## INSTITUTE OF AERONAUTICAL ENGINEERING <br> (Autonomous) <br> Dundigal, Hyderabad - 500043

## ELECTRICAL AND ELECTRONICS ENGINEERING

ASSIGNMENT

| Course Name | $:$ | Engineering Mathematics - III |
| :--- | :--- | :--- |
| Course Code | $:$ | A30007 |
| Class | $:$ | II B. Tech I Sem |
| Branch | $:$ | EEE |
| Year | $:$ | 2016 - 2017 |
| Course Faculty | $:$ | Mr. G. Nagendra Kumar, Assistant Professor |

## OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.
In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

| S. No | Blooms <br> Taxonomy <br> Level | Course <br> Outcome |
| :---: | :--- | :---: | :---: | :---: |
| LINEAR ODE WITH VARIABLE COEFFICIENTS AND SERIES SOLUTION (SECOND ORDER ONLY) |  |  |


| S. No | Question | $\qquad$ | Course Outcome |
| :---: | :---: | :---: | :---: |
| 14 | Solve in series the equation $2 x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+y=0$ | Evaluate | 3 |
| 15 | Solve in series the equation $y^{\prime \prime}+x^{2} y=0$ about $\mathrm{x}=0$ | Evaluate | 3 |
| Part - B (Long Answer Questions) |  |  |  |
| 1 | Solve $(2 x-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 x-1) \frac{d y}{d x}-2 \mathrm{y}=\mathrm{x}$. | Evaluate | 1 |
| 2 | Solve $\left(x^{2} D^{2}-3 x D+1\right) y=\log x\left(\frac{\sin (\log x)+1}{x}\right)$ | Evaluate | 1 |
| 3 | Solve in series the equation $4 \mathrm{x} \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$ | Understand | 3 |
| 4 | Solve in series the equation9x $(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$ | Evaluate | 3 |
| 5 | Solve in series the equation $x(1-x) y^{\prime \prime}-3 x y^{\prime}-y=0$ | Evaluate | 3 |
| 6 | Solve $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}+y=\sin 2(\log (1+x))$ | Evaluate | 1 |
| 7 | Solve in series the equation $2 x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}+3 y=0$ | Analyse | 3 |
| 8 | Solve in series the equation $\left(x-x^{2}\right) y^{\prime \prime}+(1-x) y^{\prime}-y=0$ | Understand | 3 |
| 9 | Solve in series the equation $x(1-x) y^{\prime \prime}-(1+3 x) y^{\prime}-y=0$ | Evaluate | 3 |
| 10 | Solve $\left(x^{2} D^{2}-4 x D+6\right) y=(\log x)^{2}$ | Analyse | 1 |
| 11 | Solve $\left(x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y\right)=(1+x)^{2}$ | Evaluate | 1 |
| 12 | Solve $(x+1)^{2} \frac{d^{2} y}{d x^{2}}-3(x+1) \frac{d y}{d x}+4 y=x^{2}+\mathrm{x}+1$ | Evaluate | 1 |
| 13 | Solve $\left(x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+8\right) y=65 \cos (\log x)$ | Understand | 1 |
| 14 | Solve in series the equation $x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0$ | Understand | 3 |
| 15 | Solve $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}=(2 \mathrm{x}+1)(2 \mathrm{x}+4)$ | Evaluate | 1 |
| UNIT - IISPECIAL FUNCTIONS |  |  |  |
| Part - A (Short Answer Questions) |  |  |  |
| 1 | Express $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+10 \mathrm{x}^{3}$ in terms of Legendre polynomials | Analyse | 4 |
| 2 | Show that $x^{3}=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x)$ | Analyse | 4 |
| 3 | Evaluate the value of $J_{\frac{1}{2}}(x)$ is | Analyse | 4 |
| 4 | Show that $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{n} J_{n+1}(\mathrm{x})$ | Analyse | 4 |
| 5 | Prove that $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} J_{n}(x) \mathrm{n}$ is a positive integer | Create | 4 |
| 6 | Show that $J_{3}(x)+3 J_{0}^{\prime}(x)+4 J_{0}^{\prime \prime \prime}(x)=0$ | Analyse | 4 |
| 7 | Prove that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(\mathrm{x})$ | Analyse | 4 |
| 8 | Prove that a) $\int_{0}^{r} x J_{0}(a x)=\frac{r}{a} J_{1}(a r)$ | Analyse | 4 |
| 9 | show that $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is an even function function if ' n ' is even and odd function when ' n ' is odd | remember | 4 |
| 10 | Prove that $\left[J_{\frac{1}{2}}\right]^{2}+\left[J_{-\frac{1}{2}}\right]^{2}=\frac{2}{\pi x}$ | Analyse | 4 |
| 11 | Show that $\int_{0}^{x} x^{n} J_{n-1}(x) d x=x^{n} J_{n}(x)$ | Analyse | 4 |
| 12 | show $\int_{0}^{x} x^{n+1} J_{n}(x) d x=x^{n+1} J_{n+1}(x)$ | Analyse | 4 |


