

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNIACTION ENGINEERING

ASSIGNMENT

Course Name	:	PULSE AND DIGITAL CIRCUITS
Course Code	:	A40415
Class	:	II - B. Tech
Branch	:	ECE
Year	:	2016-17
Course Coordinator	:	Mr. B.Naresh
Course Faculty	:	Mr. B. Naresh, Mrs. P Saritha

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S.No	QUESTION	Blooms taxonomy	Course Outcome		
		level			
	ASSIGNMENT -I				
	UNIT-I				
	LINEAR WAVE SHAPING				
1	Explain the response of RC High Pass circuit for the following input				
1	waveforms A) Step B) Pulse	Understand	1		
	Evaluate the expression for a % tilt of a square wave after passing through a				
2	high pass RC Circuit. (or) A symmetrical square wave of peak -to-peak				
-	amplitude `V' and frequency `f' is applied to a high pass circuit. Show that				
	the percentage tilt is given by $P = 1 - e(-1/2RC) / 1 + e(-1/2RC) * 100\%$:	Evaluate	1		
3	Explain the operation of RC circuits as Integrators and differentiators for a				
	square wave input With the circuit diagram and waveforms	Understand	1,2		
4	Explain the response of RC low pass circuit for exponential input signal	Understand	2		
5	Prove that for any periodic input wave form the average level of the steady				
	state output signal from an RC high pass circuit is always zero.	Evaluate	1		
6	Explain the response of RL circuit when a step input signal is applied?	Understand	1,2		
7	A 1KHz square wave output from an amplifier has rise time $tr = 250$ ns and				
	tilt = 10% , determine the upper and lower frequencies.	Evaluate	1		
8	A 10Hz square wave is fed to an amplifier. Find and sketch the output wave				
	forms under following conditions. The lower 3db frequency is The lower				
	3db frequency is i. 0.3Hz ii. 3Hz iii. 30Hz	Remember	1		
9	A symmetrical square wave whose peak-to-peak amplitude is 2V and whose				
	average value is zero is applied to on RC integrating circuit. The time	Remember	2		
	constant is equals to half -period of the square wave. Find the peak to peak				
	value of the output amplitude.				
10	A symmetrical square wave is applied to a HP circuit having $R = 20$ k and C	Understand			
	= 0.05 μ f. If the frequency of input signal is 1kHz and the signal swings				

