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Unit-1

Economic operation of
power system-|



INTRODUCTION

The optimal system operation, - genera, involved the consideration of
economy of operation, system securly, emissions at certain fossil-uel plants,
optmal eleases of water at hydro generaion, e, Allhese consideraions )
make for confl umgm\mmnm s and ustally @ conpromise has o be made fos

optimal system operation. I his chapter we considerthe econ my of operdtion
onty, also called the ecomonic dispateh problem,



The man aim i the economic dispatch problen is to minimize the tota cos
of generating real power (production cost) at various stations while satisfying
the loads and the fosses in the transimission links, For simplicity we consider the
presence of thermal plants onty in the beginning. In the later partof this chapte

We will consider the presence of hydro plants which operate in conjunction with

(ermval plants. While there s negligible operating costat a hydro plant,there

1 hmitation of availability of water over a period of time which must be used

10 save maximum fuel at the termal plants.
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Optimal Operation of Generators in all Thermal Plants

The total generator operating cost
includes fuel. Labour, and maintenance
costs for simplicity fuel cost is the only
one considered to be variable.

The fuel cost is meaning fuel in
case of thermal and nuclear stations, but
for hydro stations where the energy
storage is apparently free. The operating
cost as such is not meaningful.
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Incremental Fuel Rate Curves

The input — output curves being obtained
from the operating data of the power station can
be utilized to get the “Incremental fuel rate” (IFR

or IR) curve from the relation.

Incremental change in Input
Incremental change in Output

IFR =

Thus by calculating the shape of the input —
output curves at various points of operation. The

profile of IFR can be obtained. The input - output
enrve of a unit (it consists of hﬂ“ﬂt’, turbine.
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An analytical expression for operating cost can be written a

Ci(Pe) Rs/ hour at output Py

Where the suffix “i” is stands for the number, | generally suffices to fit a
second degree polvnomial ..

C,-=ﬂ,"rfl,-ﬂ;,'+ffpg,-3 Rs/ hr vi
de

The slope of the cost curve i d—’ s called Incremental fuel cost 1) and i
(o
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The mnput - output curve of a generating unit as
shown n figure. Efficient unit develops a given
amount of power with lesser fuel input.

I'P (Mkcal/hr)

O/P (MW) =
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HEAT RATE CURVE
Heat rate curve H(Pg) is the heat energy in

(Mkeal) needed to generate one unit of electrical energy.
Figure 1.3 shows the appropriate shape of heat rate curve,

which can be obtained experimentally.

The generating unit efficiency can be defined as

the ratio of electric energy output generated to fuel energy
nput. Thus, the generating unit is most efficient at the

minimum Heat rate which corresponds to a particular £
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And the curve indicates the ncrease in the Heat Rate at Low and High Power Limits
The typical pak efficiency (Heat Rate) of modern fuel fired plant s around 2.

Mkcal MWh and peak efficiency 15 = —3-600-? : = 4%
25x4.2x100

The input - oufputcurve can b obtained from heat curve as-

Fi(Pg) = Py HiPe) (Mhcal )
H(P, i the eatrate in Mical




et thecostofthe el be K Rs/Mbcal. Then the input fue cost is C(Pg) s
((Ps) = KF (Pg) = K P Hi(Pe) Rer

The heat rate curve can approximated inthe form
B (P = (0)/P) + b Py (Mkcal MY
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ents posiive from the above two equations we get he

ut energy rate F; (Pg) with positive co-¢fficients in the form,

FilP) =0 +b) Py +C' B (Mkcall

From equation 1.25 & 1.27we alo geta quadraic expression for el cos as
C;{P [,'d = Kﬂfi K b,‘l P ot Kf,'l P [,':,i

= 0+ h P+ C P, (Rs/l)



Contd..

Optimal Operation
Let us assume that 1t 15 known a priori which generators are to run to meet
particular load demand on the station. Obviously

2P, a2 Py
where P, 18 the rated real power capacity of the ith generator and Py 1
the total power demand on the station. Further, the load on each generator is
be constrained within lower and upper limits, i.e.