| S. No | Question | $\qquad$ | Course Outcome |
| :---: | :---: | :---: | :---: |
| 13 | Prove that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$ | Analyse | 4 |
| 14 | Show that $J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) d \theta$ satisfies Bessel's equation of order zero. | Analyse | 4 |
| 15 | Express $J_{2}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$ | Create | 4 |
| Part - B (Long Answer Questions) |  |  |  |
| 1 | Prove that $J_{n}(x)=0$ has no repeated roots except at $\mathrm{x}=0$ | Evaluate | 4 |
| 2 | Show that $J_{3}(x)+3 J_{0}^{\prime}(x)+4 J_{0}^{\prime \prime \prime}(x)=0$ | Understand | 4 |
| 3 | Prove that $J_{0}^{2}+2\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}+\cdots\right)=1$ | Evaluate | 4 |
| 4 | show that $J_{n-1}(\mathrm{x})=\frac{2}{x}\left[n J_{n}-(n+2) J_{n+2}+(n+5) J_{n+5} \ldots ..\right]$ | Evaluate | 4 |
| 5 | Show that $\int_{0}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x=\frac{n(n+1)}{\left(4 n^{2}-1\right)(2 n+3)}$ | Evaluate | 4 |
| 6 | $\text { If } \begin{aligned} \mathrm{f}(\mathrm{x}) & =0 \text { if }-1<\mathrm{x}<0 \\ & =1 \text { if } 0<\mathrm{x}<1 \end{aligned}$ <br> Then show that $\mathrm{f}(\mathrm{x})=\frac{1}{2} P_{0}(x)+\frac{3}{4} P_{1}(x)-\frac{7}{16} P_{3}(x)+\cdots$ | Evaluate | 4 |
| 7 | Show that $P_{n}(\mathrm{x})$ is the coefficient of $t^{n}$ in the expansion of $\left(1-2 x t+t^{2}\right)^{\frac{-1}{2}}$ | Remember | 4 |
| 8 | Prove $(2 \mathrm{n}+1) \mathrm{x} P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$ | Understand | 4 |
| 9 | Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\left\{\begin{array}{l}0, \text { if } \alpha \neq \beta \\ \frac{1}{2}\left[J_{n+1}(\alpha)\right]^{2} \text { if } \alpha=\beta\end{array}\right.$ | Evaluate | 4 |
| 10 | Show that $a) J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$ <br> b) $J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) d \theta=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \theta) d \theta$ | Remember | 4 |
| 11 | State and prove Legendre's Rodrigue's formula. | Analyse | 4 |
| 12 | Show that $x^{4}=\frac{8}{35} P_{4}(x)+\frac{4}{7} P_{2}(x)+\frac{1}{5} P_{0}(x)$ | Understand | 4 |
| 13 | Express $\mathrm{P}(\mathrm{x})=x^{4}+2 x^{3}+2 x^{2}-x-3$ in terms of Legendre Polynomials. | Evaluate | 4 |
| 14 | Using Rodrigue's formula prove that $\int_{-1}^{1} x^{m} p_{n}(x) d x=0$ if $\mathrm{m}<\mathrm{n}$. | Evaluate | 4 |
| 15 | State and prove orthogonality of Legendre polynomials | Analyse | 4 |
| UNIT - IIICOMPLEX FUNCTIONS-DIFFERENTIATION AND INTEGRATION |  |  |  |
| Part - A (Short Answer Questions) |  |  |  |
| 1 | Show that $\mathrm{f}(\mathrm{z})=z^{3}$ is analytic for all z | Analyse | 5 |
| 2 | Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{\|x y\|}$ is not analytic at the origin although Cauchy Riemann equations are satisfied at the point. | understand | 5 |
| 3 | Show that $\mathrm{f}(\mathrm{z})=\|z\|^{2}$ is not analytic . | understand | 5 |
| 4 | Find whether $\mathrm{f}(\mathrm{z})=\frac{x-i y}{x^{2}+y^{2}}$ is analytic or not. | understand | 5 |
| 5 | Find whether $\mathrm{f}(\mathrm{z})=$ sinxsiny - icosxcosy is analytic or not | understand | 5 |
| 6 | Find k such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3}+3 k x y^{2}$ may be harmonic and find its conjugate. | Analyse | 5 |
| 7 | Find the most general analytic function whose real part is $\mathrm{u}=x^{2}-y^{2}-x$ | Analyse | 5 |
| 8 | Find an analytic function whose imaginary part is $\mathrm{v}=e^{x}(x \sin y+y \cos y)$ | understand | 5 |
| 9 | If $f(z)$ is an analytic function of $z$ and if $u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$ find $f(z)$ subject to the | Analyse | 5 |


