

#### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

### ELECTRONICS AND COMMUNICATION ENGINEERING

### DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    | :  | ANALOG COMMUNICATIONS                                                                                                                                |
|----------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | :  | AECB12                                                                                                                                               |
| Program        | :  | <b>B.Tech</b>                                                                                                                                        |
| Semester       | :  | IV                                                                                                                                                   |
| Branch         | :  | Electronics and Communication Engineering                                                                                                            |
| Section        | •• | A,B,C,D                                                                                                                                              |
| Academic Year  | •• | 2019–2020                                                                                                                                            |
| Course Faculty | •• | Ms. Ajitha G, Assistant Professor,<br>Dr. P.Munaswamy, Professor,<br>Mr. G.Kiran Kumar, Assistant Professor,<br>Ms. P.Saritha , Assistant Professor. |

### **OBJECTIVES:**

| Ι   | Introduce the communication system and need of modulation.                                                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| II  | Understand the concepts of Amplitude Modulation and its types (DSB-SC, SSB and VSB).                                               |
| III | Understand the concepts of Angular Modulation, FM and types of FM.                                                                 |
| IV  | Describe the behavior of analog communications in the presence of noise and also the basics of analog pulse modulation techniques. |
| V   | Classify and discuss the different types of transmitters and receivers.                                                            |

# DEFINITIONS AND TERMINOLOGY QUESTION BANK

| S.No | QUESTION                          | ANSWER                                                                                                                                                                                                                                                | Blooms Level | Course<br>Outcome | CLO   | CLO Code |
|------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|----------|
|      |                                   | MODULE-I                                                                                                                                                                                                                                              |              |                   |       |          |
| 1    | Define<br>baseband<br>signal.     | Baseband signal in communication<br>systems, the information-carrying<br>signal that is modulated onto a<br>carrier for transmission                                                                                                                  | Remember     | CO1               | CLO 1 | AECB12.1 |
| 2    | Define carrier<br>signal.         | The RF signal in a communications<br>system that has the modulating<br>signal superimposed on it. This<br>signal may have its frequency,<br>amplitude, or phase varied to form<br>a modulated signal. Without<br>modulation it is a simple RF signal. | Understand   | CO1               | CLO 1 | AECB12.1 |
| 3    | Define<br>modulation<br>property. | A property of the Fourier transform<br>in which the Fourier transform of a<br>modulated signal $c(t)e^{jwot}$ is equal<br>to $C(w - wo)$ , where $C(w)$ is the                                                                                        | Understand   | CO1               | CLO 2 | AECB12.2 |

| S.No | QUESTION                                            | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                      | Blooms Level | Course<br>Outcome | CLO   | CLO Code |
|------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|----------|
|      |                                                     | Fourier transform of c(t).                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |       |          |
| 4    | Define Pilot<br>carrier.                            | Pilot carrier is a small carrier<br>transmitted with modulated signal<br>from the transmitter. It is separated<br>at the receiver and used to phase<br>lock the locally generated carrier<br>signal generated at the receiver. It<br>provides synchronization<br>at the receiver                                                                                                                            | Understand   | CO1               | CLO 1 | AECB12.1 |
| 5    | Define<br>transmission<br>efficiency of<br>AM wave. | The transmission efficiency $(\eta)$ of<br>AM wave is defined as the<br>percentage of total power<br>contributed by side bands of the<br>AM signal. The maximum<br>transmission efficiency of an AM<br>signal is 33.33%, i.e., only one third<br>of the total transmitted<br>power is carried by the side bands<br>in an AM wave. The remaining<br>two third of the total transmitted<br>power gets wasted. | Remember     | CO1               | CLO 2 | AECB12.2 |
| 6    | Define<br>Frequency<br>division<br>multiple access  | Frequency division multiple access<br>(FDMA) a multiple-access<br>technique based on assigning each<br>user a unique frequency band upon<br>which transmission takes place.                                                                                                                                                                                                                                 | Understand   | CO1               | CLO 1 | AECB12.1 |
| 7    | What is<br>Balanced<br>modulator?                   | Balanced modulator a modulator in<br>which the carrier and modulating<br>signal are introduced so that the<br>output contains the two sidebands<br>without the carrier.                                                                                                                                                                                                                                     | Understand   | CO1               | CLO 2 | AECB12.2 |
| 8    | Define Local<br>oscillator.                         | local oscillator an oscillator or<br>circuit that produces a periodic<br>signal whose function is to be<br>utilized in the demodulation of a<br>received radio signal. This<br>periodic signal is typically a<br>sinusoid and the oscillator is<br>typically located in a radio receiver                                                                                                                    | Remember     | CO1               | CLO 2 | AECB12.2 |
| 9    | Define Ring<br>Modulator.                           | Ring modulator is a product modulator<br>used for DSB SC generation. It<br>consists of four diodes connected in<br>the form of ring. In AM, the ring<br>modulator acts as a product modulator<br>for a square wave carrier and<br>modulating signal and<br>generated a Double Side Band-<br>Suppressed Carrier signal.                                                                                      | Understand   | CO1               | CLO 3 | AECB12.3 |
| 10   | Define envelope detector.                           | Envelope detector the optimum<br>structure for detecting a modulated<br>sinusoid with random phase in the<br>presence of additive white Gaussian<br>noise.                                                                                                                                                                                                                                                  | Understand   | COI               | CLO 2 | AECB12.2 |

| S.No | QUESTION                                               | ANSWER                                                                                                                                                                                                                                                                           | Blooms Level | Course<br>Outcome | CLO   | CLO Code |
|------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|----------|
| 11   | Define Costas<br>loop.                                 | Costas loop a carrier synchronization<br>loop in a digital communications<br>receiver<br>that uses a quadrature phase detector<br>in place of a conventional square-law<br>device.                                                                                               | Remember     | CO1               | CLO 3 | AECB12.3 |
| 12   | Define Diagonal<br>clipping.                           | Diagonal clipping distortion that<br>occurs in an AM demodulator (usually<br>associated with diode detection),<br>where the capacitor discharge time<br>constant is set too long for the detector<br>to accurately follow fast changes in<br>the AM<br>signal envelope.          | Remember     | COI               | CLO 2 | AECB12.2 |
| 13   | Define<br>modulated signal.                            | The resultant signal after the process<br>of modulation is called as a modulated<br>signal.                                                                                                                                                                                      | Remember     | CO1               | CLO 1 | AECB12.1 |
| 14   | What is over modulation?                               | Over modulation is the condition that<br>prevails in telecommunication when<br>the<br>instantaneous level of the modulating<br>signal exceeds the value necessary to<br>produce 100% modulation of the<br>carrier                                                                | Understand   | CO1               | CLO 2 | AECB12.2 |
| 15   | Define<br>modulation index<br>of AM.                   | Modulation index of AM is defined as<br>the ratio of message signal amplitude<br>to the carrier signal amplitude.                                                                                                                                                                | Understand   | CO1               | CLO 2 | AECB12.2 |
| 16   | What is need for modulation?                           | Baseband signals are incompatible for<br>direct transmission. For such a signal,<br>to<br>travel longer distances, its strength has<br>to be increased by modulation                                                                                                             | Understand   | CO1               | CLO 2 | AECB12.2 |
| 17   | Define Pilot<br>carrier.                               | Pilot carrier is a small carrier<br>transmitted with modulated signal<br>from the transmitter. It is separated at<br>the receiver and used to phase lock the<br>locally generated carrier signal<br>generated at the receiver. It provides<br>synchronization<br>at the receiver | Remember     | CO1               | CLO 2 | AECB12.2 |
| 18   | What is multi tone modulation?                         | message signals (which has more than<br>one frequency component)is called<br>multi tone modulation.                                                                                                                                                                              | Understand   | CO1               | CLO 1 | AECB12.1 |
| 19   | What is the time<br>domain<br>description of<br>DSBSC? | $m(t) = A_{m}cos(2\pi f_{m}t)$<br>$c(t) = A_{c}cos(2\pi f_{c}t) s(t) = m(t).c(t)$                                                                                                                                                                                                | Understand   | CO1               | CLO 2 | AEC005.2 |
| 20   | What is Balanced modulator?                            | Balanced modulator a modulator in<br>which the carrier and modulating<br>signal are introduced so that the output<br>contains the two sidebands without the<br>carrier.                                                                                                          | Remember     | CO1               | CLO 3 | AECB12.3 |
| 21   | Define Local oscillator.                               | Local oscillator an oscillator or circuit<br>that produces a periodic signal whose<br>function is to be utilized in the                                                                                                                                                          | Remember     | CO1               | CLO 3 | AECB12.3 |

