INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)
Code No: BST003

MODEL QUESTION PAPER - II

M.Tech- I Semester Regular Examinations, February 2017

COMPUTER ORIENTED NUMERICAL METHODS
 (Structural Engineering)

Time: 3 hours
Max. Marks: 70
Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT-I

1. (a) Solve the following system by the Gauss elimination method [7M] $2 x+y+z=10,3 x+2 y+3 z=18, x+4 y+9 z=16$
(b) Reduce the following matrix to the tridiagonal form by Householder's method

$$
\left[\begin{array}{lll}
1 & 3 & 4 \\
3 & 1 & 2 \\
4 & 2 & 1
\end{array}\right]
$$

2. (a) Find the solutions to three decimals of the system by Jacobi method

$$
83 x+11 y-4 z=95,7 x+52 y+13 z=104,3 x+8 y+29 z=71
$$

(b) Determine the largest Eigen value and the corresponding Eigen vector of the
matrix $\left[\begin{array}{ccc}10 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 10\end{array}\right]$

UNIT-II

3. (a) Use Lagrange's interpolation formula estimate the value of $f(155)$ from the following table

x	150	152	154	156
$\mathrm{f}(\mathrm{x})$	12.247	12.329	12.410	12.490

(b) Fit a cubic spline to the following data and find $\int_{0}^{3} f(x) d x$

x	0	1	3
$\mathrm{f}(\mathrm{x})$	1	0	2

4. (a) Find the natural cubic spline interpolate to f at the points $x_{0}=0, x_{1}=1, x_{2}=2$ and

$$
x_{3}=3
$$

, where $f_{0}=0, f_{1}=1, f_{2}=1$ and $f_{3}=0$
(b) Use Hermite's interpolation formula estimate the value of $\mathrm{f}(3.2)$ from th following table

x	3	3.5	4.0
$\mathrm{f}(\mathrm{x})$	1.09861	1.25276	1.38629
$f^{\prime}(x)$	0.3333	0.28571	0.25000

UNIT-III

5. (a) The following data gives the melting points of an alloy to lead and zinc, Find the melting point of the alloy containing 54% of lead.

x	0.20	0.22	0.24	0.26	0.28	0.30
$\mathrm{f}(\mathrm{x})$	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

(b) From the following table determine $\mathrm{f}(0.23)$ and $\mathrm{f}(0.29)$

x	0.20	0.22	0.24	0.26	0.28	0.30
$\mathrm{f}(\mathrm{x})$	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

6. (a) A horizontal tie-rod is freely pinned at each end. It carries a uniform load w lb per unit length and has horizontal pull P. Find the central deflection and the maximum bending moment taking the origin at one of its ends.
(b) From the following table determine $\mathrm{y}(1925)$ and y (1955)

x	1921	1931	1941	1951	1961
$\mathrm{y}(\mathrm{x})$	46000	66000	81000	93000	101000

UNIT-IV

7. (a) From the table compute first and second order derivatives when $x=6$

x	0	1	2	3	4	5	6
Y	6.9897	7.0436	7.7815	8.1291	8.4510	8.7506	9.0309

(b)

Evaluate the following double integral $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y, x, y=0 \ldots .1$ using
Trapezoidal method.
8. (a) A rod is rotating in a plane. The following table gives the angle θ through which the rod has turned for various values of the time t. Calculate the angular velocity and angular acceleration of the rod when $t=0.6$

θ	0	0.2	0.4	0.6	0.8	1.0	1.2
t	0	0.12	0.49	1.12	2.02	3.20	4.67

(b)

Evaluate the following double integral $\int_{-2}^{2} \int_{0}^{2}\left(x^{2}-x y+y^{2}\right) d x d y$ using Simpson's rule.
[7M]

UNIT-V

9. (a) Solve by Euler method $\frac{d y}{d x}=x+y, y(o)=0$ given that $\mathrm{h}=0.2$

Compute y (0.4) and y (0.6).
(b) Solve the boundary value problem $y^{\prime \prime}-64 y+10=0, y(0)=y(1)=0$ by the finite difference method.
10. (a) Given $\frac{d y}{d x}-1=x y, y(0)=1$. Obtain the Taylor series for $y(x)$ and compute $y(0.1)$ up to four decimal places.
(b) Solve the differential equation $y^{\prime}=x+y$ using the modified midpoint method for the initial condition $y(0)=1$ where $0 \leq x \leq 1$ and $\mathrm{h}=0.2$.