| S. No | Question | Blooms Taxonomy Level | Course Outcome |
| :---: | :---: | :---: | :---: |
|  | condition $\mathrm{f}\left(\frac{\pi}{2}\right)=0$ |  |  |
| 10 | If $f(z)$ is an analytic function of $z$ and if $u+v=\frac{\sin 2 x}{2 \cosh 2 y-\cos 2 x}$ find $f(z)$ in terms of $z$. | remember | 5 |
| 11 | Let $\mathrm{w}=\mathrm{f}(\mathrm{z})=z^{2}$ find the values of w which correspond to <br> (i) $\mathrm{z}=2+\mathrm{i}$ <br> (ii) $z=1+3 i$ | Analyse | 5 |
| 12 | Show that $\mathrm{f}(\mathrm{z})=\|z\|^{2}$ is a function which is continous at all z but not differentiable at any $\mathrm{z} \neq 0$. | understand | 5 |
| 13 | Find all values of k such that $\mathrm{f}(\mathrm{x})=e^{x}(\operatorname{cosk} y+i \operatorname{sink} y)$ is analytic | understand | 5 |
| 14 | Show that $\mathrm{u}=e^{-x}(x \sin y-y \cos y)$ is harmonic | understand | 5 |
| 15 | Verify that $\mathrm{u}=x^{2}-y^{2}-y$ is harmonic in the whole complex plane and find a conjugate harmonic function v of u . | understand | 5 |
| Part - B (Long Answer Questions) |  |  |  |
| 1 | Show that the function $\mathrm{u}=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic, find the conjugate function ' $v$ ' and express $u+i v$ as an analytic function of $z$. | Apply | 5 |
| 2 | Find whether the function $\mathrm{u}=\log \|z\|^{2}$ is harmonic . If so find the analytic function whose real part is $u$. | Apply | 5 |
| 3 | Find the imaginary part of an analytic function whose real part is $e^{x}(x \cos y-y \sin y)$ | Apply | 5 |
| 4 | Find the regular function whose imaginary part is $\frac{x-y}{x^{2}+y^{2}}$ | Apply | 5 |
| 5 | If $f(z)=u+i v$ is an analytic function of $z$ find $f(z)$ if $2 u+v=e^{2 x}[(2 x+y) \cos 2 y+(x-$ $2 \mathrm{y}) \sin 2 \mathrm{y}]$ | Analyse | 5 |
| 6 | Evaluate $\int_{0}^{1+i}\left(x-y+i x^{2}\right) \mathrm{dz}$ <br> (i) along the straight from $\mathrm{z}=0$ to $\mathrm{z}=1+\mathrm{i}$. <br> (ii) along the real axis from $\mathrm{z}=0$ to $\mathrm{z}=1$ and then along a line parallel to real axis from $\mathrm{z}=1$ to $\mathrm{z}=1+\mathrm{i}$ <br> along the imaginary axis from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{I}$ and then along a line parallel to real axis $\mathrm{z}=\mathrm{i}$ to $\mathrm{z}=1+\mathrm{i}$ | Apply | 6 |
| 7 | Verify Cauchy's theorem for the integral of $z^{3}$ taken over the boundary of the rectangle with vertices $-1,1,1+\mathrm{i},-1+\mathrm{i}$ | Apply | 6 |
| 8 | Evaluate $\int_{c} \frac{e^{2 z}}{(z-1)(z-2)} d z$ where c is the circle $\|z\|=3$ using Cauchy's integral formula. | Apply | 6 |
| 9 | Evaluate $\int_{c} \frac{z^{3} e^{-z}}{(z-1)^{3}} \mathrm{dz}$ where c is $\|z-1\|=\frac{1}{2}$ using Cauchy's integral formula. | Evaluate | 6 |
| 10 | Evaluate $\int_{c} \frac{5 z^{2}-3 z+2}{(z-1)^{3}} d z$ where c is any simple closed curve enclosing $\mathrm{z}=1$ using Cauchy's integral formula. | Evaluate | 6 |
| 11 | Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|\operatorname{Real} f(z)\|^{2}=2\left\|f^{\prime}(z)\right\|^{2} \quad$ where $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is analytic. | Apply | 5 |
| 12 | Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left\|f^{\prime}(z)\right\|$ where $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is analytic | Apply | 5 |
| 13 | If $f(z)$ is a regular function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ | Apply | 5 |
| 14 |  | Apply | 5 |
| 15 | Show that $\mathrm{u}=x^{3}-3 x y^{2}$ and find a conjugate harmonic function v and the analytic function | Analyse | 5 |


