INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech IV Semester End Examinations (Regular/Supplementary) - July, 2021

Regulation: R18
DATA STRUCTURES
Time: 3 Hours
(AE|EEE)
Max Marks: 70
Answer FIVE Questions choosing ONE question from each module
(NOTE: Provision is given to answer TWO questions from any ONE module)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Define data structures. Explain the classification of data structures with a neat diagram. [7M]
(b) What is an algorithm? How do you find the complexity of an algorithm?
2. (a) Write a binary search algorithm that finds an item in a sorted array. Explain with an example.
[7M]
(b) Trace the insertion sort algorithm with the given set of 8 numbers $9,7,6,15,16,5,10,11$ by showing the passes and position moved. Mention the worst case and best case running time of insertion sort.
[7M]

MODULE - II

3. (a) Compare between linear queue and circular queue. Write down algorithms for insert and delete operations in a circular queue.
[7M]
(b) Write an algorithm to evaluate a postfix expression. Execute your algorithm using the following postfix expression as your input: $\mathrm{a} b+\mathrm{c} d+{ }^{*} \mathrm{f}-$.
[7M]
4. (a) Define a double ended queue (DEQUE). Explain input restricted and output restricted DEQUE.
(b) Convert the following infix expression to postfix expression using a stack using the usual precedence rule: $\mathrm{x}+\mathrm{y} * \mathrm{z}+(\mathrm{p} * \mathrm{q}+\mathrm{r}) * \mathrm{~s}$.
MODULE - III
5. (a) What is sparse matrix? Represent a sparse matrix using single linked list.
(b) Write a function to reverse the links in a linked list such that the last node becomes the first and the first becomes the last by traversing the linked list only once.
6. (a) Define a node in a linked list. Explain the difference between creation of single linked list node and double linked list node.
(b) Write a program to modify the linked list such that all even numbers appear before all the odd numbers in the modified linked list.
7. (a) Explain BFS and DFS graph traversal schemes and write their merits and demerits in brief. [7M]
(b) Construct a binary search tree for the following data and do in-order, preorder and post-order traversal of the tree. $50,60,25,40,30,70,35,10,55,65,5$.
[7M]
8. (a) What are the advantages of priority queue? Write the time complexity to insert a node based on position in a priority queue.
(b) Write the in-order, pre-order and post-order traversals for the given binary tree in Figure 1. [7M]

Figure 1

MODULE - V

9. (a) Write the purpose of a hash table .Explain hash tables, hash function and hashing techniques.
(b) Draw a hash table with open addressing and a size of 9 . Use the hash function "k\%9". Insert the keys: $5,29,20,0,27$ and 18 into your table (in that order).
10. (a) Explain the collision resolution technique, separate chaining and open addressing with suitable example.
(b) Insert the following sequence of elements into an AVL tree, starting with an empty tree:
$10,20,15,25,30,16,18,19$ and delete 30 in the AVL tree that you got.
