ANALYSIS OF LAMINATED COMPOSITE PLATES

Semester: S'	I,
Semester:	3

Course Code	Category	Hours / Week Cred			Credits	Maximum Marks		ırks
ретраз	Elective	L	T	P	С	CIA	SEE	Total
BSTB23		3	0	0	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil		Tot	al Classes:	: 45		

I. COURSE OVERVIEW:

Laminated composite materials are increasingly being used in a large variety of structures including aerospace, marine and civil infrastructure owing to the many advantages they offer: high strength/stiffness for lower weight, superior fa-tigue response characteristics, facility to vary fiber orientation, material and stacking pattern, resistance to electro-chemical corrosion, and other superior material properties of composites.

II. COURSE OBJECTIVES:

The student will try to learn:

- I. The analysis of rectangular composite plates using different analytical methods.
- II. The Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT
- III. The development of computer programs for the analysis of composite plates.

III.COURSE OUTCOMES:

After successful completion of the course, students should be able to:					
CO 1	Apprehend the stress strain relationship of orthotropic and anisotropic materials.	Understand			
CO 2	Assess the failure criterion and fracture mechanics of composites.	Understand			
CO 3	Analyze the rectangular composite plates using the analytical methods.	Analyze			
CO 4	Analyze the composite plates using advanced finite element method	Analyze			
CO 5	Develop the computer programs for the analysis of composite plates	Create			
CO 6	Analyze the rectangular laminated plates using finite element methods	Analyze			

IV. SYLLABUS

UNIT-I	INTRODUCTION	Classes: 09			
Displacement Field Approximations for Classical Laminated Plate Theory (CLPT) and First Order Shear Deformation Theory (FSDT), Analytical Solutions for Bending of Rectangular Laminated Plates using CLPT.					
UNIT-II	GOVERNING EQUATIONS.	Classes: 09			

Navier Solutions of Cross-Ply and Angle-Ply Laminated Simply-Supported Plates, Determination of Stresses. Levy Solutions for Plates with Other Boundary Conditions, Analytical Solutions for Bending of Rectangular Laminated Plates Using FSDT.

UNIT-III FINITE ELEMENT SOLUTIONS

Classes: 09

Finite Element Solutions for Bending of Rectangular Laminated Plates using CLPT.

Stiffness Matrix and Truss element, truss element stiffness matrix, truss element bending function and Beam element

UNIT-IV INTRODUCTION TO FINITE ELEMENT METHOD

Classes: 09

Introduction to Finite Element Method, Rectangular Elements, Formation of Stiffness Matrix, Formation of Load Vector, Numerical Integration, Post Computation of Stresses

UNIT-V FEM MODELLING OF LAMINATED PLATES

Classes: 09

Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT. Finite Element Model, C0Element Formulation, Post Computation of Stresses.

Analysis of Rectangular Composite Plates using Analytical Methods.

Text Books:

1. J. N. Reddy, "Mechanics of Laminated Composite Plates and Shells".

Reference Books:

1. Reddy J. N., CRC Press, "Mechanics of Laminated Composites Plates and Shells".

Web References:

1. http://ethesis.nitrkl.ac.in/5685/1/110ME0327-3.pdf

E-Text Books:

1. http://ethesis.nitrkl.ac.in/5878/1/110ME0335-6.pdf