AEROSPACE PROPULSION

Course Code		Category	Но	ırs / W	eek	Credits	Max	Maximum Marks	
BAEB02		Core	L	Т	Р	С	CIA	SEE	Tota
			3	-	-	3	30	70	100
Contact Classes: 45		Tutorial Classes: Nil	Prac	Practical Classes: Nil Total					sses: 45
This cour of different C engine analysis v II. COUI The cour I. The II. The III. The IV. The III. COU	se discusses a nt types of pr e, solid prope- vill be discuss RSE OBJEC se should ena basic working design and an design of diff RSE OUTCO cessful comp	able the students to: g principles of different alysis of IC engines. Ferent components of ga erent components of so OMES: Deletion of the course, s	pace prop nt in aircra nt and liq neters and types of a s turbine. olid and liq tudents w	ulsive d fts and uid pro compo ir breat uid pro ill be a l	evices in rockets s pellant en nents pre hing engi pellant ro	micro level, uch as turboj ngines. Alon sent in aerosp nes. ockets.	it includ jet, turbo g with t pace proj	es an o prop, tr hat des pulsive	verviev urbofan ign and system
CO 1	performance		•		-				pply
CO 2		between the function and after burners for ch						s, A	pply
CO 3		e performance parame n of an aircraft engine.	eters for e	estimati	ng the th	nrust and spo	ecific fu	el Ai	nalyze
CO 4	Examine the working procedure of rocket propulsion system and components for selecting them based on mission profile							or Ar	nalyze
CO 5	Make a use the performa	e of working principles ances level.	s of solid a	and hyb	rid rocke	t motors for	increasir	ng A	pply
CO 6		b-systems and heat t eep space rocket propul			in liquid	propellant	rocket f	or Ar	nalyze
IV. SYLI	LABUS:								
UNIT-I	AIR-BRE	EATHING ENGINES						Class	es: 09
turboshaf thrust, thr	t, ramjet, scraution;	onal envelopes; Descrip amjet, turbojet/ramjet Engine performance pa ency, propulsive effici	combined arameters,	cycle e specifie	engine; E e thrust, s	ngine thrust, pecific fuel c	takeoff	thrust, tion and	installe 1 specif

UNIT-II	AIRCRAFT ENGINE INLETS, EXHAUST NOZZLES, COMBUSTORS AND AFTERBURNERS	Classes: 09
	COMBOSTORS AND AT TERDORI (ERS	

Subsonic inlets: Function, design variables, operating conditions, inlet performance, performance parameters; Supersonic inlets: Compression process, types, construction, losses, performance characteristics; Exhaust nozzles: primary nozzle, fan nozzle, converging nozzle, converging-diverging nozzle, variable nozzle, and performance maps, thrust reversers and thrust vectoring, Combustors and Afterburners: Geometries, flame stability, ignition and engine starting, adiabatic flame temperature, pressure losses, performance maps, fuel types and properties.

UNIT-III AXIAL FLOW COMPRESSORS AND TURBINES Classes: 09

Axial flow Compressors: Geometry, definition of flow angles, stage parameters, cascade aerodynamics, aerodynamic forces on compressor blades, rotor and stator frames of reference, compressor performance maps, velocity polygons or triangles, single stage energy analysis, compressor instability, stall and surge.

Axial Flow Turbines: Geometry, configuration, comparison with axial flow compressors, velocity polygons or triangles, single stage energy analysis, performance maps, thermal limits of blades and vanes, blade cooling, blade and vane materials, blade and vane manufacture.

UNIT-IV SOLID-PROPELLANT ROCKET MOTORS

Background description: Classification of rocket propulsion systems; Performance of an ideal rocket, rocket thrust equation, total and specific impulse, effective exhaust velocity, rocket efficiencies, characteristic velocity, thrust coefficient; Description of solid propellant rocket motor, solid propellant grain configurations, homogeneous propellant, heterogeneous or composite propellant, different grain cross sections, propellant burning rate, combustion of solid propellants, physical and chemical processes, ignition process, combustion instability; Hybrid propellant rockets: Hybrid rocket operation and hybrid rocket characteristics.

UNIT-V LIQUID PROPELLANT ROCKET ENGINES: PROPELLANT TYPES

Classes: 09

Classes: 09

Bipropellant, monopropellant, cold gas propellant, cryogenic propellant, storable propellants, gelled propellant; Propellant Storage, different propellant tank arrangements, propellant feed system-pressure feed, turbopump feed; Thrust chambers, injectors, combustion chamber, nozzle, starting and ignition, variable thrust; Combustion of liquid propellants: Combustion process, combustion instability, thrust vector control.

Text Books:

- 1. Ronald D. Flack, "Fundamentals of Jet Propulsion with Applications", Cambridge University Press, 3rd Edition, 2011.
- 2. George P. Sutton, Oscar Biblarz, "Rocket Propulsion Elements", Wiley India Pvt. Ltd, 7th Edition, 2010.

Reference Books:

- 1. Jack D. Mattingly, "Elements of Propulsion: Gas Turbines and Rockets", AIAA Education Series, Edition, 2006.
- 2. Saeed Farokhi, "Aircraft Propulsion", Wiley, 2nd Edition, 2014.
- 3. David R. Greatrix, "Powered Flight: The Engineering of Aerospace Propulsion", Springer, 3rd Edition, 2012.

Web References:

- 1. http://www.aero.iisc.ernet.in/page/propulsion
- 2. https://afreserve.com/aerospace-propulsion
- 3. http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-systems-spring-2012/Syllabus/

E-Text Books:

- 1. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118307984.html
- 2. http://www.freeengineeringbooks.com/AeroSpace/Propulsion-Books.php
- 3. http://www.springer.com/us/book/9781447124849?token=prtst0416p