| S.No | QUESTION                                               | ANSWER                                                                                                                                                                                                                                                                                                                   | Blooms Level | Course<br>Outcome | CLO   | CLO Code |
|------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|----------|
|      |                                                        | demodulation of a received radio signal.                                                                                                                                                                                                                                                                                 |              |                   |       |          |
| 22   | Define low level modulation.                           | Low level modulation is the<br>modulation in which modulation<br>is done at low power level.                                                                                                                                                                                                                             | Understand   | CO1               | CLO 2 | AECB12.2 |
| 23   | Define carrier signal.                                 | The RF signal in a communications<br>system that has the modulating signal<br>superimposed on it.                                                                                                                                                                                                                        | Remember     | CO1               | CLO 2 | AECB12.2 |
| 24   | What is<br>Transmission<br>efficiency?                 | Transmission efficiency defined<br>as the percentage of total power<br>contributed by side bands.                                                                                                                                                                                                                        | Understand   | CO1               | CLO 2 | AECB12.2 |
| 25   | What is multi tone AM?                                 | Transmission of Multi tones (<br>more than one modulating signals<br>)at a time.                                                                                                                                                                                                                                         | Understand   | CO1               | CLO 1 | AECB12.1 |
| 26   | What is DSBFC?                                         | DSBFC is the modulation in which<br>sidebands are transmitted along with<br>full<br>carrier wave.                                                                                                                                                                                                                        | Understand   | CO1               | CLO 1 | AECB12.1 |
| 27   | Define Spectrum<br>of DSBSC wave.                      | The spectrum of DSBSC wave contains upper side band ,lower sideband.                                                                                                                                                                                                                                                     | Understand   | CO1               | CLO 2 | AECB12.2 |
| 28   | Define bandwidth<br>DSBSC wave.                        | Band width of AM wave is defined<br>as the difference between upper side<br>band frequency and lower side band<br>frequency.<br>Bandwidth = 2fm.                                                                                                                                                                         | Remember     | CO1               | CLO 1 | AECB12.1 |
| 29   | Define average<br>power of carrier<br>signal.          | The average power of carrier signal<br>is $Ac^2/2R$ .where Ac is the amplitude<br>of the carrier.                                                                                                                                                                                                                        | Remember     | CO1               | CLO 2 | AECB12.2 |
| 30   | Define<br>transmission<br>efficiency<br>of DSBSC wave. | The maximum transmission<br>efficiency of an DSBSC signal is<br>100%                                                                                                                                                                                                                                                     | Understand   | CO1               | CLO 1 | AECB12.1 |
| 31   | Define Ring<br>Modulator.                              | Ring modulator is a product<br>modulator used for DSB SC<br>generation. It consists of four<br>diodes connected in the form of<br>ring. In AM, the ring modulator<br>acts as a product modulator for a<br>square wave carrier and<br>modulating signal and generated a<br>Double Side Band-Suppressed<br>Carrier signal. | Understand   | CO1               | CLO 2 | AECB12.2 |
| 32   | Define envelope detector.                              | Envelope detector the optimum<br>structure for detecting a<br>modulated sinusoid with random<br>phase in the presence of additive<br>white Gaussian noise.                                                                                                                                                               | Remember     | CO1               | CLO 2 | AECB12.2 |
| 33   | Define<br>Demodulation.                                | Recovery of message signal from<br>modulated wave is called<br>demodulation                                                                                                                                                                                                                                              | Understand   | CO1               | CLO 2 | AECB12.2 |

| S.No | QUESTION                                            | ANSWER                                                                                                                                                                                                                                                                                                     | Blooms Level | Course<br>Outcome | CLO   | CLO Code |
|------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|----------|
| 34   | What is<br>Amplitude<br>modulation?                 | Amplitude modulation may be<br>defined as maximum amplitude of<br>carrier wave is varied in accordance<br>with the message signal amplitude.                                                                                                                                                               | Remember     | CO1               | CLO 2 | AECB12.2 |
| 35   | What is band<br>width of AM<br>wave?                | Band width of AM wave is defined<br>as the difference between upper side<br>band frequency and lower side band<br>frequency. Bandwidth = 2fm                                                                                                                                                               | Remember     | CO1               | CLO 2 | AECB12.2 |
| 36   | What is CW modulation?                              | A high frequency sine wave is used<br>as a carrier wave then it is called cw<br>modulation                                                                                                                                                                                                                 | Understand   | CO1               | CLO 2 | AECB12.2 |
| 37   | Define Diagonal<br>clipping.                        | Diagonal clipping distortion that<br>occurs in an AM demodulator<br>(usually associated with diode<br>detection), where the capacitor<br>discharge time constant<br>is set too long for the detector to<br>accurately follow fast changes in the<br>AM signal envelope                                     | Remember     | CO1               | CLO 2 | AECB12.2 |
| 38   | What is the time<br>domain<br>description of<br>AM? | $m(t)=A_{m}cos(2\pi f_{m}t)$ $c(t)=A_{c}cos(2\pi f_{c}t)$ $s(t)=[A_{c}+A_{m}cos(2\pi f_{m}t)]cos(2\pi f_{c}t)$                                                                                                                                                                                             | Understand   | CO1               | CLO 2 | AECB12.2 |
| 39   | Define perfect modulation.                          | The modulation index is equal to1,<br>then the modulation is called as<br>perfect- modulation                                                                                                                                                                                                              | Remember     | CO1               | CLO 2 | AECB12.2 |
| 40   | What is<br>communication<br>system?                 | Communication system is used to<br>transfer the message signal from<br>transmitter<br>to receiver.                                                                                                                                                                                                         | Remember     | CO1               | CLO 1 | AECB12.2 |
| 41   | Define high level modulation.                       | High level modulation is the<br>modulation in which modulation is<br>done at high power level.                                                                                                                                                                                                             | Remember     | CO1               | CLO 2 | AECB12.2 |
|      |                                                     | MODULE -II                                                                                                                                                                                                                                                                                                 |              |                   |       |          |
| 1    | Define<br>generation<br>methods of<br>SSB-SC.       | Frequency discrimination and<br>phase discrimination methods are<br>used to generate SSB-SC signal.                                                                                                                                                                                                        | Remember     | CO 2              | CLO 4 | AECB12.4 |
| 2    | Define<br>frequency mixer.                          | A device that performs the frequency translation of a modulated signal.                                                                                                                                                                                                                                    | Understand   | CO 2              | CLO 4 | AECB12.4 |
| 3    | What is the<br>application of<br>VSB modulation?    | VSB modulation is used in television applications.                                                                                                                                                                                                                                                         | Remember     | CO 2              | CLO 5 | AECB12.5 |
| 4    | What is frequency<br>translation?                   | Frequency translation the process of<br>transferring a signal form one part of<br>the frequency axis to the other is<br>called Frequency translation. It<br>occurs frequently in a Wireless<br>communication system, that is,<br>Frequency translation is used to<br>transfer the pass band signal to base | Understand   | CO 2              | CLO4  | AECB12.4 |

