\square

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech III Semester End Examinations (Regular), February - 2021
 Regulation: IARE-R18
 ENGIEERING MECHANICS
 (ME | CE)

Time: 3 Hours
Max Marks: 7

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. State and prove the Parallelogram law of forces?
2. Distinguish between static friction and dynamic friction.
3. Determine the equation for centroid of semi-circle.
4. State the assumptions necessary for the analysis of a plane projectile motion.
5. Write the equation of simple harmonic motion with notations.
6. Distinguish between couple and moment.
7. What are the assumptions of a perfect truss?
8. Give the location of centroids of rectangle, right angled triangle, parabola, semi-circle and quarter circle. [5M]
PART - B
9. Explain the procedure to find the resultant of several forces acting at a point.
10. Two forces are applied at the point A of a hook support as shown in Figure 1. Determine the magnitude and direction of the resultant force by using i) Parallelogram law and ii) Triangle law

Figure 1
11. Describe how trusses are analyzed by the method of joints.
[10M]
12. A screw jack has mean diameter of 50 mm and pitch 10 mm . If the coefficient of friction between its screw and nut is 0.15 , find the effort required at the end of 700 mm long handle to raise a load of 10 kN
[10M]
13. Find the mass moment of inertia of a solid cylindrical body of radius ' r ' and height 'H' about its centroidal axes.
[10M]
14. A beam AB of span 5 m is carrying a point load of 2 kN at a distance 2 m from A as shown in Figure 2. Determine the beam reactions, by using the principle of the virtual work.
[10M]

Figure 2
15. Determine the expression for range along an inclined plane. What is the necessary condition for obtaining maximum range along an inclined plane?
16. A block of mass 5 kg resting a 30° inclined plane is released. The block after travelling a distance of 0.5 m along inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$ as shown in Figure 3 given below. Find the maximum compression of spring. Assume coefficient of friction between block and the inclined plane as 0.2 .
[10M]

Figure 3
17. Determine the periodic time expression for a compound pendulum.
18. A particle, moving with simple harmonic motion, performs 10 complete oscillation per minute and its speed, is 60% of the maximum speed when it is at a distance of 8 cm from the centre of oscillation, . Find amplitude, maximum acceleration of the particle. Also find speed of the particle, when it is 6 cm far from the centre of oscillation

