Hall Ticket No											Question Paper Code: AAEB32
----------------	--	--	--	--	--	--	--	--	--	--	-----------------------------

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech V Semester End Examinations (Regular), February – 2021

Regulation: IARE-R18

UNMANNED AIR VEHICLES

Time: 3 Hours	(AE)	Max Marks: 70

Time: 3 Hours	(AE)	Max Marks: 70	
	Answer any Four Questions from Part A Answer any Five Questions from Part B		
	PART - A		
1. Describe the cat	capult launching system of an UAV.	[5M]	
2. Explain the com	aponents of the lift induced drag? How do they affect lift induced	drag? [5M]	
3. Explain the char	racteristics of fixed wing UAV.	[5M]	
4. Describe the fun	actions of ground control station with a neat sketch.	[5M]	
5. For what kind o	f roles data transmission by fibre-optics is suitable option?	[5M]	
6. Explain how pay	yload is influenced in design consideration.	[5M]	
7. Describe the dra	ag forces acting on fixed wing UAV with a neat sketch.	[5M]	
8. Explain the imp	ortance of maintenance of the communications in UAS operations	\mathbf{S} ? [5M]	
	$\mathbf{PART}-\mathbf{B}$		
9. Illustrate the fur	actional structure of UAV system and discuss the control station a	nd payload. $[10M]$	
10. Differentiate var of UAS.	ious configurations of fixed wing of an UAV's. Describe the concept	tual phase of design $[10M]$	
11. Compare 'Ducte	ed Fan Aircraft' and 'Jet-life Aircraft' airframe configurations.	[10M]	
· ·	n causes for an aircraft to have a high response to atmospheric turb chods to reduce it.	oulence and explain $[10M]$	
13. Describe the HA	ALE and MALE types of flight vehicles with suitable examples.	[10M]	
14. Write a short no	ote on classification of UAV based up on altitude, weight, enduran	ice. [10M]	
	ee main concerns of the Long-endurance, Long-range Role UAV enecessary diagram?	designer, discuss in $[10M]$	
	ferent navigation systems for UAVs. Identify the need for Nano ϵ elopments of NAVs.	ir vehicle systems? [10M]	
17. Identify the rela	ation between communication range and height of operating UA's diagram?	V, discuss with the [10M]	
10 11 116 11 1	II	1 1 1 1	

18. Identify the challenges in achieving the control and stability for SMR helicopter, and explain the

AFCS for SMR helicopter with necessary diagrams and examples.

[10M]