| S.No | QUESTION                          | ANSWER                                                                                                                                                                                                                                                                                               | Blooms Level | Course<br>Outcome | CLO   | CLO Code  |
|------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|-----------|
|      |                                   | band signal.                                                                                                                                                                                                                                                                                         |              |                   |       |           |
| 5    | Define carrier suppression.       | Carrier suppression is generally<br>used as a method to significantly<br>reduce the amount of unnecessary<br>transmitted power, based upon the<br>fact that no information is<br>contained within the carrier<br>amplitude in an AM waveform                                                         | Remember     | CO 2              | CLO 4 | AECB12.4  |
| 6    | Define VSB modulation.            | In VSB 1. One sideband is not<br>rejected fully. 2. One sideband is<br>transmitted fully and a small part<br>(vestige) of the other sideband is<br>transmitted                                                                                                                                       | Understand   | CO 2              | CLO 5 | AECB12.5  |
| 7    | Define figure of merit.           | The ratio of the input power to the output power. It is a figure of merit for the energy cost effectiveness of a device.                                                                                                                                                                             | Remember     | CO 2              | CLO 4 | AECB12.4  |
| 8    | Define Signal-<br>to-noise ratio. | Signal-to-noise ratio (SNR) the<br>ratio of the average power of the<br>information signal component to<br>the average power of the noise<br>component in a signal consisting of<br>the sum of an information signal<br>component and a corrupting noise<br>component. It is a unit less<br>quantity | Understand   | CO 2              | CLO 4 | AECB12.4  |
| 9    | Define<br>Bandwidth of<br>SSBSC   | The bandwidth of SSBSC is highest modulating frequency.                                                                                                                                                                                                                                              | Understand   | CO 2              | CLO 4 | AECB12.4  |
| 10   | Define noise.                     | An unwanted signal that propagates along with the required signal.                                                                                                                                                                                                                                   | Understand   | CO 2              | CLO 4 | AECB1204  |
| 11   | Define VSB modulation.            | In VSB One sideband is not<br>rejected fully. 2. One sideband is<br>transmitted fully and a small part<br>(vestige) of the other sideband is<br>transmitted                                                                                                                                          | Understand   | CO 2              | CLO 5 | AECB12.04 |
| 12   | Define figure of merit.           | The ratio of the input power to the<br>output power. It is a figure of merit<br>for the energy cost effectiveness of<br>a device.                                                                                                                                                                    | Remember     | CO 2              | CLO 5 | AECB12.04 |
| 13   | Define SSBSC.                     | SSBSC is modulation technique to provide single side band with suppressed carrier.                                                                                                                                                                                                                   | Understand   | CO 2              | CLO 4 | AECB12.04 |
| 14   | Define coherent detection.        | In coherent detection locally<br>generated carrier is exactly coherent<br>or synchronized in both frequency<br>and phase with the original carrier<br>wave c(t) which is used to generate<br>the DSB-SC wave or SSB-SC wave.                                                                         | Understand   | CO 2              | CLO 4 | AECB12.04 |

| S.No | QUESTION                                                      | ANSWER                                                                                                                                                                                         | Blooms Level | Course<br>Outcome | CLO   | CLO Code  |
|------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|-----------|
| 15   | Define frequency<br>discrimination<br>method.                 | In frequency discrimination method<br>DSBSC signal is filtered by band<br>pass filter.                                                                                                         | Remember     | CO 2              | CLO 4 | AECB12.04 |
| 16   | Define detection<br>of SSBSC with<br>having large<br>carrier. | Envelope detector is used for<br>detection of SSBSC with having<br>large carrier                                                                                                               | Remember     | CO 2              | CLO 4 | AECB12.04 |
| 17   | Define frequency<br>spectrum of<br>VSBSC.                     | The spectrum of VSBSC contains<br>upper side band and part of the lower<br>side band.                                                                                                          | Understand   | CO 2              | CLO 5 | AECB12.05 |
| 18   | What is equation<br>of VSBSC<br>frequency<br>spectrum?        | Equation of VSBSC frequency<br>spectrum<br>S(f)=Ac/2[M(f-fc)+M(f+fc)]H(f)                                                                                                                      | Understand   | CO 2              | CLO 5 | AECB12.05 |
| 19   | Define quadrature<br>component of<br>narrowband<br>noise.     | nQ(t) sin ωct is the in-phase<br>component                                                                                                                                                     | Understand   | CO 2              | CLO 5 | AECB12.05 |
| 20   | Define quadrature<br>component of<br>narrowband<br>noise.     | nQ(t) sin oct is the in-phase<br>component                                                                                                                                                     | Understand   | CO 2              | CLO 4 | AECB12.04 |
| 21   | Define Output<br>SNR.                                         | It is the ratio Average power of<br>demodulated signal s(t) to Average<br>power of noise                                                                                                       | Understand   | CO 2              | CLO 4 | AECB12.04 |
| 22   | Define Band pass filter.                                      | An electronic circuits which allows the band of frequency signals                                                                                                                              | Remember     | CO 2              | CLO 4 | AECB12.04 |
| 23   | Define Input<br>SNR.                                          | It is ratio Average power of<br>modulated signal s(t) Average<br>power of noise                                                                                                                | Understand   | CO 2              | CLO 6 | AECB12.06 |
| 24   | Define noise.                                                 | An unwanted signal that propagates along with the required signal.                                                                                                                             | Understand   | CO 2              | CLO 6 | AECB12.06 |
| 25   | What is frequency spectrum?                                   | The frequency spectrum is a conversion of time domain signal to frequency domain (Distribution of the amplitudes and phases of each frequency component against frequency.)                    | Remember     | CO 2              | CLO 4 | AECB12.04 |
| 26   | What is frequency translation?                                | Frequency translation the process<br>of transferring a signal form one<br>part of the<br>frequency axis to the other is called<br>Frequency translation.                                       | Understand   | CO 2              | CLO 5 | AECB12.04 |
| 27   | What is the total power in SSB-SC wave?                       | The power of SSBSC wave is<br>Pt=PUSB=PLSB                                                                                                                                                     | Understand   | CO 2              | CLO 5 | AECB12.04 |
| 28   | What are the advantages of SSB?                               | Bandwidth or spectrum space<br>occupied is lesser than AM and<br>DSBSC waves. Transmission of<br>more number of signals is allowed.<br>Power is saved.High power signal<br>can be transmitted. | Remember     | CO 2              | CLO 5 | AECB12.04 |

| S.No | QUESTION                                                                         | ANSWER                                                                                                                                                                                                                                                                                   | Blooms Level | Course<br>Outcome | CLO   | CLO Code      |
|------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|---------------|
| 29   | Define time<br>domain equation<br>of SSBSC USB<br>for single tone<br>modulation. | s(t)=AmAc/2cos[2π(fc+fm)t]                                                                                                                                                                                                                                                               | Understand   | CO 2              | CLO 5 | AECB12.04     |
| 30   | Define power of message signal.                                                  | The power of the message signal=A $^{2}/_{2m}$                                                                                                                                                                                                                                           | Remember     | CO 2              | CLO 5 | AECB12.04     |
| 31   | Define Channel model .                                                           | Channel is Distortion less ,Additive<br>White Gaussian Noise (AWGN)                                                                                                                                                                                                                      | Remember     | CO 2              | CLO 4 | AECB12.04     |
| 32   | Define Signal-to-<br>noise ratio.                                                | Signal-to-noise ratio (SNR) the ratio<br>of the average power of the<br>information signal component to the<br>average power of the noise<br>component in a signal consisting of<br>the sum of an information signal<br>component and a corrupting<br>noise component. It is a unit less | Understand   | CO 2              | CLO 4 | AECB12.04     |
| 33   | Define Bandwidth                                                                 | quantity.<br>The bandwidth of SSBSC is highest                                                                                                                                                                                                                                           | Understand   | CO 2              | CLO 4 | AECB12.04     |
| 34   | of SSBSC.<br>Define filter.                                                      | modulating frequency.<br>An electronic circuits which allows<br>the wanted signals and rejects                                                                                                                                                                                           | Understand   | CO 2              | CLO 6 | AECB12.06     |
| 35   | What is the<br>application of<br>VSB modulation?                                 | VSB modulation is used in television applications.                                                                                                                                                                                                                                       | Remember     | CO 2              | CLO 5 | AECB12.05     |
| 36   | What is the time<br>domain<br>description of<br>SSBSC LSB?                       | $s(t)=m(t)cosw_ct+m_h(t)sinw_ct$<br>where $m_h(t)$ is the Hilbert<br>transform of message signal                                                                                                                                                                                         | Understand   | CO 2              | CLO 5 | AECB12.05     |
| 37   | What are the disadvantages of SSB -SC?                                           | The generation and detection of<br>SSBSC wave is a complex process.<br>The quality of the signal gets<br>affected unless the SSB transmitter<br>and receiver have excellent<br>frequency stability.                                                                                      | Understand   | CO 2              | CLO 5 | AECB12.05     |
| 38   | What is Figure of merit of DSBSC receiver.                                       | The Figure of merit of DSBSC receiver is 1.                                                                                                                                                                                                                                              | Remember     | CO 2              | CLO 4 | AECB12.04     |
| 39   | Define Power<br>Spectral<br>Density of Noise.                                    | Power Spectral Density of Noise $N_0/2$ , and is defined for both positive and negative frequency                                                                                                                                                                                        | Understand   | CO 2              | CLO 5 | AECB12.05     |
| 40   | Define in-phase<br>component of<br>narrowband<br>noise.                          | $n_{I}(t) \cos \omega_{c} t$ is the in-phase component                                                                                                                                                                                                                                   | Remember     | CO 2              | CLO 5 | AECB12.0<br>5 |
| 41   | Define the<br>deviation ratio D<br>for non-sinusoidal<br>modulation.             | The deviation ratio D is defined as<br>the ratio of the frequency deviation f,<br>which<br>Corresponds to the maximum<br>possible amplitude of the modulation<br>signal m (t), to the highest<br>modulation frequency. $D = \Delta f / f m$                                              | Remember     | CO 2              | CLO 4 | AECB12.0<br>4 |