| S. No | Question | $\qquad$ | Course Outcome |
| :---: | :---: | :---: | :---: |
| UNIT - IVPOWER SERIES EXPANSIONS OF COMPLEX FUNCTIONS AND CONTOUR INTEGRATION |  |  |  |
| Part - A (Short Answer Questions) |  |  |  |
| 1 | What circle does the maclaurin's series for the function tanhz coverage to the function. | Analyse | 7 |
| 2 | Expand $f(z)=\frac{1}{z^{2}}$ in powers of $z+1$ | Analyse | 7 |
| 3 | Expand $\mathrm{e}^{\mathrm{z}}$ as taylor's series about $\mathrm{z}=1$ | Analyse | 7 |
| 4 | Expand $\mathrm{e}^{\mathrm{z}}$ as taylor's series about $\mathrm{z}=3$ | Evaluate | 7 |
| 5 | Find the residue of $\frac{z^{2}}{(z-a)(z-b)(z-c)}$ at $z=\infty$ | Evaluate | 9 |
| 6 | Determine the poles and the residue of the function $f(z)=\frac{z e^{z}}{(z+2)^{4}(z-1)}$ | Remember | 9 |
| 7 | Evaluate the Taylor's series expansion of $\left(\frac{1}{z-2}-\frac{1}{z-1}\right)$ in the region $\|z\|<1$ | Analyse | 7 |
| 8 | Obtain the Taylor series expansion of $\mathrm{f}(\mathrm{z})=\frac{1}{z}$ about the point $\mathrm{z}=1$ | Analyse | 7 |
| 9 | Obtain the Taylor series expansion of $\mathrm{f}(\mathrm{z})=e^{z}$ about the point $\mathrm{z}=1$ | Evaluate | 7 |
| 10 | Find the poles and residues of $\frac{1}{z^{2}-1}$ | Analyse | 9 |
| 11 | Find zeros and poles of $\left(\frac{z+1}{z^{2}+1}\right)^{2}$ | Analyse | 9 |
| 12 | Find the poles of the function $f(z)=\frac{1}{(z+1)(z+3)}$ and residues at these poles | Analyse | 9 |
| 13 | Find the residue of the function $f(z)=\frac{z^{3}}{\left(z^{2}-1\right)}$ at $z=\infty$ | Evaluate | 9 |
| 14 | Find the residue of $\frac{z^{2}}{(z-a)(z-b)(z-c)}$ at $z=\infty$ | Evaluate | 9 |
| 15 | Define residue at pole of order m | remember | 9 |
| Part - B (Long Answer Questions) |  |  |  |
| 1 | Evaluate $\int_{c} \frac{2 z-1}{z(2 z+1)(z+2)} d z$ where c is the circle $\|z\|=1$ | Evaluate | 9 |
| 2 | Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ | Evaluate | 9 |
| 3 | Evaluate $\oint \tan z d z$ where c is circle $\|z\|=2$. | Evaluate | 9 |
| 4 | Evaluate $\oint_{c} \frac{d z}{\left(z^{2}+4\right)^{2}}$ where c is $\|z-i\|=2$. | Evaluate | 9 |


