Hall Ticket No								Question Paper Code: AEEB16					AEEB16
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) B.Tech IV Semester End Examinations (Regular), November – 2020 Regulation: IARE–R18 CONTROL SYSTEMS													
Answer any Four Questions from Part A Answer any Five Questions from Part B													
					F	PART	-A						
1. Differentiate open loop and closed loop control systems with suitable examples.												[5M]	
2. Write the properties of signal flow graphs.											[5M]		
3. Using Routh's method find the stability of $s^6+2s^5+8s^4+12s^3+20s^2+16=0$.												[5M]	
4. Give a short notes on various frequency domain specifications.												[5M]	
5. Obtain the state space model of a series RLC circuit.											[5M]		
6. Write the analogous quantities in force-voltage analogy and force - current analogy.												[5M]	
7. What is the basis for framing the rules of block diagram reduction technique?													[5M]
8. Write the n	8. Write the necessary conditions to have all the roots of characteristics equation to left half of s-plane												[5M]
$\mathbf{PART} - \mathbf{B}$													
9. Describe the effect of feedback on gain, stability, noise and sensitivity of a closed loop control system.												[10M]	
10. Determine the transfer function of RLC parallel circuit if the voltage across the capacitor is a output and input is current source $i(s)$.											variable [10M]		
11. Explain the effect of P, PI, PD and PID control on the performance of control system.												[10M]	

12. Discuss Mason's gain formula. Obtain the overall transfer function C/R from the signal flow graph shown in Figure 1. [10M]

- 13. State the effect of addition of poles and zeros on root locus and the stability of the system. [10M]
- 14. Write a short notes on i) Absolute stability ii) Marginal stability iii) Conditional stability iv) Stable system v) Critically stable system vi) Conditionally stable system. [10M]
- 15. The characteristic equation for certain feedback control systems is given below $s^4 + 4s^3 + 13s^2 + 36s + k=0$. [10M] Determine the range of k for the system to be stable.
- 16. Determine the expression for resonant peak and resonant frequency and hence establish correlation between time and frequency response. [10M]
- 17. Convert the following system matrix to canonical form and hence calculate the STM.

п

$$A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}.$$
 [10M]

18. Write the necessary and sufficient conditions for complete state controllability and observability? [10M]