

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

ASSIGNMENT

Course Name	MATHEMATICS-II
Course Code	A30006
Class	II B. Tech I Semester
Branch	Mechanical Engineering
Year	2016 – 2017
Course Faculty	Ms. P. Rajani, Associate Professor, Freshman Engineering

OBJECTIVES:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

ASSIGNMENT - I & II

S.No	QUESTION	Blooms Taxonomy	Course				
5.110	QUESTION	Level	Outcome				
	ASSIGNMENT-I						
	(SHORT ANSWER TYPE QUESTIONS)						
	UNIT – I						
1	Define divergence?	Remember	1				
2	Define curl?	Remember	1				
3	Evaluate the angle between the normal to the surface $xy=z^2$ at the points $(4,1,2)$ and $(3,3,-3)$?	Understand	1				
4	Find a unit normal vector to the given surface $x^2y+2xz=4$ at the point $(2,-2,3)$?	Apply	1				
5	If \bar{a} is a vector then prove that grad $(\bar{a}, \bar{r}) = \bar{a}$?	Understand	1				
6	Prove that F=yzi+zxj+xyk is irrotational?	Analyze	1				
7	Show that $(x+3y)i+(y-2z)j+(x-2z)k$ is solenoidal?	Understand	1				
8	Define line integral?	Remember	2				
9	Define volume integral?	Remember	2				
10	State Gauss divergence theorem?	Understand	3				
	(LONG ANSWER QUESTIONS) UNIT-I						
1	Prove that $\nabla f(\mathbf{r}) = \frac{\overline{\mathbf{r}}}{\mathbf{r}} \cdot \mathbf{f}^{1}(\mathbf{r})$	Analyze	1				
2	Prove that $div(r^n, \bar{r}) = (n+3)r^n$. Hence Show that $\frac{\bar{r}}{r^3}$ is solenoidal Vector	Analyze	1				

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
3	If $\bar{F} = (5xy - 6x^2)\bar{i} + (2y - 4x)\bar{j}$ evaluate $\int_{C} \bar{F}.d\bar{r}$ along the curve C in xy plane $y=x^3$	Understand	2
4	from (1,1) to (2,8). Evaluate $\iint_{\mathbf{S}} \overline{\mathbf{A}} \cdot \overline{\mathbf{n}} d\mathbf{s}$ where $\overline{\mathbf{A}} = Z\overline{\mathbf{i}} + x\overline{\mathbf{j}} - 3y^2 z\overline{\mathbf{k}}$ and S is the surface of the cylinder	Understand	2
	$x^2+y^2=16$ included in the first octant between Z=0 and Z=5		
5	Evaluate $\iint_S \overline{F} \cdot d\overline{s}$ if $f = yzi + 2y^2j + xz^2k$ and S is the Surface of the Cylinder	Understand	2
6	$x^2+y^2=9$ contained in the first Octant between the planes $z=0$ and $z=2$. Verify gauss divergence theorem for the vector point function $F=(x^3-yz)i-2yxj+2zk$ over the cube bounded by $x=y=z=0$ and $x=y=z=a$	Apply	3
7	Verify divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the region of first	Apply	3
8	Applying Green's theorem evaluate $\int (y - \sin x) dx + \cos x dy$ where C is the plane	Apply	3
9	Δ^{le} enclosed by $y = 0$, $y = \frac{2x}{\pi}$, and $x = \frac{\pi}{2}$ Verify Green's Theorem in the plane for $\int_{c}^{c} (x^2 - xy^3) dx + (y^2 - 2xy) dy$ where C is a	Apply	3
10	square with vertices $(0,0),(2,0),(2,2),(0,2)$ Verify Stokes theorem for $f = (x^2 - y^2)i + 2xyj$ over the box bounded by the planes $x=0, x=a, y=0, y=b, z=c$	Apply	3
	(SHORT ANSWER TYPE QUESTIONS) UNIT-II	l	l .
1	Define Euler's formulae	Remember	5
2	Write Dirichlet's conditions	Understand	4
3	If $f(x) = x^2 - 2$ in (-2,2) then find b_2	Apply	5
4	If $f(x) = x^2$ in (-2,2) then a_0	Apply	5
5	If $f(x) = \sin^3 x$ in $(-\pi, \pi)$ then find a_n	Apply	5
6	If $f(x) = x^4$ in (-1,1) then find b_n	Apply	5
7	Write about Fourier sine and cosine integral	Understand	6
8	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Apply	6
9	Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - cosn\pi}{n^2 \pi^2}$	Apply	6
10	Write the properties of Fourier transform	Understand	6
	(LONG ANSWER QUESTIONS) UNIT-II		
1	Obtain the Fourier series expansion of f(x) given that $f(x) = (\pi - x)^2$ in	Understand	5
	$0 < x < 2\pi \text{ and deduce the value of } \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$		
2	Find the Fourier Series to represent the function $f(x) = \sin x $ in $-\pi < x < \pi$.	Apply	5
3	Find the Fourier series to represent $f(x) = x^2$ in $(0,2\pi)$.	Apply	5
4	Expand the function $f(x) = x^2$ as a Fourier series in $(-\pi, \pi)$.	Understand	5

