

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18
COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTIONS
Time: 3 Hours
(EEE)
Max Marks: 70

Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) If $f(z)$ is analytic in a region R and $f^{\prime}(z)=0$ everywhere in R. Show that $f(z)$ of constant absolute value is constant.
[7M]
(b) Construct the analytic function $\mathrm{f}(\mathrm{z})$ for which the imaginary part is
$v=e^{-x}(x \cos y+y \sin y)$.
[7M]
2. (a) If $u=x^{2}-y^{2}, v=\frac{-y}{x^{2}+y^{2}}$, prove that u and v are harmonic functions but $\mathrm{u}+\mathrm{iv}$ is not an analytic function.
[7M]
(b) Find the bilinear transformation that maps the points $z=1, i,-1$ onto $w=i, 0,-i$. respectively.

MODULE - II

3. (a) Evaluate $\int_{0}^{3+i} z^{2} d z$ along the line joining the points $(0,0)$ and $(3,1)$.
(b) Evaluate $\int_{C} \frac{e^{2 z}}{z^{2}+1} d z$, where C is $|z|=\frac{1}{2}$.
4. (a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $\mathrm{y}=\mathrm{x}^{2}$.
(b) Evaluate $\int_{C} \frac{z^{2}+1}{z^{2}-1} d z$, where C is $|z+1|=1$, using Cauchy's integral formula.
MODULE - III
5. (a) Expand $\mathrm{f}(\mathrm{z})=\cos \mathrm{z}$ as a Taylor's series about $z=\frac{\pi}{3}$.
(b) Evaluate $\int_{C} \frac{\cos \pi z^{2}-\sin \pi z^{2}}{(z+1)(z+2)} d z$, where C is $|z|=3$, using Cauchy's residue's theorem.
6. (a) Evaluate $f(z)=\frac{1}{(z+1)(z+3)}$ as Laurent's series valid for the region $1<|z|<3$.
(b) Evaluate $\int_{0}^{2 \pi} \frac{1}{13+5 \cos \theta} d z$, by contour integration.

MODULE - IV

7. (a) The density function of a continuous random variable X is given by $f(z)=K x(2-x), 0 \leq x \leq 2$. Find its rth moment.
(b) A random variable x has the probability function shown in Table 1.

Find i) k ii) $\mathrm{P}(\mathrm{x} \leq 3)$ iii) $\mathrm{P}(0<\mathrm{x}<4)$
[7M]
Table 1

x	0	1	2	3	4
$\mathrm{p}(\mathrm{k})$	k	3 k	5 k	7 k	9 k

8. (a) Find the moment generating function of the random variable X whose probability function is given by
$f(x)=\left\{\begin{array}{lll}x & ; \quad 0<x \leq 1 \\ 2-x & ; \quad 1 \leq x<2\end{array}\right.$
[7M]
(b) The cumulative distribution function(cdf) of a continuous random variable X is
$F(x)=1-(1+x) e^{-x}, x>0$. Find the probability density function of X , mean and variance of X.
[7M]

MODULE - V

9. (a) 6 dice are thrown 729 times. How many times do you expect atleast three dice to show 5 or 6 ?
[7M]
(b) A book of 500 pages contains 50 mistakes. Find the probability that there are atleast four mistakes per page.
[7M]
10. (a) A manufacturer of pins knows that 2% of his products are defective. If he sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective. What is the probability that a box will fail to meet the guaranteed quality?
[7M]
(b) A normal distribution has mean 30 and standard deviation 5. Find the probabilities that
i) $26 \leq X \leq 40$ ii) $X \geq 45$
[7M]
