\square

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

B.Tech IV Semester End Examinations (Regular), November - 2020
 Regulation: IARE-R18
 STRENGTH OF MATERIALS

Time: 2 Hours
(CE)
Max Marks: 70
Answer any Four Questions from Part A
Answer any Five Questions from Part B

PART - A

1. Write short notes on i) Modulus of elasticity ii) Poisson's ratio .
2. Describe the following terms i) Shear force and bending moment ii) Types of beams
3. Explain the concept of complimentary shear in longitudinal section of a beam which is transversely loaded.
4. What are the methods to determine slope and deflections in beams?
5. Write the expression for circumferential stress (Hoop Stress) of thin cylinder.
6. Explain the concept of fatigue failure and write about the endurance limit and fatigue limit.
7. How many points of contraflexure you will have for simply supported beam overhanging at one end. Explain with a neat sketch.
8. Of the following sections: rectangular, circular, triangular, I, T sections, which is most efficient for withstanding shearing stresses in beams? Why?
[5M]

PART - B

9. Illustrate the stress-strain diagrams and explain the phenomenon of strain hardening.
[10M]
10. The tensile stresses at a point across two mutually perpendicular planes are $120 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the normal, tangential and resultant and resultant stresses on a plane inclined at 30° to the axis of the minor stress. [10M]
11. Determine the expression to find out the deflection of beam using moment area method?
[10M]
12. A beam 6 m long, simply supported at its ends, is carrying a point load of 50 kN at its centre. The moment of inertia of the beam (I) is given as equal to $78 \times 10^{6} \mathrm{~mm}^{4}$. If E for the material of the beam is $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Calculate i) Deflection at the centre of the beam ii) Slope at the supports.
[10M]
13. Determine the equation for bending with neat sketch.
14. A steel plate of width 120 mm and of thickness 20 mm is bent into a circular arc of radius 10 m . Determine the maximum stress induced and the bending moment which will produce the maximum stress.

Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
15. Determine the torsion equation and write its assumptions.
16. Find the maximum shear stress induced in a solid circular shaft of diameter 15 cm when the shaft transmits 150 kW power at 180 rpm .
[10M]
17. Determine the expression for internal pressure on the dimensions of a thin cylindrical shell.
[10M]
18. A cylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected to an internal fluid pressure of $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. Determine i) Longitudinal stress developed in the pipe ii) Circumferential stress developed in the pipe [10M]