| S.No | QUESTION                                       | ANSWER                                                                                                                                                                                                                                                                                                | Blooms Level | Course<br>Outcome | CLO   | CLO Code      |
|------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|---------------|
|      |                                                | MODULE –III                                                                                                                                                                                                                                                                                           |              |                   |       |               |
| 1    | Define phase<br>modulation.                    | Phase modulation a type of angle<br>modulation whereby information is<br>encoded onto a carrier wave by<br>modifying its phase angle as a<br>function of time in<br>proportion to the intelligence signal                                                                                             | Understand   | CO 3              | CLO 7 | AECB12.07     |
| 2    | Define Foster-<br>Seeley<br>Discriminator.     | amplitude.The Foster-Seeley Discriminator isalso known as the Phase-ShiftDiscriminator. It uses a double-tunedrf transformer to convert frequencyvariations in the received fm signal toamplitude variations. Theseamplitude variations are thenrectified and filtered to provide a dcoutput voltage. | Remember     | CO 3              | CLO 9 | AECB12.09     |
| 3    | Define Ratio<br>detector                       | The ratio detector is a variant of the<br>Foster-Seeley discriminator, but one<br>diode conducts in an opposite<br>direction, and using a tertiary<br>winding in the preceding<br>transformer. The output in this case is<br>taken between the sum of the diode<br>voltages and the center tap.       | Understand   | CO 3              | CLO 9 | AECB12.09     |
| 4    | Define Indirect<br>method of FM<br>generation. | Indirect method is the transmitter<br>originates a wave whose phase is a<br>function of the modulation. Normally<br>it is used for the generation of<br>WBFM.<br>where WBFM is generated from<br>NBFM                                                                                                 | Understand   | CO 3              | CLO 9 | AECB12.0<br>9 |
| 5    | Define De-<br>emphasis.                        | De-emphasis is by reducing the<br>amplitude level of the received high<br>frequency signal by the same amount<br>as the increase in pre-emphasis is<br>termed as De- emphasis.                                                                                                                        | Understand   | CO 3              | CLO 9 | AECB12.0<br>9 |
| 6    | Define Slope<br>detector.                      | The slope detection is a method of<br>FM-demodulation which converts the<br>received FM signal to AM and<br>demodulates with an envelope<br>detector.                                                                                                                                                 | Understand   | CO 3              | CLO 9 | AECB12.0<br>9 |
| 7    | Define phase<br>locked loop.                   | <ul> <li>(i)Automatic frequency correction in<br/>FM transmitter uses PLL to keep<br/>carrier frequency constant.</li> <li>(ii)PLL is used direct FM Transmitter<br/>uses PLL to keep carrier frequency<br/>constant.</li> <li>(iii) PLL is also used in FM<br/>demodulators</li> </ul>               | Remember     | CO 3              | CLO 9 | AECB12.0<br>9 |
| 8    | Define Amplitude<br>Limiting.                  | Amplitude limiting is "a process in<br>which the amplitude of output signal<br>is limited to a desired level or margin                                                                                                                                                                                | Remember     | CO 3              | CLO 8 | AECB12.0<br>8 |

| S.No | QUESTION                                        | ANSWER                                                                                                                                                                                                                   | Blooms Level | Course<br>Outcome | CLO   | CLO Code      |
|------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|---------------|
|      |                                                 | irrespective of the variations in the input signal                                                                                                                                                                       |              |                   |       |               |
| 9    | Define zero<br>crossing detector.               | A zero crossing detector or ZCD is a<br>one type of voltage comparator, used<br>to detect a sine waveform transition<br>from positive and negative, that<br>coincides when the i/p crosses the<br>zero voltage condition | Understand   | CO 3              | CLO 9 | AECB12.0<br>9 |
| 10   | Define average<br>power of FM<br>signal.        | The amplitude of the frequency<br>modulated signal is constant .The<br>power of the FM signal is same as that<br>of the carrier power.                                                                                   | Understand   | CO 3              | CLO 7 | AECB12.07     |
| 11   | Define<br>modulation index<br>of FM.            | Modulation index of FM is defined as<br>the ratio of frequency deviation to the<br>modulating frequency.                                                                                                                 | Remember     | CO 3              | CLO 7 | AECB12.07     |
| 12   | What is<br>Frequency<br>modulation?             | Frequency modulation is a process in<br>which the frequency of the carrier is<br>controlled by the modulating signal.                                                                                                    | Understand   | CO 3              | CLO 7 | AECB12.07     |
| 13   | What is carsons rule?                           | This rule states that the bandwidth of<br>an FM system is double the sum of the<br>maximum frequency deviation and the<br>highest modulating frequency.                                                                  | Understand   | CO 3              | CLO 7 | AECB12.07     |
| 14   | Define Pre<br>emphasis.                         | The artificial boosting of higher<br>modulating frequencies is called as<br>Pre emphasis. Pre-emphasis is done at<br>the transmitter.                                                                                    | Understand   | CO 3              | CLO 9 | AECB12.09     |
| 15   | Define spectrum<br>of wide<br>band FM.          | The spectrum of wide band FM consists of infinity sidebands                                                                                                                                                              | Remember     | CO 3              | CLO 8 | AECB12.08     |
| 16   | Define<br>mathematical<br>expression for<br>PM. | s(t)=Accos(2πfct+kpm(t)                                                                                                                                                                                                  | Remember     | CO 3              | CLO 7 | AECB12.07     |
| 17   | Define phase detector.                          | A phase detector or phase comparator<br>is a frequency mixer, analog multiplier<br>or logic circuit that generates a voltage<br>signal which represents the difference<br>in phase between two signal inputs             | Understand   | CO 3              | CLO 9 | AECB12.09     |
| 18   | Define Capture range.                           | Capture range is the frequency<br>range in which the PLL acquires<br>phase lock.                                                                                                                                         | Understand   | CO 3              | CLO 4 | AECB12.08     |
| 19   | Define Indirect<br>method of FM<br>generation.  | Indirect method is the transmitter<br>originates a wave whose phase is<br>a function of the modulation.<br>Normally it is used for the<br>generation of WBFM where<br>WBFM is generated from NBFM                        | Remember     | CO 3              | CLO 8 | AECB12.08     |
| 20   | Define Slope<br>detector.                       | The slope detection is a method of<br>FM-demodulation which converts the<br>received FM signal to AM and<br>demodulates with an envelope<br>detector.                                                                    | Remember     | CO 3              | CLO 9 | AECB12.09     |