S.No	QUESTION	Blooms Taxonomy	Course
		Level	Outcome
5	Find the Fourier series to represent the function $f(x)$ given by:	Apply	5
	$0 for - \pi \le x \le 0$		
	$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le 0\\ x^2 & \text{for } 0 \le x < \pi \end{cases}$		
	$(x \mid JOFO \leq x < n)$		
6	Expand $f(x) = \cos x$ for $0 < x < \pi$ in half range sine series	Understand	5
7	Using Fourier integral show that $e^{-x}\cos x = \frac{2}{\pi} \int_0^\infty \frac{\lambda^2 + 2}{\lambda^4 + 4} \cos \lambda x dx$	Understand	6
0		A1	-
8	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & \text{if } x < a \\ 0 & \text{if } x > a \end{cases}$ Hence show that	Apply	6
	$\int_{-\infty}^{\infty} \frac{\sin x - \cos x}{x^3} dx = \frac{\pi}{4}$		
	$\sum_{i=0}^{n} x_i$ 4		
9	Find the Fourier sine transform for the function f(x) given by	Apply	6
	$f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0 & x \ge a \end{cases}$		
	$f(x) = \begin{cases} 0 & x > a \end{cases}$		
10	Find the inverse Fourier transform $f(x)$ of $F(p) = e^{- p y}$	Apply	6
10	(SHORT ANSWER TYPE QUESTIONS)	пррпу	
	UNIT-III		
1	Define Interpolation and extrapolation	Remember	7
2	Explain forward difference interpolation	Understand	7
3	Construct a forward difference table for $f(x)=x^3+5x-7$ if	Analyze	9
	x=-1,0,1,2,3,4,5	TT 1 . 1	0
5	Evaluate $\triangle \log f(x)$ Find the missing term in the following table	Understand Apply	9
)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Арргу	8
	Y 1 3 9 81		
	(LONG ANSWER QUESTIONS)	l	I
	UNIT-III		•
1	x 20 25 30 35 40 45 Find f(22), from the following data	Apply	8
	y 354 332 291 260 231 204 using Newton's Backward formula.		
2	Given sin 45=0.7071,sin 50=0.7660,sin 55=0.8192 and sin 60=0.8660 find sin 52	Apply	8
	using newton's formula		
		TT. 1	0
3	The population of a town in the decimal census was given below. Estimate the population for the year 1895	Understand	8
	Year (x) 1891 1901 1911 1921 1931		
	Population (y) 46 66 81 93 101		
4	Find by Gauss's backward interpolating formula the value of y at $x = 1936$ using the	Apply	8
	following table		
	X 1901 1911 1921 1931 1941 1951		
5	Y 12 15 20 27 39 52 Find f (1.6) using Lagrange's formula from the following table.	Apply	8
		117	
	x 1.2 2.0 2.5 3.0		
	f(x) 1.36 0.58 0.34 0.20		1
<u> </u>	ASSIGNMENT – II		

S.No	QUESTION							Blooms Taxonomy Level	Course Outcome		
			()	SHORT A		R TY		UESTION	S)		
1	What is the prin	nciple of 1	method of	least squa		NII-	1111			Understand	9
2	Define curve fi									Remember	8
3	Derive the norr									Understand	8
4	Derive the norr	•								Understand	8
5	Write the norm	al equatio	ons to fit t				OFFE	TIONG)		Understand	8
				(LON		VER NIT-	-	TIONS)			
1	A curve passes of the curve at		the points	(0, 18),(1	,10), (3,	-18)	and (6,9	90). Find th	ne slope	Apply	7
2	By the method	of least so	quare, find	d the strai	ght line t	hat b	est fits	the followi	ng data:	Apply	7
		X	1		2	3		4	5		
		у	14		27	40	0	55	68		
3	Fit a curve y=a			ollowing	lata		I			Understand	7
	X 1	2		3	4						
	Y 6		11	18	27				NY or 4		
4	Using the meth following data:		st squares	find the c	onstants	a and	d b such	that y=ae	' [^] fits the	Apply	7
		X	0	0.5	1		1.5	2	2.5		
		у	0.10	0.45	2.15		9.15	40.35	180.75		
5	Obtain a relation	on of the f	orm y=ab	x for the f	ollowing	data	by the	method of	least	Understand	7
	squares.	Γ	X	2	3		4	5	6		
			У	8.3	15.4		33.1	65.2	127.4		
			•	SHORT A	ANSWE	RT	YPE Q	L UESTION	S)		
1	Define alcahus			-14:		NIT-				Damandan	10
1	Define algebrai	ic and trar	iscendent	ai equatio	n and gr	ve ex	ampie			Remember	10
2	Write about bis	section me	ethod							Understand	10
3	Write about fal	se positio	n method							Understand	10
4	State the condit	tion for co	onvergenc	e of the ro	oot by ite	erativ	e meth	od		Understand	10
5	Find the square root of a number 16 by using Newton's Raphson							Apply	10		
	1			,	٥		1				
6	Explain LU decomposition method							Apply	11		
7	Define Crout's and Doolittle's method						Remember	11			
8	If A=LU and $A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$ then find L						Apply	11			
9	Explain the promethod	ocedure to	find the i	nverse of	the matr	ix by	using l	LU decomp	osition	Understand	11
10	Write the difference between Jacobi's and Gauss Seidel iterative method					Understand	11				
				(LON		VER NIT-		TIONS)			
	Find the square									Apply	10

