MACHINE LEARNING

Semester: CSE									
Course Code	Category	H	Iours / W	eek	Credits	Maximum Marks		Iarks	
		L	Т	Р	С	CIA	SEE	Total	
BCSB03	Elective	3	0	0	3	30	70	100	
Contact Classes: 45	Total Tutori	Total Tutorials: Nil		Total Practical Classes: Nil			Total Classes: 45		

I.COURSE OVERVIEW:

The course covers the concepts of various machine learning algorithms and techniques with a modern outlook focusing on recent advances using modelling techniques, supervised and unsupervised learning.

II.OBJECTIVES:

The students will try to learn:

- I. The Design and analyze various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
- II. The Explore supervised and unsupervised learning paradigms of machine learning.
- III. The Explore Deep learning technique and various feature extraction strategies.

III.COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of the basic methods of supervised learning with linear models and binary classification include in multiclass outputs	Apply
CO 2	Summarize d ecision trees, support vector machines in optimizing basic methods of regression.	Understand
CO 3	Sketch the key issues and applications in clustering and dimensionality reduction.	Apply
CO 4	Experiment matrix factorization used to process reduction in unsupervised learning	Understand
CO 5	Correlate the modeling techniques and scalable machine learning in various time series data and graphical models.	Apply

IV.SYLLABUS:

UNIT-I	SUPERVISED LEARNING (REGRESSION/CLASSIFICATION)	Classes: 10
Basic methods: Dista	nce-based methods, Nearest- Neighbors, Decision Trees, Naive Bayes, Linear m	odels: Linear
Regression, Logistic	Regression, Generalized Linear Models, Support Vector Machines, Nonlinearit	y and Kernel
Methods, Beyond Bin Ranking.	ary Classification: Multi-class/Structured Outputs,	
UNIT-II	UNSUPERVISED LEARNING	Classes: 10
8	Kernel K-means, Dimensionality Reduction: PCA and kernel PCA, Matrix rix Completion, Generative Models (mixture models and latent factor models).	
UNIT-III	MACHINE LEARNING	Classes: 08
e	earning algorithms and Model Selection, Introduction to Statistical Learning Theo agging, Random Forests).	ry, Ensemble
UNIT-IV	MODELLING TECHNIQUES	Classes: 09

Sparse Modelling and Estimation, Modelling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning.

UNIT-V SCALABLE MACHINE LEARNING

A selection from some other advanced topics, e.g., Semi-supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference.

Classes: 08

Text Books:

- 1. Kevin Murphy, Machine Learning: "A Probabilistic Perspective", MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer 2009 (freely available to online)
- 3. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.

Web References:

- 1. http://www.tutorialspoint.com/r/
- 2. https://en.wikipedia.org/wiki/R_programming_language.
- 3. http://www.r-bloggers.com/how-to-learn-r-2/#h.obx6jyuc9j7t.

E-Text Books:

- 1. https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
- 2. https://www.cs.bris.ac.uk/~flach/mlbook/.
- 3. http://mylovelibrabry.com/emylibraryus/free.php?asin=1466583282.