DATA PREPARATION AND ANALYSIS LABORATORY

II Semester: CSE										
Course Code	Category	Hours / Week			Credits	Maximum Marks				
BCSB20	Core	L	Т	Р	С	CIA	SEE	Total		
		0	0	4	2	30	70	100		
Contact Classes: Nil	Total Tutor	rials: Nil Total Practical			Classes: 36	Total Classes: 36				

I. COURSE OVERVIEW:

In this laboratory students will develop a solid understanding of data pre-processing, cluster analysis, genetic algorithms, data transformation, and hierarchical clustering. These skills will enable them to effectively prepare and analyze data, derive valuable insights, and make data-driven decisions in various domains.

II. OBJECTIVES

The students will try to learn:

- I. The pre-processing method for multi-dimensional data
- II. The Practice on data cleaning mechanisms
- III. The various data exploratory analysis
- IV. The visualizations for clusters or partitions

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Apply pre-processing techniques for cleaning data.	Apply	
CO 2	Develop a cluster models for categorizing data a cluster models for	Create	
	categorizing data		
CO 3	Apply genetic algorithms to optimization problems	Apply	
CO 4	Implement data transformation techniques on spatial, time series and numerical data	Apply	
CO 5	Choose clustering algorithm for implementing hierarchical clustering	Remember	

IV. SYLLABUS

LIST OF EXPERIMENTS

Week-1 DATA PRE-PROCESSING AND DATA CUBE

Data preprocessing methods on student and labor datasets Implement data cube for data warehouse on 3-dimensional data

Week-2 DATA CLEANING

Implement various missing handling mechanism, Implement various noisy handling mechanisms

Week-3 EXPLORATORY ANALYSIS

Develop k-means and MST based clustering techniques, Develop the methodology for assessment of clusters for given dataset

Week-4 ASSOCIATION ANALYSIS

Design algorithms for association rule mining algorithms

Week-5 HYPTOTHYSIS GENERATION

Derive the hypothesis for association rules to discovery of strong association rules; Use confidence and support thresholds.

Week-6 TRANSFORMATION TECHNIQUES

Construct Haar wavelet transformation for numerical data, Construct principal component analysis (PCA) for 5-dimensional data.

Week-7 DATA VISUALIZATION

Implement binning visualizations for any real time dataset, Implement linear regression techniques

Week-8 CLUSTERS ASSESSMENT

Visualize the clusters for any synthetic dataset, Implement the program for converting the clusters into histograms

Week-9 HIERARCHICAL CLUSTERING

Write a program to implement agglomerative clustering technique, Write a program to implement divisive hierarchical clustering technique

Week-10 SCALABILITY ALGORITHMS

Develop scalable clustering algorithms ,Develop scalable a priori algorithm

Reference Books:

1. Sinan Ozdemir, "Principles of Data Science", Packt Publishers, 2016.

Web References:

1. https://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf

- 2. https://socialresearchmethods.net/kb/statprep.php
- 3. https://www.quest.com/solutions/data-preparation-and-analysis/

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS:

SOFTWARE: Open source Weka 3.8, Python

HARDWARE: 18 numbers of Intel Desktop Computers with 4 GB RAM