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
2	Find a real root of the equation $e^x \sin x = 1$, using Regulafalsi method	Apply	10
3	Solve 2x=cosx+3 by iterative method	Understand	10
4	Find a real root of the equation, $\log x = \cos x$ using Regulafalsi method	Apply	10
5	Find a real root of 3x-cosx-1=0 using Newton Raphson method	Apply	10
6	Evaluate x tanx+1=0 by Newton Raphson method.	Understand	10
7	Solve x+3y+8z=4, x+4y+3z=-2, x+3y+4z=1 using LU decomposition	Understand	11
8	Solve 5x-y+3z=10,3x+6y=18,x+y+5z=-10 with initial approximations (3,0,-2) by Jacobi's iteration method	Understand	11
9	Using Jacobi's iteration method solve the system of equation 10x+4y-2z=12, x-10y-z=-10,5x+2y-10z=-3	Understand	11
10	Using Gauss-seidel iterative method solve the system of equations $5x+2y+z=12$, $x+4y+2z=15$, $x+2y+5z=20$	Understand	11
	(SHORT ANSWER TYPE QUESTIONS) UNIT-V		
1	Explain Trapezoidal rule	Understand	12
2	Explain Simpson's 1/3 and 3/8 rule	Understand	12
3	Estimate $\int_{0}^{\Pi/2} e^{\sin x} dx$ taking h= $\Pi/6$ correct o four decimal places	Understand	12
4	Explain two point and three point Gaussian quadrature	Understand	12
5	Compute using Gauss integral $\int_{-1}^{1} \sqrt{1-x^2} dx$, $n=3$	Apply	12
6	Explain Taylor's series method and limitations	Understand	13
7	Explain Picard's method of successive approximation Write the second approximation for $y^1=x^2+y^2$, $y(0)=1$	Understand	13
8	Give the difference between Euler's method and Euler's modified method	Analyze	13
9	Find y(0.1) given $y^1=x^2-y$, y(0)=1 by Euler's method	Apply	13
10	Explain Runge-Kutta second and classical fourth order	Understand	13
	(LONG ANSWER QUESTIONS) UNIT-V		
1	Evaluate $\int_{0}^{\pi} \left(\frac{\sin x}{x} \right) dx$ by using i) Trapezoidal rule ii) Simpson's $\frac{1}{3}$ rule taking n=6	Understand	12
2	Using Taylor's series method, find an approximate value of y at x=0.2 for the differential equation $y'-2y=3e^x$ for y(0)=0.	Apply	13
3	Given $y^1 = 1 + xy$, $y(0) = 1$ compute y (0.1), y (0.2) using Picard's method	Understand	13

S.No	QUESTION	Blooms Taxonomy Level	Course Outcome
4	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2).	Understand	13
5	Find y(0.1) and y(0.2) using Euler's modified formula given that $\frac{dy}{dx} = x^2 - y$ and y(0)=1	Apply	13
6	Find y(0.1) and y(0.2) using Runge Kutta fourth order formula given that $\frac{dy}{dx} = x + x^2 y \text{ and y(0)=1}.$	Apply	13
7	using Runge Kutta method of order 4 find y(0.2) for the equation $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1, h = 0.2$	Apply	13
8	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and corresponding Eigen vector and other Eigen value	Apply	14
9	Use power method find numerically largest Eigen value $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	Apply	14
10	Write the largest Eigen value of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$	Understand	14

Prepared By: Ms. P. Rajani, Associate Professor, Freshman Engineering

HOD, MECHANICAL ENGINEERING