| S.No | QUESTION                                            | ANSWER                                                                                                                                                                                                                                                                                                              | Blooms Level | Course<br>Outcome | CLO   | CLO Code  |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|-----------|
| 21   | What is direct<br>method to<br>generate FM<br>wave? | In Direct method the base band signal directly modulates the carrier.                                                                                                                                                                                                                                               | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 22   | What is frequency synthesizer?                      | Frequency synthesizer is a circuit that<br>can produce a large number of output<br>frequencies from a small number of<br>fixed frequency oscillators.                                                                                                                                                               | Understand   | CO 3              | CLO 9 | AECB12.09 |
| 23   | Define wide band<br>FM.                             | For large values of modulation index<br>mf, the FM wave ideally contains<br>the carrier and an infinite number of<br>sidebands located symmetrically<br>around the carrier.<br>Such a FM wave has infinite<br>bandwidth and hence called as<br>wideband FM. The modulation index<br>of wideband FM is higher than 1 | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 24   | Define<br>mathematical<br>expression for<br>FM.     | Vcsin(wct+mfsinwmt)<br>Where mf is the modulation index of<br>FM wave                                                                                                                                                                                                                                               | Remember     | CO 3              | CLO 7 | AECB12.07 |
| 25   | Define Figure of merit of FM.                       | Figure of merit of FM is $3/2\beta^2$ where $\beta$ is modulation index                                                                                                                                                                                                                                             | Remember     | CO 3              | CLO 7 | AECB12.07 |
| 26   | Define voltage-<br>controlled<br>oscillator (VCO)   | voltage-controlled oscillator (VCO)<br>is an electronic device whose output<br>is<br>controlled by input voltage.                                                                                                                                                                                                   | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 27   | What is diversity reception?                        | Diversity reception is used when the signal fades into noise level.                                                                                                                                                                                                                                                 | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 28   | What are<br>properties of<br>Bessel<br>function?    | J <sub>n</sub> ( $\beta$ ) = (-1) <sup>n</sup> J - n $\beta$ for all n, both<br>positive and negative. (ii) For small<br>values of the modulation index $\beta$ , we<br>have J <sub>0</sub> ( $\beta$ ) =1                                                                                                          | Understand   | CO 3              | CLO 7 | AECB12.07 |
| 29   | Define zero<br>crossing detector.                   | A zero crossing detector or ZCD is a<br>one type of voltage comparator, used<br>to<br>detect a sine waveform transition<br>from positive and negative, that<br>coincides when the i/p crosses the<br>zero voltage condition                                                                                         | Remember     | CO 3              | CLO 9 | AECB12.09 |
| 30   | Define average<br>power of FM<br>signal.            | The amplitude of the frequency<br>modulated signal is constant .The<br>power of the FM signal is same as<br>that of the carrier power.                                                                                                                                                                              | Remember     | CO 3              | CLO 7 | AECB12.07 |
| 31   | Define<br>modulation index<br>of FM.                | Modulation index of FM is defined<br>as the ratio of frequency deviation to<br>the modulating frequency.                                                                                                                                                                                                            | Understand   | CO 3              | CLO7  | AECB12.07 |
| 32   | What is<br>Frequency<br>modulation?                 | Frequency modulation is a process in<br>which the frequency of the carrier is<br>controlled by the modulating signal.                                                                                                                                                                                               | Understand   | CO 3              | CLO 7 | AECB12.07 |
| 33   | What is single tone FM wave?                        | FM wave the message signal contains only one frequency.                                                                                                                                                                                                                                                             | Remember     | CO 3              | CLO 7 | AECB12.07 |

| S.No | QUESTION                                          | ANSWER                                                                                                                                                                                                                                                                                  | Blooms Level | Course<br>Outcome | CLO   | CLO Code  |
|------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------|-----------|
| 34   | Define narrow<br>band FM.                         | A narrow band FM is the FM wave<br>with a small bandwidth .The<br>modulation index mf of narrow band<br>FM is small.                                                                                                                                                                    | Remember     | CO 3              | CLO 7 | AECB12.07 |
| 35   | Define<br>mathematical<br>equation of FM<br>wave. | $s(t)=Accos(2\pi fct+2\pi kf m(t)dt)$                                                                                                                                                                                                                                                   | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 36   | Define lock<br>range.                             | The lock range is defined as the<br>range of frequencies over which the<br>PLL system follows the changes in<br>the input frequency fIN                                                                                                                                                 | Understand   | CO 3              | CLO 8 | AECB12.08 |
| 37   | Define direct<br>method of FM<br>generation.      | Direct method the transmitter<br>originates a wave whose frequency<br>varies as function of the modulating<br>source.                                                                                                                                                                   | Remember     | CO 3              | CLO 8 | AECB12.08 |
| 38   | Define phase<br>locked loop.                      | <ul> <li>(i)Automatic frequency correction in<br/>FM transmitter uses PLL to keep<br/>carrier frequency constant.</li> <li>(ii)PLL is used direct FM Transmitter<br/>uses PLL to keep carrier frequency<br/>constant.</li> <li>(iii) PLL is also used in FM<br/>demodulators</li> </ul> | Remember     | CO 3              | CLO 8 | AECB12.08 |
| 39   | Define Amplitude<br>Limiting.                     | Amplitude limiting is "a process in<br>which the amplitude of output signal<br>is limited to a desired level or margin<br>irrespective of the variations in the<br>input signal                                                                                                         | Understand   | CO 3              | CLO 7 | AECB12.07 |
| 40   | Define lock range.                                | The lock range is defined as the<br>range of frequencies over which the<br>PLL system follows the changes in<br>the input frequency fIN                                                                                                                                                 | Understand   | CO 3              | CLO 8 | AECB12.08 |
|      |                                                   | MODULE -IV                                                                                                                                                                                                                                                                              |              |                   |       |           |
| 1    | Define noise                                      | Noise is defined as any unwanted<br>form of energy, which tends to<br>interfere with wanted signal.                                                                                                                                                                                     | Understand   | CO 4              | CLO 7 | AECB12.07 |
| 2    | Give the classification of noise.                 | Noise is broadly classified into two<br>types. They are<br>(i)External noise<br>(ii)Internal noise                                                                                                                                                                                      | Remember     | CO 4              | CLO 7 | AECB12.07 |
| 3    | Define the<br>sources of<br>internal noise.       | Internal noise is created by the<br>active and passive components<br>present within the communication<br>circuit can be includes<br>1. Thermal noise<br>2. Shot noise<br>3. Transit time noise<br>4. Miscellaneous internal noise                                                       | Remember     | CO 4              | CLO 7 | AECB12.07 |
| 4    | Define the<br>sources of<br>External noise.       | External noise is created outside<br>the circuit and includes<br>1.Atmospheric noise<br>2. Extraterrestrial noises                                                                                                                                                                      | Understand   | CO 4              | CLO 8 | AECB12.08 |