Pﬁl‘. fiin -li::- PG\‘ ‘E PGI. My j - L 2* i k
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Problem 1 The fuel cost of two units are given by
C,f =15+ 20 Pf;; 0.1 P[,';} Rs/hr
(y= 19430 PGy + 0.1 PG;' Ryhr

IF the total demand on the generators 1s 200 MW, Find the economic
l0ad scheduling of the two units.

Answer - From the fuel cost equations we get the Incremental cost equation.

SLa0402P,  Rs/ MW —~-3U+02P R/ MV
i, | d

() (r)
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for economic load scheduling the condition is

de,  dc,

dP,  dP,
20+0.2P,, =30+0.2P,,




From equation | & 2 we find the solution

PGy = 125 MW PGy = 75 MW and
150 depicted graphically also in figure

PR M, )

_LW" ! 125

0 20 &0 &0 60 100 120 D 9



FCONOMIC LOAD DISTRIBUT
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JI.I

where C = 1otal fuel cost Rs./hr
Ci = {P;) = fuel cost of plant § Rs./hr
P... = output of plant i, MW

P,= Z P, =total demand (total load connected systems)
l

P, = total transmission loss in the system

n = total number of generating plants
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We write equation as

{ girdor T T T T fm} +Fr. 'E‘ﬂr;. =
rul

To solve the problem, we write the lagragian as

L I
f Z': [:.r Zﬂa'PrJ‘PL

= L 1=l




it will be shown lter in this section that if the power factof Joad at each bus i

wcaumed {0 remain consant, The system loss Py can be shown to be & function of actrve

power generaton afeach plant Le.
P.'. - F]', “Dfl'.'l FM-. F-h-fl-’

Thos inthe optimization problem posed N
conrl varighle, ot o v P 11, e ey

For optmu real power ispach




op o . . op
=l = "}I.+A_L= =2, --=---
o, o, ap, TR

(i

Rearranging the above equation and recognizing that changing the output of only one
plant can effect the cost at only that plant, we have

de,
dP. de
—=A (or) —~L=4 i=]2,-----
]__aﬂ' ( )dﬂh | | n
a}::.il

]
where L = 3 2 is called the penalty factor of * plant

1= %L

oF,



{he Lagragian multipier i n ruees per M, when fuel cot is in Ro
equaton implies that minimum felcos is obtained, when te ncremental el cot

o ach plant mulipled by ispenalyfactor s the same for al the plans

[he 1) variables (Pyy, Py G,y) can be obtained from 1 optimal
spatch equation 157 together with th power balance equation. The partil derivativ

il | - o
7" 5 referred (o as the incremental transmission loss (ITL) associated with the "
()

generating plant




Equaton 157 canalsobe writen nthe allemative fom,

) =A-(mL); =1,2----1

This equation i refemed o s the exact co-ordinaton equation,
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Derivation of Transmission Loss Formula

An accurate method of obtaining a general formula for transmission l0ss has
een given by Kron [4]. This, however, is quite complicated. The aim of this
aticle 1 10 give a simpler derivation by making certain assumptions

Flgure (¢ depicts the case of two generating plants connected to an
arbitrary number of loads through a transmission network. One [ine within the
network is designated as branch p.

Imagine that the total load current Iy 15 supplied by plant | only, as in
Fig.a. Let the current in line pbe 1. Define

26
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Fig. Schematic diagram showing two plants connected through

a power network to a number of loads
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oy ad Moy are called current distribution factors. The values of current

distribution factors e
nterconnection and are

:fend upon the impedances of the lines and their
independent of the current |,

When both generators | and 2 are supplying current into the network as in

Fig applying the
be expressed as

principle of superposition the current in the line p can

where 1 and [, are the currents supplied by plants 1 and 2, respectively.

28



At this stage let us make certain simp
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(2) Ratio X/R is the same for all network branches.

These two assumptions lead us to the conclusion that l,,l and [, [Fig.  (a)]
have the same phase angle and so have [, and ;) [Fig. (b)), such that the
current distribution factors M, and M, are real rather than complex.

Let. l(;l - ”m' Z(Tl ilnd ,GZ = ll(;2| Z(rz

where o, and a, are phase angles of 1, and [, respectively with respect
to the common reference.