| S. No | Question | Blooms Taxonomy Level | Course Outcome |
| :---: | :---: | :---: | :---: |
| 5 | Evaluate $\oint_{c} \frac{\operatorname{coth} z}{z-i} d z$ where c is $\|z\|=2$ | Evaluate | 9 |
| 6 | Determine the poles and the residue of the function $f(z)=\frac{z e^{z}}{(z+2)^{4}(z-1)}$ | Evaluate | 9 |
| 7 | Evaluate $\oint_{c} \frac{4-3 z}{(z-2)(z-1) z} \mathrm{dz}$ where c is the circle $\|z\|=1.5$ using residue theorem | Apply | 9 |
| 8 | Show that $\int_{0}^{2 \pi} \frac{1+4 \cos \theta}{17+8 \cos \theta} d \theta=0$ | Apply | 10 |
| 9 | Evaluate $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$ | Apply | 10 |
| 10 | Show that $\int_{0}^{2 \pi} \frac{d \theta}{4 \cos ^{2} \theta+\sin ^{2} \theta}=\pi$ | Analyse | 10 |
| 11 | Expand $\mathrm{f}(\mathrm{z})=\frac{z-1}{z+1}$ in Taylor's series about the point (i) $\mathrm{z}=0$ <br> (ii) $\mathrm{z}=1$ | Apply | 7 |
| 12 | Expand $\mathrm{f}(\mathrm{z})=\frac{z-1}{z^{2}}$ in Taylor's series in powers of $\mathrm{z}-1$ and determine the region of convergence. | Evaluate | 7 |
| 13 | Obtain Laurent's series expansion of $\mathrm{f}(\mathrm{z})=\frac{z^{2}-4}{z^{2}+5 z+4}$ valid in $1<\mathrm{z}<2$ | Analyse | 7 |
| 14 | Expand $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ about $\mathrm{z}=1$ as Laurent's series also find the region of convergence. | apply | 7 |
| 15 | Expand $\mathrm{f}(\mathrm{z})=\frac{7 z-2}{z(z+1)(z-2)}$ about $\mathrm{z}=-1$ in the region $1<\|z+1\|<3$ as Laurent's series | apply | 7 |
|  | UNIT - V <br> CONFORMAL MAPPING |  |  |
|  | Part - A (Short Answer Questions) |  |  |
| 1 | Find the map of the circle $\|z\|=\mathrm{c}$ under the transformation $\mathrm{w}=\mathrm{Z}-2+4 \mathrm{i}$ | Analyse | 11 |
| 2 | Determine the bilinear transformation whose fixed points are i,-i. | Analyse | 12 |
| 3 | Find the fixed points of the transformation $w=\frac{2 i-6 z}{i z-3}$ | Evaluate | 11 |
| 4 | Find the points at which $\mathrm{w}=$ coshz is not conformal | Evaluate | 11 |
| 5 | Find the image of $\|z\|=2$ under the transformation $\mathrm{w}=3 \mathrm{z}$ | Analyse | 11 |
| 6 | Find the Bi-linear transformation which carries the points from (-i,0,i) to (-1,i,1) | Evaluate | 112 |
| 7 | Determine the bilinear transformation whose fixed points are 1,-1 | Apply | 12 |
| 8 | Find the bilinear transformation which maps $\mathrm{z}=-1, \mathrm{i}, 1$ into the points $\mathrm{w}=-\mathrm{i}, 0, \mathrm{i}$ | Evaluate | 12 |
| 9 | Find the bilinear transformation which maps the points (-1,0,1) into the points (0,i,3i) | Evaluate | 12 |