	between +0.5V to -0.5V, illustrate the output wave shape and indicate the		1
	voltages, also explain what happens if the input signal frequency is reduced		1
	to 100 Hz?		
	UNIT -2	11	
	NON LINEAR WAVE SHAPING		
1	Prove the clamping circuit theorem	Evaluate	6
2	List the circuits of different types of shunt clippers and explain their		
	operation with the help of their transfer characteristics.	Remember	4
3	Explain positive peak clipping without reference voltage.	Understand	4
4 5	Explain about positive peak voltage limiters above reference level.	Understand Evaluate	4
<u> </u>	Compare series diode clipper and shunt diode clipper. What is synchronized clamping? Explain.	Remember	4 5
	Analyze the diode comparator circuit. Draw the response of the circuit	Kennennber	5
7	to a ramp input Vi=lt.	Analyze	6
8	Explain the working of Transistor Clipper with the help of neat Circuit		-
	diagram	Understand	4
9	Explain in brief about Practical Clamping?	Understand	5
10	Design the diode shunt clipper that clips the sine wave signal above $+5V$ and		5
11	below -5V.	Create	
11	For the clipper circuit shown in figure, the input $vi = vi = 60 \sin \omega t$. Find and plot to Scale i. The transfer characteristic indicating slopes and intercepts.		
	ii. Input / output on the same scale. Assume ideal diodes.		
	in input / output on the same scale. Assume field diodes.		
	20K A +		
	- DAWATT A'	Remember	4
	A DI 5 7 D2 1		
	20x1 T Vo		
	Versosiulat the the		
	1 -1 -1 -1		
10			5
12	Design a diode clamper circuit to clamp the positive peaks of the input signal at zero level. The frequency of the input signal is 500 Hz?	Create	5
	signal at zero level. The frequency of the input signal is 500 Hz?	Create	
12 13	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively	Create Understand	5 5
	signal at zero level. The frequency of the input signal is 500 Hz?		
13	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms?	Understand	5
13	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S	Understand	5 ATES
13 S 1	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch.	Understand	5
13 S	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution	Understand	5 ATES
13 S 1 2	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch.	Understand SAMPLING GA Understand	5 ATES 7
13 S	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region	Understand SAMPLING GA Understand	5 ATES 7
13 1 1 2 3 4	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector	Understand SAMPLING GA Understand Understand	5 ATES 7 7
13 S 1 2 3	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor	Understand SAMPLING GA Understand Understand Remember	5 ATES 7 7 7 7
13 S 1 2 3 4 5	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor ASSIGNMENT-II	Understand SAMPLING GA Understand Understand Remember Understand Understand	5 ATES 7 7 7 7 7 7 7 7
13 S 1 2 3 4 5	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor STEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES &	Understand SAMPLING GA Understand Understand Remember Understand Understand	5 ATES 7 7 7 7 7 7 7 7
13 S 1 2 3 4 5	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Massignment-II STEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & Find the expressions for gain and minimum control voltages of a	Understand SAMPLING GA Understand Understand Remember Understand Understand SAMPLING G	5 ATES 7 7 7 7 7 7 ATES
13 1 2 3 4 5 1	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Find the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ?	Understand SAMPLING GA Understand Understand Remember Understand Understand	5 ATES 7 7 7 7 7 7 7 7
13 S 1 2 3 4 5 S	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING G. Remember	5 ATES 7 7 7 7 7 ATES 8
13 1 2 3 4 5 1 2	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Find the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ?	Understand SAMPLING GA Understand Understand Remember Understand Understand SAMPLING G	5 ATES 7 7 7 7 7 7 ATES
13 1 2 3 4 5 1	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Explain the saturation parameters of a transistor STEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & Find the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates.	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING G. Remember	5 ATES 7 7 7 7 7 ATES 8
13 S 1 2 3 4 5 S 1 2 3 3	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Explain the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates. Explain the effect of control voltage on gate output of unidirectional	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING GA Remember Understand Remember	5 ATES 7 7 7 7 7 ATES 8 8 8 8 8
13 1 2 3 4 5 1 2	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Explain the saturation parameters of a transistor Explain the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates. Explain the effect of control voltage on gate output of unidirectional sampling gate using diode with some example.	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING GA Remember Understand	5 ATES 7 7 7 7 7 ATES 8 8
13 S 1 2 3 4 5 S 1 2 3 3	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Explain the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates. Explain the effect of control voltage on gate output of unidirectional sampling gate using diode with some example. Explain the basic principles of sampling gates using series switch and also	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING GA Remember Understand Remember Understand	5 ATES 7 7 7 7 7 ATES 8 8 8 8 8 8
13 S 1 2 3 4 5 1 2 3 4 5	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor ASSIGNMENT-II STEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & Find the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates. Explain the effect of control voltage on gate output of unidirectional sampling gate using diode with some example. Explain the basic principles of sampling gates using series switch and also give the applications of sampling gate.	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING GA Remember Understand Remember	5 ATES 7 7 7 7 7 ATES 8 8 8 8
13 S 1 2 3 4 5 1 2 3 4 5 1 2 3 4 3 4 3 4	signal at zero level. The frequency of the input signal is 500 Hz? A 100V peak square wave with an average value of 0V is to be negatively Clamped at 25V. Illustrate the output waveforms? UNIT-3 TEADY STATE SWITCHING CHARACTERISTICS OF A DEVICES & S Explain the storage and transition times of the diode as a switch. Demonstrate the switching times of BJT by considering charge distribution across the base region. Explain this for cut-off, active and saturation region Define different Switching times of a transistor with suitable collector current versus time characteristics Explain the temperature sensitivity parameters of a transistor Explain the saturation parameters of a transistor Explain the expressions for gain and minimum control voltages of a bidirectional two- diode sampling gate ? Illustrate with neat circuit diagram, the operation of unidirectional sampling gate for multiple inputs. a) Why the sampling gates are called linear gates? (b) Compare the unidirectional and bi-directional sampling gates. Explain the effect of control voltage on gate output of unidirectional sampling gate using diode with some example. Explain the basic principles of sampling gates using series switch and also	Understand SAMPLING GA Understand Understand Understand Understand SAMPLING GA Remember Understand Remember Understand	5 ATES 7 7 7 7 7 ATES 8 8 8 8 8 8

