\square

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

B.Tech IV Semester End Examinations (Regular), November - 2020

Regulation: IARE-R18
FLUID MECHANICS
Time: 2 Hours
(CE)
Max Marks: 70

Answer any Four Questions from Part A Answer any Five Questions from Part B

PART - A

1. How are fluids classified based on Newton laws of viscosity? Differentiate adhesion and cohesion.
2. Write short notes on i) Buoyancy ii) Meta centre iii) Center of gravity
3. Determine the equation for measuring the total pressure and centre of pressure on the horizontal plane surface of a body with a neat sketch.
4. How do you distinguish sharp crested weir from a broad crested weir?
5. Explain about dimensional homogeneity and similarity law.
6. Classify different types of flow patterns along with examples.
7. Explain the importance of micro manometers in measuring the pressure of a liquid?
8. Briefly explain about velocity potential function and stream function with equations.

PART - B

9. Write short notes on the following along with units in different types of systems i) Mass density ii) Viscosity
iii) Surface tension iv)Pascal's law
[10M]
10. The dynamic viscosity of the oil used for lubrication between a shaft and sleeve is 6 poise. The shaft is of 0.4 m diameter and rotates at 190 RPM. Calculate the power lost in the bearing for a sleeve length of 90 mm . The thickness of oil film is 1.5 mm
[10M]
11. A hydraulic press has a ram of 30 cm diameter and a plunger of 4.5 cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 500 N .
[10M]
12. Prove that the pressure remains equal in all the directions when the liquid is at rest.
[10M]
13. What are the characteristics of rotational and irrotational flows? Also distinguish with mathematical expressions.
[10M]
14. The diameters of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe section 1 is $5 \mathrm{~m} / \mathrm{s}$. Determine also the velocity at section 2
[10M]
15. A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of oill of specific gravity 0.8 . The discharge oil through venturimeter is $60 \mathrm{lit} / \mathrm{sec}$. Find the reading of oil -mercury differential manometer. Take $C_{d}=0.98$
[10M]
16. Deduce the Bernoulli's equation from Euler's equation.
[10M]
17. Elaborate the procedure for solving problems by Buckingham's ' π ' theorem.
[10M]
18. A pipe of diameter 1.5 m is required to transport an oil of specifi gravity 0.9 and viscosity 3×10^{-2} poise at the rate of $3000 \mathrm{lit} / \mathrm{s}$. tests were conducted on a 15 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Find the velocity and rate of flow in the model. Viscosity of water at $20^{\circ} \mathrm{C}=0.01$ poise.
[10M]
