAND	B,C	
3	State and prove the super-position theorem	REMEMBER, UNDERSTAND	B,C	
4	State and explain milliman's theorem with AC excitation.	REMEMBER, UNDERSTAND	B,C	
ANALYTICAL ANSWER QUESTIONS				
1	In an circuit brach $AB = 10$ OHMS, $BC = 20$ OHMS, $CD = 15$ OHMS , BD = 8 ohms and DA = 5 OHMS and an source of 100V in series with 5	APPLY	A,B	

	OHMS connected across A and C. verify the tellegen's theorem.		
2	In an series circuit $Z1 = (10 + 10j)$ ohms, $Z2 = (5 + 3j)$ ohms with 100V	APPLY	A,B
	45 degrees supply. Apply compensation theorem and find the response in		
	Z2.		
3	In an network consisting of AB terminals, firstly a branch across AB is	APPLY	A,B
	defined as 100V in series with $(3 + 4j)$ ohms , second branch 7 ohms and		
	third branch 50V in series with $(2 + 3j)$ ohms. Apply thevenin's theorem		
	to find current flowing through 7 ohms		