From Eq. (), we can write

II,,|2= (MLl cos o, + Myp liylcos 03)3 + (M llgsin oyt
Mllgsin ) (.36)

30



Expanding the simplifying the above equation, we get
1= Myl + Mol + 2yl Vggos (g - o)

¢ Fry
Now lgl= = Iyl
g J—IVIcosq flVIcoso,

where P, and P, are the three-phase real power outputs of plants | and 2 at
power factors of cos ¢, and cos ¢, and V, and V) are the bus voltages at the

plants.
If R, is the resistance of branch p, the total transmission loss is given by




‘The general expression for the power system with k plants 1 cxpressed 18

PGI
MR, +..4
|v,|31 mz

|

1))

mn= |
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S —— e ——

P[:MPGH CU"; (T =0, }
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ZMM A

.




P, = Z3I AR,
ID

Substituting for 1) from Eq. (7.37). and ;| and ;| from Eq. (7.38), we
obtain

,

% :
P, = ot M’ R
“T VP (cosy )’ Z e

zp(ll P(:2 cos( 0y =
IV IIV;lcos ¢y cos ¢,

ZM,,, MR,

e 2
2 M2
lel (cos oy )’ Z $ER

Equation  can be recognized as
PL= PGBy, + 2P PByy + Py
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| ’
B = : = M,R,
; IV,I‘(costp: -

08 (0, = )
) - M)R
i IV IIValcos ¢ cos z' =

by ——— ) MR

' IVI(wsc&,) ok

The terms B,,, B, and By, are callcd loss coefficients or B-coefficients. If



voltages are line to line KV with resistances in ohms, the units of B-coefficients
are in MW", Further, with Py and P, expressed in MW, P, will also be in

MW,
The above results can be extended to the general case of k plants with

transmission loss expressed as

PL ZZP(M P(m

m=| n=|
where -
B - cos (a, -0, ) ZMmManp
VIV Icosg, cosq,

[t can be recognized as -
P.= szslBu LT onkBu t 2ZPGmanPGn

mn=|
m-n

35



The following assumptions including those mentioned already are necessary,
if B-coefficients are to be treated as constants as total load and load sharing
between plants vary. These assumptions are:

§
2,
3.

All load currents maintain a constant ratio to the total current.
Voltage magnitudes at all plants remain constant,

Ratio of reactive to real power, 1.e. power factor at each plant remains
constant.

Voltage phase angles at plant buses remain fixed. This 1s equivalent to
assuming that the plant currents maintain constant phase angle with
respect to the common reference, since source power factors are assumed
constant as per assumption 3 above,
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Unit-II

HYDROTHERMAL
SCHEDULING



OPTIMAL SCHEDULING OF HYDROTHERMAL SYSTEM
The previous sections have delt withthe problem of optmal scheduling of &

power system with therma p
can be completely determinec

ants oy, Optimal operating policy in tis cas

a any instant without refrence to operaton &

oter times, This, indeed, i the tatic optimization problem, Operation of

system havi

hydro plant
constralnts

ng both hydro and thermal plants i, however,far mor complex &

s have negligile operating cost, but are requird {0 operae Unde

of water available

or hydro generation in a given period of i



J (water inflow)
|

R
Reservoir |
(storage)
F
FGL., P |

| w

Therma T o l

plan Y plant
Pp

Fig. Fundamental hydrothermal system (water discharge)
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Mathematical Formulation

Fora certain period of operation T (one year, one month or one day, depending
Jpon the requirement), it s assumed that (i) storage of hydro reservoir at the
eginning and the end of the period are specified, and (if) water inflow to
reservoir (after accounting for irigation use) and load demand on the system
are known as functions of time with complete certainty (deterministic case), The

oroblem 1 to determine ¢ (1), the water discharge (rate) 0 as to minimize the

05t of thermal generation.
;

(12 JOC'(P o) d

40



- =

o = thermal generation in the sz2th interval
7, = hydro generation in the zth interval
;7 = transmission loss in the rs2th interval

= By (P)" + 2By PYy + By (Piy)?

