INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)		
Tir	B.Tech IV Semester End Examinations (Regular), November – 2020 Regulation: IARE–R18 STRENGTH OF MATERIALS me: 2 Hours (CE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	
1.	Write short notes on i) Modulus of elasticity ii) Poisson's ratio .	
		[5M]
2.	Describe the following terms i) Shear force and bending moment ii) Types of beams	[5M]
3.	Explain the concept of complimentary shear in longitudinal section of a beam which is trans	versely loaded. [5 M]
4.	What are the methods to determine slope and deflections in beams?	[5M]
5.	Write the expression for circumferential stress (Hoop Stress) of thin cylinder.	[5M]
6.	Explain the concept of fatigue failure and write about the endurance limit and fatigue limit.	[5M]
7.	How many points of contraflexure you will have for simply supported beam overhanging at with a neat sketch.	one end. Explain [5M]
8.	Of the following sections: rectangular, circular, triangular, I, T sections, which is most efficient shearing stresses in beams? Why?	t for withstanding $[5M]$
	$\mathbf{PART} - \mathbf{B}$	
9.	Illustrate the stress-strain diagrams and explain the phenomenon of strain hardening.	[10M]
10.	The tensile stresses at a point across two mutually perpendicular planes are $120N/mm^2$. Deter tangential and resultant and resultant stresses on a plane inclined at 30° to the axis of the m	
11.	Determine the expression to find out the deflection of beam using moment area method?	[10M]
12.	A beam 6m long, simply supported at its ends, is carrying a point load of 50kN at its centr inertia of the beam(I) is given as equal to $78 \times 10^6 mm^4$. If E for the material of the beam is Calculate i) Deflection at the centre of the beam ii) Slope at the supports.	
13.	Determine the equation for bending with neat sketch.	[10M]
14.	A steel plate of width 120mm and of thickness 20mm is bent into a circular arc of radius 10 maximum stress induced and the bending moment which will produce the maximum stress.	
	Take $E = 2x10^5 \text{ N}/mm^2$.	[10M]
	Determine the torsion equation and write its assumptions.	[10M]
16.	Find the maximum shear stress induced in a solid circular shaft of diameter 15cm when the 150kW power at 180rpm.	he shaft transmits [10M]
17.	Determine the expression for internal pressure on the dimensions of a thin cylindrical shell.	[10M]
18.	A cylindrical pipe of diameter 1.5m and thickness 1.5cm is subjected to an internal fluid pres . Determine i) Longitudinal stress developed in the pipe ii) Circumferential stress developed	'

Hall Ticket No

Question Paper Code: ACEB07