| S.No | QUESTION                                                     | ANSWER                                                                                                                                                                                                                                                                                                      | Blooms Level | Course<br>Outcome | CLO    | CLO Code  |
|------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|-----------|
|      |                                                              | 3.Man-made noises or industrial noises                                                                                                                                                                                                                                                                      |              |                   |        |           |
| 5    | Define shot<br>noise.                                        | Shot noise appers in active devices<br>due to random behavior of charge<br>carriers.In semiconductors it is due<br>to random diffusion of minority<br>carriers.                                                                                                                                             | Understand   | CO 4              | CLO 7  | AECB12.07 |
| 6    | Define resistor<br>noise.                                    | The noise arising due to random<br>motion of free charged particle in a<br>conducting media such as a<br>resistor.                                                                                                                                                                                          | Remember     | CO 4              | CLO 7  | AECB12.07 |
| 7    | Define flicker<br>noise.                                     | Flicker noise is the imperfections<br>in surfaces around the junctions of<br>semiconductor devices i.e<br>transistors operating at low audio<br>frequencies.                                                                                                                                                | Understand   | CO 4              | CLO 10 | AECB12.10 |
| 8    | Define Power<br>Density<br>spectrum of<br>resistor noise.    | Resistor noise to be Gaussian<br>distributed with zero mean<br>$S_i(\omega) = \frac{2KTG}{1+(\frac{\omega}{\alpha})^2}$<br>T=Temperature, G=conductance of<br>resistor, K=Boltzmann constant,<br>$\alpha$ =no of collisions per second.                                                                     | Understand   | CO 4              | CLO 10 | AECB12.10 |
| 9    | Define white<br>noise and its<br>power desity<br>spectrum.   | White noise contains all the frequencies. The power spectral density of white noise is constant for all frequencies, $Si(\omega)=No/2$                                                                                                                                                                      | Remember     | CO 4              | CLO 10 | AECB12.10 |
| 10   | Define narrow<br>band noise                                  | Random process X(t) is bandpass or<br><b>narrowband</b> random process if its<br>power spectral density SX(f) is<br>nonzero only in a small neighborhood<br>of some high frequency fc                                                                                                                       | Understand   | CO 4              | CLO 10 | AECB12.10 |
| 11   | Define In phase<br>component of<br>narrow band<br>noise      | $n_I(t) \cos \omega_c t$ is In phase component                                                                                                                                                                                                                                                              | Remember     | CO 4              | CLO 10 | AECB12.10 |
| 12   | Define Properties<br>of narrow band<br>noise.                | <ol> <li>Narrow-band noise is represented as<br/>in terms of its envelope and phase.</li> <li>Narrow-band Gaussian noise is used<br/>as a noise model in communication<br/>system.</li> <li>The assumption of Gaussian and<br/>WSS (wide-sense- stationary) behavior<br/>are easy to understand.</li> </ol> | Understand   | CO 4              | CLO 10 | AECB12.10 |
| 13   | Define<br>quadrature<br>component of<br>narrowband<br>noise. | $n_Q(t)$ sin $\omega_c t$ is quadrature component                                                                                                                                                                                                                                                           | Remember     | CO 4              | CLO 11 | AECB12.11 |
| 14   | Define Average<br>Noise<br>Bandwidth                         | The noise bandwidth $B_n$ is defined<br>as the bandwidth of the ideal filter<br>that would pass the same signal<br>power as the real filter when each<br>is driven by stationary random<br>noise.                                                                                                           | Remember     | CO 4              | CLO 11 | AECB12.11 |

| S.No | QUESTION                                                     | ANSWER                                                                                                                                                                                                                                                                                                                                   | Blooms Level | Course<br>Outcome | CLO       | CLO Code  |
|------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-----------|-----------|
| 15   | Define Effective<br>Noise<br>Temperature                     | Effective input noise temperature is<br>the source noise temperature in a<br>two-port network or amplifier that<br>will result in the same output noise<br>power, when connected to a noise-<br>free network or amplifier                                                                                                                | Remember     | CO 4              | CLO 11    | AECB12.11 |
| 16   | Define Average<br>Noise Figures                              | The noise figure is the difference in<br>decibels (dB) between the noise<br>output of the actual receiver to the<br>noise output of an "ideal" receiver<br>with the same overall gain and<br>bandwidth when the receivers are<br>connected to matched sources at<br>the standard noise temperature T0                                    | Understand   | CO 4              | CLO 10    | AECB12.10 |
| 17   | Define Average<br>Noise Figure of<br>cascaded<br>networks    | Noise figure (NF) is the increase in<br>noise power of a device from the<br>input to the output that is greater<br>than the signal gain. In effect, it is<br>the amount of decrease of the<br>signal-to-noise ratio. If only loss<br>exists in the cascade, then the<br>cascaded noise figure equals the<br>magnitude of the total loss. | Understand   | CO 4              | CLO 10    | AECB12.10 |
| 18   | Define Pre-<br>emphasis                                      | Pre-emphasis refers to boosting the<br>relative amplitudes of the<br>modulating voltage for higher<br>audio frequencies from 2 to<br>approximately 15 KHz.                                                                                                                                                                               | Remember     | CO 4              | CLO<br>10 | AECB12.10 |
| 19   | Define de-<br>emphasis                                       | Reducing the amplitude level of the<br>received high frequency signal by<br>the same amount as the increase in<br>pre-emphasis is termed as De-<br>emphasis                                                                                                                                                                              | Understand   | CO 4              | CLO 10    | AECB12.10 |
| 20   | Define figure of merit.                                      | The ratio of the input power to the<br>output power. It is a figure of merit<br>for the energy cost effectiveness of<br>a device.                                                                                                                                                                                                        | Remember     | CO 4              | CLO<br>10 | AECB12.10 |
| 21   | Define Signal-<br>to-noise ratio.                            | Signal-to-noise ratio (SNR) the<br>ratio of the average power of the<br>information signal component to<br>the average power of the noise<br>component in a signal consisting of<br>the sum of an information signal<br>component and a corrupting<br>noise component. It is a unit less<br>quantity.                                    | Understand   | CO 4              | CLO 10    | AECB12.10 |
| 22   | Define<br>quadrature<br>component of<br>narrowband<br>noise. | $n_Q(t)$ sin $\omega_c t$ is the in-phase component                                                                                                                                                                                                                                                                                      | Remember     | CO 4              | CLO 10    | AECB12.10 |
| 23   | Define Output SNR.                                           | It is the ratio Average power of demodulated signal s(t) to Average                                                                                                                                                                                                                                                                      | Understand   | CO 4              | CLO 10    | AECB12.10 |

| S.No | QUESTION                                                                                    | ANSWER                                                                                                                                          | Blooms Level | Course<br>Outcome | CLO           | CLO Code  |
|------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------|-----------|
|      |                                                                                             | power of noise                                                                                                                                  |              |                   |               |           |
| 24   | What is information?                                                                        | Information can be defined as the<br>inverse of probability of occurrence<br>= - log pk                                                         | Remember     | CO 4              | CLO 10        | AECB12.10 |
| 25   | Define FM noise<br>triangle.                                                                | Noise has more effect on higher<br>frequencies in FM. The triangular<br>distribution of noise in FM is called<br>as FM noise triangle.          | Remember     | CO 4              | CLO 11        | AECB12.11 |
| 26   | Define , the<br>Figure of merit<br>of DSBSC                                                 | The Figure of merit of DSBSC receiver is 1.                                                                                                     | Remember     | CO 4              | CLO 10        | AECB12.10 |
| 27   | Define , the<br>Figure of merit<br>of SSBSC                                                 | The Figure of merit of SSBSC receiver is 1.                                                                                                     | Understand   | CO 4              | CLO10         | AECB12.10 |
| 28   | Define , the<br>Figure of merit<br>of AM                                                    | The Figure of merit of AM is $\mu^2/2 + \mu^2$ where $\mu$ is modulation index.                                                                 | Remember     | CO 4              | CLO 10        | AECB12.10 |
| 29   | Define Output<br>SNR.                                                                       | It is the ratio Average power of<br>demodulated signal s(t) to Average<br>power of noise                                                        | Understand   | CO 4              | CLO10         | AECB12.10 |
| 30   | Define the<br>average power of<br>the DSB-SC<br>modulated signal                            | The average power of the DSB-SC modulated signal is CA <sub>c</sub> <sup>2</sup> P/2                                                            | Remember     | CO 4              | CLO 12        | AECB12.12 |
| 31   | Define the<br>average noise<br>power at the<br>receiver                                     | The average noise power at the receiver is WN <sub>0</sub> /2                                                                                   | Understand   | CO 4              | AECB12<br>.12 | AECB12.12 |
| 32   | Define the<br>output signal-to-<br>noise ratio of an<br>AM using an<br>envelope<br>detector | The output signal-to-noise ratio of<br>an AM using an envelope detector<br>is $A_c^2 k_a^2 P/2WN_o$                                             | Remember     | CO 4              | AECB12<br>.12 | AECB12.12 |
| 33   | Define figure of<br>merit for 100<br>percent<br>modulation                                  | When $\mu = 1$ (100% modulation<br>using envelope detection), figure of<br>merit = 1/3.                                                         | Remember     | CO 4              | AECB12<br>.10 | AECB12.10 |
| 34   | Define limiter                                                                              | The limiter is used to remove<br>amplitude variations by clipping<br>the modulated wave at the filter<br>output almost to the zero axis.        | Understand   | CO 4              | CLO 10        | AECB12.10 |
| 35   | Define the post-<br>detection filter                                                        | The post-detection filter, labeled<br>"baseband low-pass filter," has a<br>bandwidth that is just large enough<br>to accommodate the highest fl | Understand   | CO 4              | CLO 10        | AECB12.10 |
| 36   | Define the<br>average output<br>signal power.                                               | The average output signal power is<br>equal to $kf^2P$ , where Pi s the<br>average power o f the message<br>signal m(t).                        | Remember     | CO 4              | CLO 10        | AECB12.10 |
| 37   | Define Figure of merit for                                                                  | Figure of merit for frequency modulation is $3K_f^2P/W^2$                                                                                       | Understand   | CO 4              | CLO 10        | AECB12.10 |