P/} = load demand in the mth interval
(ii) Water continuity equation
;l:i.l'i'l_ xﬂm—l]_ Jm AT + qm AT =0

where

x-.' FFl
J;-nr

water storage at the end of the mth interval

water inflow (rate) in the mth interval

Il

e

g" = water discharge (rate) in the mth interval

41



The above equation can be written as
"X P =0m=12 .M

where X" = X"/ AT = storage in discharge units.
In Egs. (7.73), X and X" are the specified storages at the
beginning and end of the optimization interval.
(111) Hydro generation in any subinterval can be expressed as
Py = h {1405 (X" + X" (4" - p
whete 981 x 107,
h = basic water head (head corresponding to dead storage)

42



L]

nao= 981 x 10770 (¢ — p ) MW

where
(g" — o = effective discharge n n'ls
H'. = average head in the mth interval
Now
= b 4 ArX" 4 X" ]}_
2A
where
A = area of cross-section of the reservoir at the given storage
h', = basic water head (head corresponding to dead storage,
Boo= k11 + 0.5e(X™ + X"y
where
AT _ :
¢ = —— e is tabulated for various storage values.
Ah',
Now
Ply=h, [1 +05eX" + X" ")) (¢" — P)
where
h, =981 x 1074,
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¢ = water head correction factor o account for head variation with
slorage

p = non-clfective discharge (water discharge needed to run hydro
generator at no load),

ﬂ

I the above problerm formulation, it is convenient to choose waer ischarges
I all subintervals except one as independent variables, whil hydro genera:
ons, thermal generations and water storages in all subintervals are treated s
dependent variables. The fact, that water discharge in one of the subintervals
5 4 dependent variable, is shown below;

44



Adding Eq. (7.73) for m= 1, 2, ..., M leads to the following equation, known
s water availability equation

R YIT g

Because of this equation, only (M - 1) s can be specified Independently and
the remaining one can then be determined from this equation and is, therefore,
a dependent variable. For convenience, ¢' is chosen as a dependent variable, for
which we can write "

O ij __qu

m-)

45



Solution Technique

The prob
Conjunci

em 1§ solve
1 with the
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constrants of Egs,
Voad A Th

L= [0 )- 0 By - )4 - 11

12 (7.14) throug

Ih8

Inctior

) Lagr:

of
e 1

Eq. (171) with e

I here using non-linear programming technique i
ISt order gradient method. The Lagrangi
by augmenting the cost f
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jality
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The dual variables are obtained by equating to zero the parta
ofthe Lagrangian with respect to the dependent variables yielding ¢
quations

L) o

Skl Y PR

ApM | aph

dPM dier '\ O,

(The reader may compare this equation with Eq. (7.23)
i) [ op )

pr I (W

Y | 0Py

derivatives

1¢ following



d.-f. m ™ m m+
" ]M = N2 RN {0Shetg” - p)) - A (05 €
z
{anﬂ_ ﬂ}] - I:I
and using Eq.«in Eq, -we get

/
L;’i] A= Ay (1405e QX+ 1~ 24 4=
g

The dual variables for any subinterval may be obtained as follows:
(1) Obtain AT from Eq

(1) Obtain )7 from Eq,
(iii) Obtain A} from E,

and other values of X (m = 1) from Eq.
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The gradient vector iy given by the partal denvatives of te Lagrangian with
respect 10 the independent variables, Thus

|
L3 - A, {14 05e (2 o™ 4 12" )

\(’q |

For optimality the gradient vector should be zero 1f there are no tnequalit

constraints on the control variables,
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3, The system frequency is closely related to the real power balance inthe power

systems network.
4, The system frequency s mainly controlled by the real power balance In the

system.

