INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech IV Semester End Examinations (Regular), November - 2020

Regulation: IARE-R18
COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION
Time: 2 Hours
(EEE)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Calculate the value of k such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3}+3 k x y^{2}$ may be harmonic function.
2. Evaluate $\int \frac{z^{2}-z+1}{z-1} d z$ where C is the Circle $|\mathrm{z}|=1$
3. Determine the Poles of the function $f(z)=\frac{z e^{z}}{(z+2)^{4}(z-1)}$.
4. List the important properties of probability density function.
5. Write the properties of the normal curve.
6. Obtain an analytic function $\mathrm{f}(\mathrm{z})$ whose imaginary part of the analytic function is $\mathrm{v}=e^{x}$ (xsiny+ycosy). [5M]
7. Find Taylor's expansion of $\mathrm{f}[\mathrm{z}]=\frac{1}{(z+1)^{2}}$ about point $\mathrm{z}=-\mathrm{i}$.
8. State Cauchy's Residue theorem of an analytic function $f(z)$ within and on the closed curve.

PART - B
9. If is $f(x)$ is an analytic function with constant modulus, show that $f(z)$ is constant.
10. Find the bilinear transformation which maps the point $z=1 . i,-1$ onto the points $w=i, 0,-i$ Hence find the invariant points of this transformation.
[10M]
11. Verify Cauchy's theorem by integrating z^{3} along the boundary of the triangle with the verticles at the point $1+\mathrm{i},-1+\mathrm{i}$, and $-1,1$.
[10M]
12. If $\mathrm{f}(\mathrm{z})$ is continuous in a region D and $\oint_{c} f(z) d z=0$ around every simple closed curve C in D , then $\mathrm{f}(\mathrm{z})$ is analytic in D.
[10M]
13. Find the Laurents expansion of $\mathrm{f}[\mathrm{z}]=\frac{7 z-2}{z(z+1)(z-2)}$ in the region $1<\mathrm{z}+1<3$.
[10M]
14. What type of singularity have the following function i) $1 / 1-e^{z}$ ii) $e^{2 z} /[z-1]^{4}$ iii) $e^{1 / z} / z^{2}$.
[10M]
15. X is a continuous random variable with probability density function given by $f(x)=f(x)=\left\{\begin{array}{cc}k x & 0 \leq x \leq 2 \\ 2 k & 2 \leq x \leq 4 \\ k x+6 k & 4 \leq x<6\end{array}\right.$

Find k and mean value of X .
[10M]
16. In a lottery,m tickets are drawn at a time out of n tickets numbered from 1 to n. Find the expected value of the sum of the numbers on the tickets drawn.
[10M]
17. The probability that a pen manufactured by a company will be defective is $1 / 10$, . If 12 such pens are manufactured, find the probability that i) Exactly two will be defective ii) At least two will be defective, iii)None will be defective.
[10M]
18. Prove that poisson distribution is limiting case of binomial distribution .
[10M]