	1		
7	Design a high speed common emitter transistor switch operating with two		
	power supplies Vcc=12V and $-V_{BB}$ = -10V. the transistor is expected to		
	operate at Ic= 8mA, I_B =0.75mA. The static current gain h_{FE} of the transistor		
	is 30, $_{\text{VBE(sat)}} = 0.3$ V, and $R_2 = 3R_1$. Determine the values of the three		
	resistors Rc, R_1 , R_2 .	Create	7
8	Design the Transistor switch (Inverter) for the following specifications		
	Vin= ±3Vsquare wave, VCC=10V, IC=1mA, hFE=50.Assume Si		
	transistor?	Create	7
	UNIT-IV	1	
	MULTIVIBRATORS & TIME BASE GENERATORS		
1	Define the terms slope error, displacement error and transmission error of		
1	time-base signal.	Remember	11
2	Explain the working of a transistor Miller time base generator. With the help		
2	of a neat circuit diagram and waveforms	Understand	11
3	Explain how to draw the various waveforms and calculate their volatage		
5	levels in an emitter-coupled monostable multi.	Understand	10
	Solve an expression for slope error (es) for an exponential sweep results		
4	when a capacitor is charged from a supply voltageV through a resistor R. If		
	the peak sweep voltage is Vs	Apply	11
~	Design the circuit of a linear current sweep and explain its operation with		
5	waveforms. Explain the necessity of generating trapezoidal waveform.	Create	11
	Explain the operation of Fixed-Bias Bistable multivibrator with circuit	Sieme	
6	diagram and waveforms.	Understand	10
	Explain the working of a Self bias Bistable multivibrator circuit with the	Understallu	10
7	help of waveforms and circuit diagram.	Understand	10
		Understand	10
8	Distinguish between unsymmetrical and Symmetrical triggering? Why it is	A	10
	used?	Analyze	10
9	Explain different triggering methods of binary circuits.	Understand	10
10	Design a Schmitt trigger circuit using NPN transistors having hFE(MIN)		
	=60 . VBE cut-off = $0V$, VCE(Sat) = $0.2V$ and VBE(Sat) = $0.7V$. Given		
	Vcc=8V and o/p swing = 6V, UTP = 3.5V, LTP = 1.5V, R1 = 10K AND R2		
	= 2K.Determine Rc1, Rc2 and Re?	Create	10
11	Design a transistor bootstrap ramp generator to provide an output amplitude		
	of 12V over a time period of 2ms. The input signal is a negative going pulse		
	with an amplitude of 5 V, a pulse width of 2ms and the time interval		
	between pulses is 0.5ms. The load resistance is 1K and the ramp is to be		
	linear within 1%. The supply is to be 15V. take $hfe(min) = 80$.	Create	11
12	Design a Fixed Bias binary by given fallowing specifications,		
	Vcc=Vbb=12V, hfe(min) = 20,Ic(sat)=4mA Assume npn si-Transistors	Create	10
13	Design a Self Bias binary using si transistors. Vcc=6V, hfe(min)	<u>Si cuit</u>	10
15	=30,Assume appropriate junction voltages for your design?	Create	10
14	The normal self-biased binary uses npn si transistors having worst-case		10
14	values of Vce(sat)=0.4V, Vbe(sat)=0.8V and zero base to emitter voltage		
	for cutoff. The circuit parameters are Vcc = 20 V,Rc1=Rc2=4.7k Ω , R1=30		
	$k\Omega$,R2=15k Ω and Re=390 k Ω a) Find Stable state Currents and Voltages. b)		
	Find the minimum value of hfe required to give the values of part(a) c) As		
	the temperature is increased, what is the maximum value to which Icbo can	D	10
	increase before the condition is reached where neither transistor is OFF.	Remember	10
	UNIT-V		
	SYNCHRONIZATION AND FREQUENCY DIVISION & LOGI		
1	Explain the working of Inverter using circuit diagram?	Understand	15
2	Explain the operation of diode - resistor logic AND & OR gate using	I Indiana 1	15
	circuit diagram	Understand	15
3	What do you mean by a relaxation circuit? Give a few examples of	.	
-	relaxation circuits.	Understand	
4	Explain sine wave frequency division using a sweep circuit with the help of		
+	neat waveforms	Evaluate	13
5	Explain the method of pulse synchronization of relaxation devices, with		
5	examples.	Understand	13
6	Explain the frequency division in monostable multivibrator with the help of	Evaluate	13
~			

	circuit diagram & waveforms?		
7	Define the terms phase delay and phase jitter. What is the condition to be		
/	met for pulse synchronization?	Remember	13
8	Compare TTL and RTL logic and Draw the Transistor logic NAND gate		
ð	and explain its operation.	Understand	
9	The relaxation oscillator when running freely generates output sweep		
	amplitude of 100V and frequency 1kHz. Synchronizing pulses are applied		
	such that at each pulse the breakdown voltage is lowered by 20V. Over		
	what frequency range the synchronizing pulse frequency may be varied if		
	1:1 synchronization is to result?	Apply	14
10	Design a transistor inverter circuit (NOT gate) with the following		
	specifications: VCC = VBB = 10V, $I_{Csat} = 10mA$, $h_{femin} = 30$. The input is		
	varying between 0 and 10V. Assume typical junction voltages of npn		
	silicon transistor	Create	15

Prepared By: Mr. B. Naresh, Assistant Professor, Department of ECE

Date: 05th December, 2016

HOD, ECE