| S. No | Question | Blooms Taxonomy Level | Course <br> Outcome |
| :---: | :---: | :---: | :---: |
| 10 | Find the fixed points of the transformation $w=\frac{6 z-9}{z} \text { Type equation here. }$ | Evaluate | 11 |
| 11 | Find the fixed points of the transformation $w=\frac{z-1+i}{z+2}$ | Evaluate | 11 |
| 12 | Find the fixed points of the transformation $w=\frac{1}{z-2 i}$ | Evaluate | 11 |
| 13 | Find the bilinear transformation which maps the points ( $-2,1,0$ ) into $\mathrm{w}=1,0, \mathrm{i}$ respectively. | Evaluate | 12 |
| 14 | Find the bilinear transformation which maps the points $(2, i,-2)$ into the points $(1, i,-1)$ | Evaluate | 12 |
| 15 | Find the bilinear transformation which maps the points ( $0,-\mathrm{i},-1$ ) into the points ( $\mathrm{i}, 1,0)$ | Evaluate | 12 |
| Part - A (Long Answer Questions) |  |  |  |
| 1 | Find the Bi-linear transformation which carries the points from $(0,1, \infty) \text { to }(-5,-1,3)$ | Evaluate | 12 |
| 2 | Find the image of the triangle with vertices $1,1+\mathrm{I}, 1-\mathrm{i}$ in the z -plane under the transformation $w=3 z+4-2 i$. | Evaluate | 11 |
| 3 | Find the image of the triangle with vertices i,1+i,1-i in the z-plane under the transformation $e^{\frac{5 \pi i}{3}}(z-2+4 i)$ | Remember | 11 |
| 4 | Sketch the transformation $w=e^{z}$ | Understand | 11 |
| 5 | Sketch the transformation $w=\log z$ | Understand | 11 |
| 6 | Find the Bi-linear transformation which carries the points from $(1, i,-1) t o(0,1, \infty)$ | Apply | 12 |
| 7 | Show that transformation $\mathrm{w}=z^{2}$ maps the circle $\|z-1\|=1$ into the cardioid $\mathrm{r}=$ $2(1+\cos \theta)$ where $w=r e^{i \theta}$ in the w-plane. | Evaluate | 11 |
| 8 | Determine the bilinear transformation that maps the points $(1-2 i, 2+i, 2+3 i)$ into the points $(2+i, 1+3 i, 4)$ | Apply | 12 |
| 9 | Find the image under the transformation $w=\frac{z-i}{1-i z}$ find the image of $\|w\|=$ 1 (ii)\|z|=1 in the w-plane | Apply | 11 |
| 10 | Find the image of the region in the z-plane between the lines $\mathrm{y}=0$ and $\mathrm{y}=\frac{\pi}{2}$ under the transformation $\mathrm{w}=e^{z}$ | Evaluate | 11 |
| 11 | Show that the relation $w=\frac{5-4 z}{4 z-2}$ transforms the circle $\|z\|=1$ into a circle of radius unity in the w-plane | Analyse | 11 |
| 12 | Show that the transformation $w=\frac{i(1-z)}{(1+z)}$ transforms the circle $\|z\|=1$ into the real axis in the w-plane and the interior of circle into upper half of the w-plane the wplane | Analyse | 11 |
| 13 | Show that the transformation $w=\frac{3-z}{z-2}$ transforms the circle $\left\|z-\frac{5}{2}\right\|=\frac{1}{2}$ in the z-plane into the imaginary axis in the w-plane | Analyse | 11 |


| S. No | Question | Blooms <br> Taxonomy <br> Level | Course <br> Outcome |
| :---: | :--- | :---: | :---: |
| 14 | Show that the transformation $w=$ cosz maps the half of the z-plane to the right of the <br> imaginary axis into the entire w-plane | Analyse | 11 |
| 15 | Show that the transformation <br> into the straight line $4 \mathrm{u}+3=0$$\quad$$2 z+3$ <br> $z-4$ | Analyse | 11 |

Prepared By: Mr. G. Nagendra Kumar, Assistant Professor
ELECTRICAL AND ELECTRONICS ENGINEERING