| S.No | QUESTION                                                                             | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                        | Blooms Level | Course<br>Outcome | CLO              | CLO Code               |
|------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------------|------------------------|
|      | frequency modulation                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |                  |                        |
| 38   | Define Average<br>Noise Bandwidth                                                    | The noise bandwidth $B_n$ is defined<br>as the bandwidth of the ideal filter<br>that would pass the same signal<br>power as the real filter when each<br>is driven by stationary random<br>noise.                                                                                                                                                                                                             | Remember     | CO 4              | CLO 10           | AECB12.10              |
| 39   | Define Effective<br>Noise<br>Temperature                                             | Effective input noise temperature is<br>the source noise temperature in a<br>two-port network or amplifier that<br>will result in the same output noise<br>power, when connected to a noise-<br>free network or amplifier                                                                                                                                                                                     | Understand   | CO 4              | CLO 10           | AECB12.10              |
| 40   | Define narrow<br>band noise                                                          | Random process X(t) is bandpass or<br><b>narrowband</b> random process if its<br>power spectral density SX(f) is<br>nonzero only in a small neighborhood<br>of some high frequency fc                                                                                                                                                                                                                         | Remember     | CO 4              | CLO 12           | AECB12.12              |
|      |                                                                                      | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                        |              |                   |                  |                        |
| 1    | Define<br>super<br>heterody<br>ne<br>receiver.<br>Define tuned<br>radio<br>frequency | A super heterodyne receiver, often<br>shortened to superhet, is a type of<br>radio receiver that uses frequency<br>mixing to convert a received signal<br>to a fixed<br>Intermediate frequency (IF) which<br>can be more conveniently<br>processed than the original carrier<br>frequency.<br>A tuned radio frequency receiver<br>(or TRF receiver) is a type of radio<br>receiver that is composed of one or | Remember     | CO 5<br>CO 5      | CLO 12<br>CLO 12 | AECB12.12<br>AECB12.12 |
|      | receiver.                                                                            | more tuned radio frequency (RF)<br>amplifier stages followed by a<br>detector (demodulator) circuit to<br>extract the audio signal and<br>usually an audio frequency<br>amplifier.                                                                                                                                                                                                                            |              | 4 V & 3           |                  |                        |
| 3    | Define Pulse<br>Modulation.                                                          | Pulse Modulation is a form of signal<br>modulation where the message<br>information is encoded in the<br>amplitude of a series of signal<br>pulses.                                                                                                                                                                                                                                                           | Remember     | CO 5              | CLO 14           | AECB12.14              |
| 4    | What is PAM?.                                                                        | By varying the Amplitude of the<br>pulses (the carrier signal) in<br>proportion to the instantaneous<br>values of the analog signal (the<br>message signal).                                                                                                                                                                                                                                                  | Remember     | CO 5              | CLO 14           | AECB12.14              |
| 5    | What is PPM?                                                                         | By varying the position of the<br>pulses (the carrier signal) in<br>proportion to the instantaneous<br>values of the analog signal (the                                                                                                                                                                                                                                                                       | Remember     | CO 5              | CLO 14           | AECB12.14              |

| S.No | QUESTION                                           | ANSWER                                                                                                                                                                                                                                                                                                                        | Blooms Level   | Course<br>Outcome | CLO    | CLO Code  |
|------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------|-----------|
|      |                                                    | message signal)                                                                                                                                                                                                                                                                                                               |                |                   |        |           |
| 6    | What is PWM?                                       | By varying the width of the pulses<br>(the carrier signal) in proportion to<br>the instantaneous values of the<br>analog signal (the message signal).                                                                                                                                                                         | Remember       | CO 5              | CLO 14 | AECB12.14 |
| 7    | What is Analog<br>Modulation?                      | Analog modulation refers to the<br>process of transferring an analog<br>baseband (low frequency) signal,<br>like an audio or TV signal over a<br>higher frequency signal such as a<br>radio frequency band.                                                                                                                   | Understand     | CO 5              | CLO 14 | AECB12.14 |
| 8    | Define Fidelity.                                   | Fidelity of a receiver is its ability<br>to reproduce the exact replica of<br>the transmitted signals at the<br>receiver output.                                                                                                                                                                                              | Rememb<br>er   | CO 5              | CLO 13 | AECB12.13 |
| 9    | Define Double spotting.                            | Double spotting is a condition<br>where the same desired signal is<br>detected at two nearby points on<br>the receiver tuning dial.                                                                                                                                                                                           | Rememb         | CO 5              | CLO 13 | AECB12.13 |
| 10   | Define Filter.                                     | It removes the unwanted components in original data.                                                                                                                                                                                                                                                                          | Understa<br>nd | CO 5              | CLO 12 | AECB12.12 |
| 11   | Define<br>selectivity.                             | Selectivity is the ability of receiver<br>for selecting a particular signal,<br>while rejecting the others                                                                                                                                                                                                                    | Understa<br>nd | CO 5              | CLO 13 | AECB12.13 |
| 12   | Define<br>automatic gain<br>control.               | Automatic gain control (AGC),<br>also called automatic volume<br>control (AVC), is a closed-loop<br>feedback regulating circuit in an<br>amplifier or chain of amplifiers,<br>the purpose of which is to maintain<br>a suitable signal amplitude at<br>its output, despite variation of the<br>signal amplitude at the input. | Rememb<br>er   | CO 5              | CLO 13 | AECB12.13 |
| 13   | Define<br>beat<br>frequen<br>cy<br>oscillat<br>or. | In a radio receiver, a beat<br>frequency oscillator or BFO is a<br>dedicated oscillator<br>used to create an audio frequency<br>signal from Morse code<br>radiotelegraphy (CW)<br>transmissions to make them<br>audible.                                                                                                      | Understan<br>d | CO 5              | CLO 13 | AECB12.13 |
| 14   | Define receiver.                                   | Receiver is a device to extract the<br>information signal from the<br>modulated<br>signal by the operation of<br>demodulation.                                                                                                                                                                                                | Remember       | CO 5              | CLO13  | AECB12.13 |
| 15   | What is mixer?                                     | Mixer is a non linear circuit to<br>generate sum and difference<br>frequencies when two or more<br>frequencies are present at its<br>inputs.                                                                                                                                                                                  | Understand     | CO 5              | CLO 13 | AECB12.13 |
| 16   | Define<br>amplitude                                | Amplitude limiting is "a process in which the amplitude of output                                                                                                                                                                                                                                                             | Understand     | CO 5              | CLO 14 | AECB12.14 |

