INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021 **Regulation:** R18

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTIONS

Time: 3 Hours

Answer FIVE Questions choosing ONE question from each module (NOTE: Provision is given to answer TWO questions from any ONE module) All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE - I

- 1. (a) If f(z) is analytic in a region R and f'(z) = 0 everywhere in R. Show that f(z) of constant absolute value is constant. [7M](b) Construct the analytic function f(z) for which the imaginary part is $v = e^{-x}(x\cos y + y\sin y).$ [7M]
- 2. (a) If $u = x^2 y^2$, $v = \frac{-y}{x^2 + y^2}$, prove that u and v are harmonic functions but u+iv is not an analytic function [7M]

(b) Find the bilinear transformation that maps the points z = 1, i, -1 onto w = i, 0, -i. respectively. [7M]

MODULE - II

- 3. (a) Evaluate $\int_{a}^{3+i} z^2 dz$ along the line joining the points (0,0) and (3,1). [7M]
 - (b) Evaluate $\int_C \frac{e^{2z}}{z^2+1} dz$, where C is $|z| = \frac{1}{2}$. [7M]
- 4. (a) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$ along the path y=x². [7M]
 - (b) Evaluate $\int_C \frac{z^2+1}{z^2-1} dz$, where C is |z+1| = 1, using Cauchy's integral formula. [7M]

MODULE – III

- 5. (a) Expand $f(z) = \cos z$ as a Taylor's series about $z = \frac{\pi}{3}$. [7M]
 - (b) Evaluate $\int_C \frac{\cos \pi z^2 \sin \pi z^2}{(z+1)(z+2)} dz$, where C is |z| = 3, using Cauchy's residue's theorem. [7M]
- 6. (a) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ as Laurent's series valid for the region 1 < |z| < 3. [7M]
 - (b) Evaluate $\int_{0}^{2\pi} \frac{1}{13+5\cos\theta} dz$, by contour integration. [7M]

(EEE)

Max Marks: 70

$\mathbf{MODULE}-\mathbf{IV}$

- 7. (a) The density function of a continuous random variable X is given by $f(z) = Kx(2-x), 0 \le x \le 2$. Find its rth moment. [7M]
 - (b) A random variable x has the probability function shown in Table 1. Find i) k ii) $P(x \le 3)$ iii) P(0 < x < 4) [7M]

Table 1

x	0	1	2	3	4
p(k)	k	3k	5k	7k	9k

8. (a) Find the moment generating function of the random variable X whose probability function is given by

$$f(x) = \begin{cases} x & ; \quad 0 < x \le 1 \\ 2 - x & ; \quad 1 \le x < 2 \end{cases}$$
[7M]

 (b) The cumulative distribution function(cdf) of a continuous random variable X is
 F(x) = 1 - (1 + x)e^{-x}, x > 0. Find the probability density function of X, mean and variance of
 X.
 [7M]

$\mathbf{MODULE}-\mathbf{V}$

- 9. (a) 6 dice are thrown 729 times. How many times do you expect atleast three dice to show 5 or 6?
 [7M]
 - (b) A book of 500 pages contains 50 mistakes. Find the probability that there are atleast four mistakes per page. [7M]
- 10. (a) A manufacturer of pins knows that 2% of his products are defective. If he sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective. What is the probability that a box will fail to meet the guaranteed quality ? [7M]
 - (b) A normal distribution has mean 30 and standard deviation 5. Find the probabilities that i) $26 \le X \le 40$ ii) $X \ge 45$ [7M]

 $-\circ\circ\bigcirc\circ\circ-$