5 Whenever there is an increase in load on a generating unit, more amount of rea
power s {0 be suppled, which is immediatey received rom the inetic energy

(KE) power in otatng part,there by reducing the *KE” of angular velocity r
soced of the machine. There will be a change in speed which is measure of



eal power n balance, The change in speed in snsed by a speed governing
mechanism and contol the poston ofnlet valveto th prime mover,tereby

conrolling the seam watersupplied o turbing. Consequenty, the maching
comes back to normal speed and hence frequency. This action 1 a slow
yoces, since mechanica lements areinvolvedand usully the ime volve

5 0t 10 o scconds.  The maximun permisible change In frequency 1¢.
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Turbine Speed Governing System

Figure - shows schematically the speed governing system of a steam turbine.
The system consists of the following components:

l p SN y X .4 Cbse
Fom: Speed changer Direction of [ 'A;

| BN positive i l, et

v B movement A \J y B
Ralse \\

St Ex—"‘-u U AL L s = &

> T e, = value = FL | l’ = ~ 1 r (:'.-j
@00 — —p ~ e r e ~
o o » r : . :

S High = . 1 + F
pressu it - ¥l L Main
H e o 4 lj‘ " I piston
P rﬂ I TTTTTTT T /’4

T ' F ‘Hydraulic amplifier
Speed governor {speed control mechanism)

Fig. Turbine speed governing system
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Model of Speed Governing System

Assume that the system is initially operating under steady conditions—the
hnl_m_gﬂ mee:hlaru'ﬁm stationary and pilot valve closed, steam valve opened by a
Jennm.: magnitude, turbine running at constan speed with turbine power uut;rut
alancing the generator load. Let the operating conditions be characterized by

"= system frequency (speed)
P = generator output = turbine output (neglecting generator loss)
Vg = steam valve setting

We shall obtain a linear inc
near incremental model around these onerati
conditions, -
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I'wo factors contribute to the movement of C:

!
(1) Ay, contributes — [ﬁ} Ay, or - k Ay, (ie. upwards) of — kK- AP
(11) Increase in frequency Af causes the fly balls to move outwards so that

8 moves downwards by g proportional amount k', Af The consequent

l'] +{
movement of ' with A remaining fixed at Ay, is + [Tl] KA =+ k,AfF
e, downwards)

The net movement of C is therefore

The movement of D, Ayp,, is the amount by which the pilot valve opens. It is
contributed by Ay and Ay, and can be written as

Iy I
] :l. — .ﬂ 1 —
d'}ﬂ [f:] +f,4] Yo r [f} "Hr,_l] d'yE
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The movement Ay, depending upon its sign opens one of the ports of the pilot
valve admitting high pressure oil into the cylinder thereby moving the main
piston and opening the steam valve by Ay,. Certain justifiable simplifying
assumptions, which can be made at this stage, are:

(1) Inertial reaction forces of main piston and steam valve are negligible
compared to the forces exerted on the piston by high pressure oil.

(11) Because of (i) above, the rate of oil admitted to the cylinder is
proportional to port opening y,,

The volume of oil admitted to the cylinder is thus proportional to the time
ntegral of Ay, The movement Ay, is obtained by dividing the oil volume by
the area of the cross-section of the piston. Thus
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/
A.\f: klg'[(‘..‘.\'l))df ( 4)
0

It can be verified from the schematic diagram that a positive movement Ay,
causes negative (upward) movement Ay, accounting for the negative sign used
n Eq. (8.4).

Taking the Laplace transform of Eqs. (8.2), (8.3) and (8.4), we get

AY(ls) = = kkAPAs) + kyAF(s) ()

AYy(s) = k¥ ds) + k,AY () ( 6)

Ayds)= - ks L A1 ()
\

Elminating AY As) and AY,(s), we can write
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k|k3kfdﬂ?{{£}_k:k3 ..L"]F(."I:'}

A
ky +—
[ ) kS]

K
=[ﬂﬂ;_-{s;=——éﬂﬂm}x[ = ] ( B)

.J }'rf__.';"pj.l —

where b L4 L
R = % = speed regulation of the governor
2
kykyk
K, = ':' S gain of speed governor
4
T, L _ time constant of speed governor

T kyks
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Equation (- 8) is represented in the form of a block diagram in Fig. |

|
o~ K
QP ) e Al
%

- — AF(s)
Fig. Block diagram representation of speed governor system
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(a) Two-stage steam turbine
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(b) Turbine transfer function model
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Generator Load Model

