MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

I Semester: CSE									
Course Code	Category		Hours Week	/	Credits	Maximum Marks		Iarks	
PCSP01	Core	L	Т	Р	С	CIA	SEE	Total	
DCSD01		3	0	0	3	30	70	100	
Contact Classes: 45	Total Tutorials: Nil	Tota	al Practi	ical Cla	asses: Nil	То	tal Class	es: 45	

I.COURSE OVERVIEW:

This course covers the concepts of Probability theory, Sampling Techniques, Statistical Inference, Graph Theory and various applications of Mathematical and statistical concepts in different branches of Computer Science. This course helps the students in gaining the knowledge and apply the mathematical logics to many modern techniques of information technology like machine learning, programming language design etc.

II.COURSE OBJECTIVES:

The students will try to learn:

- I. The mathematical fundamentals that is prerequisites for a variety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning.
- II. The mathematical logics to many modern techniques in information technology like machine learning, programming language design, and concurrency.
- III. The various sampling and classification problems.

III.COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of probability theory and distributions for depicting the expected	Apply		
	outcome of possible values in the data generating process/experiment			
CO 2	Build statistical models based on random sampling data for getting unbiased			
	estimates in performing data analysis.			
CO 3	Examine regression and multivariate statistical models for solving classification			
	and curve fitting problems in data analysis.			
CO 4	Identify appropriate techniques of graphs and combinatorial theory for finding			
	solutions to shortest path and enumeration problems.			
CO 5	Choose appropriate mathematical and statistical techniques for solving	Apply		
	applications in emerging areas of Information Technology			

IV.SYLLABUS:

UNIT-I	INTRODUCTION	Classes: 10		
Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains				
UNIT-II	RANDOM SAMPLES	Classes: 10		
Random samples, sampling distributions of estimators, Methods of Moments and Maximum Likelihood				
UNIT-III	STATISTICAL INTERFACE	Classes: 08		
Statistical inference, principal component	Introduction to multivariate statistical models: regression and classification probles s analysis, The problem of over fitting model assessment.	ems,		

UNIT-IV	GRAPH THEORY	Classes: 09
Graph Theory: Isom Permutations and Co enumeration problem	orphism, Planar graphs, graph coloring, Hamilton circuits and Euler cycles. ombinations with and without repetition. Specialized techniques to solve combinations.	torial
UNIT-V	COMPUTER SCIENCE AND ENGINEERING APPLICATIONS	Classes: 08
Data mining, Netwo architecture, operati	rk protocols, analysis of Web traffic, Computer security, Software engineering, Cong systems, distributed systems, Bioinformatics, Machine learning.	omputer
Text Books:		
 John Vince, "Fo K. Trivedi. "Pro M. Mitzenmach Analysis". Wile Alan Tucker, "A 	Soundation Mathematics for Computer Science", Springer. Subability and Statistics with Reliability, Queuing, and Computer Science Applicati er and E. Upfal." Probability and Computing: Randomized Algorithms and Proba y Applied Combinatorics", Wiley	ons". Wiley. bilistic
Web References:		
1. http://www.tuto 2. https://en.wikip 3. http://www.r-bl	rialspoint.com/r/ edia.org/wiki/R_programming_language. oggers.com/how-to-learn-r-2/#h.obx6jyuc9j7t.	
E-Text Books:		
 https://cran.r-pr https://www.cs. http://mylovelib 	oject.org/doc/manuals/r-release/R-intro.pdf bris.ac.uk/~flach/mlbook/. orabry.com/emylibraryus/free.php?asin=1466583282.	