| S.No | QUESTION                                            | ANSWER                                                                                                                                                                                                                                                                                                                                         | Blooms Level | Course<br>Outcome | CLO    | CLO Code  |
|------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|-----------|
|      | limiting.                                           | signal is<br>limited to a desired level or margin<br>irrespective of the variations in the<br>input signal"                                                                                                                                                                                                                                    |              |                   |        |           |
| 17   | What is<br>Transmission<br>B.W?                     | Transmission bandwidth is the actual width of the transmitted signal                                                                                                                                                                                                                                                                           | Remember     | CO 5              | CLO 14 | AECB12.14 |
| 18   | What<br>is<br>sensiti<br>vity of<br>receiv<br>er?   | Sensitivity is the capacity of receiver for detecting RF signal and demodulating it, while at the lowest power level.                                                                                                                                                                                                                          | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 19   | Define image frequency.                             | It is an undesired input frequency<br>equal to the station frequency plus<br>(or minus) twice the intermediate<br>frequency                                                                                                                                                                                                                    | Understand   | CO 5              | CLO 13 | AECB12.13 |
| 20   | What is<br>Channel?                                 | Definition of communication<br>channel: A medium through which<br>a message is transmitted to its<br>intended audience, such as print<br>media or broadcast                                                                                                                                                                                    | Remember     | CO 5              | CLO 14 | AECB12.14 |
| 21   | Define Band<br>Width?                               | Bandwidth is defined as a range<br>within a band of frequencies or<br>wavelengths.                                                                                                                                                                                                                                                             | Understand   | CO 5              | CLO 14 | AECB12.14 |
| 22   | What is<br>intermediate-<br>frequency<br>amplifier? | A variable local oscillator is used in<br>the receiver to hold the difference-<br>signal center frequency constant as<br>the receiver is tuned. The constant<br>frequency of<br>the down converted signal is called<br>the intermediate frequency (IF), and<br>it is this signal that is processed by<br>the intermediate-frequency amplifier. | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 23   | What is<br>Intermediate<br>frequency filter?        | Intermediate frequency filter is a<br>band pass filter, which passes the<br>desired frequency                                                                                                                                                                                                                                                  | Understand   | CO 5              | CLO 13 | AECB12.13 |
| 24   | Define image<br>frequency<br>rejection ratio.       | The image rejection ratio, or image<br>frequency rejection ratio, is the ratio<br>of the intermediate-frequency (IF)<br>signal level produced by the desired<br>input frequency to that produced by<br>the image frequency. The image<br>rejection ratio<br>is usually expressed in dB.                                                        | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 25   | Define automatic<br>frequency control.              | Automatic Frequency Control (AFC),<br>also called Automatic<br>Fine Tuning (AFT), is a method or<br>circuit to automatically keep a<br>resonant circuit tuned to the<br>frequency of an incoming radio<br>signal.                                                                                                                              | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 26   | What 1s                                             | is an electronic amplifier that reproduces low-power electronic                                                                                                                                                                                                                                                                                | Remember     | CO 5              | CLO 13 | AECB12.13 |

| S.No | QUESTION                             | ANSWER                                                                                                                                                                                                                                                                     | Blooms Level | Course<br>Outcome | CLO    | CLO Code  |
|------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|-----------|
|      | Radio<br>frequency<br>amplifier?     | audio signals<br>such as the signal from radio<br>receiver or electric guitar pickup at<br>a level that is strong enough for<br>driving (or powering) loudspeakers<br>or headphones.                                                                                       |              |                   |        |           |
| 27   | What is heterodyning?                | A heterodyne is a circuit that<br>transfers a signal from one carrier<br>wave to<br>another with a different frequency.                                                                                                                                                    | Understand   | CO 5              | CLO 12 | AECB12.12 |
| 28   | What is gain?                        | The gain of a voltage amplifier is the ratio of the output voltage to the input voltage.                                                                                                                                                                                   | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 29   | What is closed loop feedback?        | A Closed-loop Control System, also<br>known as a feedback control system<br>is a control system which uses the<br>concept of an open loop system as its<br>forward path but has one or more<br>feedback loops(hence its name) or<br>naths between its output and its input | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 30   | What is tuned circuit?               | Tuned circuit, any electrically<br>conducting pathway containing both<br>inductive and capacitive elements.                                                                                                                                                                | Understand . | CO 5              | CLO 12 | AECB12.12 |
| 31   | Define Double<br>Polarity In PAM     | Double polarity PAM is a situation<br>where the pulses are both positive<br>and negative.                                                                                                                                                                                  | Understand   | CO 5              | CLO 14 | AECB12.14 |
| 32   | What is band<br>limited signal.      | Band limiting is the limiting of a<br>signal's frequency domain<br>representation or spectral density<br>to zero above a certain finite<br>frequency                                                                                                                       | Remember     | CO 5              | CLO 14 | AECB12.14 |
| 33   | What is oscillator?                  | An oscillator is a mechanical or<br>electronic device that works on the<br>principles<br>of oscillation: a periodic<br>fluctuation between two things<br>based on changes in energy                                                                                        | Remember     | CO 5              | CLO 12 | AECB12.12 |
| 34   | Define Single<br>Polarity In<br>PAM. | Single polarity PAM is a situation<br>where a suitable fixed DC bias is<br>added to the signal to ensure that<br>all the pulses are positive.                                                                                                                              | Understand   | CO 5              | CLO 14 | AECB12.14 |
| 35   | Define Double<br>Polarity In PAM     | Double polarity PAM is a situation<br>where the pulses are both positive<br>and negative.                                                                                                                                                                                  | Understand   | CO 5              | CLO 12 | AECB12.12 |
| 36   | Define<br>intermediate<br>frequency. | Intermediate frequency (IF) is a<br>frequency to which a carrier wave is<br>shifted as an intermediate step in<br>transmission or reception                                                                                                                                | Understand   | CO 5              | CLO 13 | AECB12.13 |
| 37   | What is audio frequency?             | a frequency of oscillation capable of<br>being perceived by the human ear,<br>generally between 20 and 20,000 Hz.                                                                                                                                                          | Remember     | CO 5              | CLO 13 | AECB12.13 |
| 38   | What is radio frequency?             | Radio frequency (RF) is a<br>measurement representing the                                                                                                                                                                                                                  | Understand   | CO 5              | CLO 13 | AECB12.13 |

| S.No | QUESTION         | ANSWER                                  | Blooms Level | Course<br>Outcome | CLO    | CLO Code  |
|------|------------------|-----------------------------------------|--------------|-------------------|--------|-----------|
|      |                  | oscillation rate of electromagnetic     |              |                   |        |           |
|      |                  | radiation spectrum, or                  |              |                   |        |           |
|      |                  | electromagnetic radio waves,            |              |                   |        |           |
|      |                  | from frequencies ranging from 300       |              |                   |        |           |
|      |                  | GHz to as low as 9 kHz.                 |              |                   |        |           |
| 39   | Define image     | The image rejection ratio, or image     | Remember     | CO 5              | CLO 13 | AECB12.13 |
|      | rejection ratio. | frequency rejection ratio, is the ratio |              |                   |        |           |
|      | -                | of the intermediate-frequency (IF)      |              |                   |        |           |
|      |                  | signal level produced by the desired    |              |                   |        |           |
|      |                  | input frequency to that produced by     |              |                   |        |           |
|      |                  | the image frequency. The image          |              |                   |        |           |
|      |                  | rejection ratio                         | N 17         |                   |        |           |
|      |                  | is usually expressed in dB.             |              |                   |        |           |
| 40   | What is band     | A band pass signal is a signal          | Understand   | CO 5              | CLO 14 | AECB12.14 |
|      | limited signal?  | containing a band of frequencies not    |              |                   |        |           |
|      | -                | adjacent to zero frequency, such as a   |              |                   |        |           |
|      |                  | signal that comes out of a band pass    |              |                   |        |           |
|      |                  | filter.                                 |              |                   |        |           |

# Signature of the Faculty

Signature of HOD

