Hall Ticket No	Questi	on Paper Code: AAEB15
INS	TITUTE OF AERONAUTICAL ENGINEE (Autonomous)	RING
"OH FOR UN	B.Tech V Semester End Examinations (Regular), February – 202 Regulation: IARE–R18 HICH SPEED AEPODYNAMICS	1
Fime: 3 Hours	(AE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	
1 Classify various flo	w regimes based on Knudsen number	[5M]

i classify failed ion regimes sased on rinduser hamsel.	[011-]
2. Enumerate shock boundary layer interactions.	[5M]
3. What is the effect of friction in downstream flow properties if inlet Mach number is supersonic?	[5M]
4. What are all the general features we observe for properties of Mach lines and expansion flow?	[5M]
5. List and explain the different flow visualization techniques used in wind tunnel?	[5M]
6. Develop the equations for the conservations of mass in integral form with proper assumptions.	[5M]
7. Mach number downstream of normal shock is always subsonic. Justify?	[5M]
8. Explain about fanno flow and write its applications.	[5M]

PART – B

9. Explain the concept of entropy and develop the entropy equations for perfect gas with the help of neat sketch.

[10M]

- 10. Determine the differential continuity equation in conservative form for three dimensional cartesian coordinate system by using infinitesimally small fluid element approach. [10M]
- 11. Explain about normal shock and build the Prandtl relation for normal shock in perfect gas? [10M]
- 12. A uniform supersonic stream with $M_1 = 1.5$, $P_1 = 17001b/ft^2$, and $T_1 = 460^{\circ}$ R encounters an expansion comer which deflects the stream by an angle $\theta_2 = 20^{\circ}$. Calculate M_2 , P_2 , T_2 , P_{O2} , T_{02} , and the angles the forward and rearward mach lines make with respect to the upstream flow direction. [10M]
- 13. What do you understand by area velocity relation and develop an expression for area velocity relation. [10M]
- 14. Consider a convergent-divergent nozzle with an exit-to-throat area ratio of 3. The inlet reservoir pressure is

1 atm and the exit static pressure is 0.5 atm. For this pressure ratio, a normal shock will stand somewhere inside the divergent portion of the nozzle. Calculate the location of the shock wave using i) A trial and error solution ii) The direct solution. Compare the results. [10M]

- 15. Develop the compatibility equation for two dimensional irrotational flows with the neat sketch. [10M]
- 16. Detail about area rule. Give an account of method of characteristics.
- 17. List industrial domain where wind and fluid tunnels are used. Explain its applications in their respective domain.

[10M]

[10M]

18. Explain about high speed (supersonic) wind tunnel and blow down wind tunnel (open circuit type) with suitable diagrams. [10M]