COMPUTATIONAL STRUCTURES LABORATORY

II Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
DAED20	Core	L	T	P	С	CIA	SEE	Total
BAEB20		-	-	4	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil		Practical Classes: 48			Total Classes: 36		

I. COURSE OVERVIEW:

The major emphasis of this course is to solve a complex geometrical structure under a given loads, these methods does not have analytical solutions. Software's like ANSYS and NASTRAN is utilized to interpret results for complex geometries. Modeling of crack and composite structures help the students to solve realistic problems which are common in industries. Structural analysis on aircraft structures and Rocket components are delt to obtain the solution for bending and torsion under the applied aerodynamic loads.

II. COURSE OBJECTIVES:

The course should enable the students to:

- I. Identify the strength of ANSYS and NASTRAN software for the solution of fluid mechanics and structural mechanics problems.
- II. Describe steps necessary to solve a particular problem.
- III. Solve practical problems.
- IV. Interpret the results obtain from ANSYS and NASTRAN software.

III. COURSE OUTCOMES:

After successful completion of the course, students will be able to:

	,	
CO 1	Develop the appropriate method for predicting ultimate load on wing using ANSYS.	Analyze
CO 2	Estimate the rocket motor case loading for the launch vehicle by using computational tools.	Analyze
CO 3	Examine the thermal and structural loading on exposed components during the flight mission for obtaining airworthiness suitability.	Analyze
CO 4	Make use of the structural fatigue concept for obtaining desired operational characteristics.	Analyze
CO 5	Analyze the effect of fracture during bird hit using L S Dyna simulation for failure rate of an aircraft.	Analyze
CO 6	Determine the failure mode during fracture of an aircraft component for assessing crack propagation.	Analyze

LIST OF EXPERIMENTS

Week-1	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-I
--------	---

Implement the following tasks

1. Structural analysis of aircraft wing

Week-2	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-II
Implement t	he following tasks
1. Structura	al analysis of aircraft wing (composite material)
Week-3	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-III
-	he following tasks
1. Analysis	s of fuselage
Week-4	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-IV
Implement t	he following tasks
1. Rocket 1	motor case analysis
Week-5	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-V
	he following tasks
1. Structura	al and thermal analysis of rocket nozzles
Week-6	AEROSPACE STRUCTURAL ANALYSIS USING ANSYS-VI
Implement to	he following tasks
1. Fractur	ral mechanics of crack propagation
Week-7	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-I
Implement t	he following tasks
1. Structura	al analysis of aircraft wing
Week-8	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-II
Implement t	he following tasks
1. Structura	al analysis of aircraft wing (composite material)
Week-9	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-III
Implement t	he following tasks
1. Analysis	s of fuselage
Week-10	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-IV
Implement t	he following tasks
1. Rocket motor case analysis	
Week-11	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-V
Implement the following tasks	
1. Structural and thermal analysis of rocketnozzles	
Week-12	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-VI
(

Implement the following tasks

1. Fractural mechanics of crackpropagation

Reference Books:

- 1. Y. Nakasone, S.Yoshimoto, T.A. Stolarski, "Engineering analysis with ANSYS software", Elsevier Publication, 2006.
- 2. MSC Nastran 2014.1 Quick Reference Guide, Jun.2015.
- 3. John C Tannehill, Dale A Anderson, Richard H Pletcher, "Computational Fluid Mechanics And Heat Transfer", Taylor & Francis Publication, 2nd Edition,1997.
- 4. T J Chug, "Computational Fluid Dynamics", Cambridge University Press, 2002.

Web References:

- 1. http://resource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/AA-V4-I1-Teaching-Simulation-to-Future-Engineers.pdf
- 2. http://www.autodesk.in/products/simulation/overview
- 3. http://www.serc.iisc.in/facilities/ansys-13-0-cfd/