The increment in power input to the generator-load system is
JP h ey APD

where AP = AP, incremental turbine power output (assuming generator
incremental loss to be negligible) and AP, is the load increment
This increment in power input to the system is accounted for in two ways:
(1) Rate of increase of stored kinetic energy in the generator rotor, At
scheduled frequcncy ("), the stored energy is

= Hx P, kW = sec (kilojoules)

where P, is the kW rating of the turbo-generator and H is defined as its inertia
constant,
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The kinetic energy being proportional to square of speed (frequency), the
kinetic energy at a frequency of (f°+ Af ) is given by

V- W.,k(f°+df J

fO
“HP( Q‘Jf (9
fO
Rate of change of kinetic energy is therefore
2HP.
gz =2l (4 (10

di f
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Rate of change of kinetic energy is therefore

2HP.
-(ch)‘ 7-— (4f) (8.10)
(i) As the frequency changes, the motor load changes being sensitive to
speed, the rate of change of load with respect to frequency, ie. 0Py /df can be

regarded as nearly constant for small changes in frequency Af and can be
expressed as

(O0P,J0f) Af = B 4f 8.11)

where the constant B can be determined empirically. B is positive for a
predominantly motor load.
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Writing the power balance equation, we have
2HF, d
f° di

Dividing throughout by P, and rearranging, we get

AP - AP, = (A + B Af

2H d
AN+ B A 12
f°dt(f) (pu) 4f ( 12)

Taking the Laplace transform, we can write AF(s) as
AF;(5)— APy (s)

B+ ng
f

APpu) — APp(pu) =

AF(s) =
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14+ T

K
= [APy(s) = APp(s)] x( e ) ( 13)
heS

2H
where T = F = power system time constant
I
K= g = power system gain

Equation ( 13) can be represented in block diagram

form as in Fig.

APals)___H < . 1+Krp‘s - AF(8)
' ps

Fig. Block diagram representation of generator-load model
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Complete Block Diagram Representation of Load Frequency
Control of an Isolated Power System

A complete block diagram representation of an isolated power system
comprising turbine, generator, governor and load 15 easily obtained by
combining the block diagrams of individual components, 1.¢. by combining Figs.

band . The complete block diagram with feedback loop 15 shown in
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AP(s)=APgls)

Ye(s) APy(s)
o e 4, K 'I**‘. L K I |
APs) 2 1+ | 14T O 14T 58 AR
ExiEmsak [ MEGCLo L
R

Fig. Block diagram model of load frequency control
(isolated power system)
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Steady States Analysis

The model of Fig.  shows that there are two important incremental 1nputs to
the load frequency control system - AP ., the change in speed changer setting
aid APy, the change in load demand. Let us consider a simple situation In

which the speed changer has a fixed setting (i.e. AP = 0) and the load demand

changes, This i.ﬁ known as free govemor operation, For such an operation the
steady change in system frequency for a sudden change in load demand by an

. Ap
amount AP, [LE.JPH(J] - —-E] s obtained as follows
§



which the speed changer has a fixed setting (i.e. AP = ) and the load demand
changes. This is known as free governor Operation. For such an operation the
steady change in system frequency for a sudden change in load demand by an

. A\,
amount 4P, [LE.JFHL\'] = —-E] 1s obtained as follows:
§



JF(S)IJP(-U)=O a

af

KPG )(APD
K KK _ /R
(1+T,s)+ g ! p §
(I+ T s)X1+T,s)
steady state — S AF ((';)
S —
APC=O

AP(,(s) = ()

L
= - APD
|+ (K, KK, |R)
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While the gain K, is fixed for the turbine and K, 15 fixed for the power system,
Ky the speed govemor gain is easily adjustable by changing lengths of various
inks. Let it be assumed for simplicity that Ky, 15 50 adjusted that

KK =1

It15 also recognized that Ky = 1B, where B = %’;.{!./ P, Gn pu MW/unit change
(

The above equation gives the sleady state changes I lrequencyruﬂuxﬁd by

changes i load demand. Speed regulation R s naturally 5o adjusted that

changes in frequency are small (of the order of 3% from no foad to full load)




Therefore, the linear incremental relation ~ can be applied from no load to
full load, With this understanding, Fig.  shows the linear relationship
etween frequency and load for free governor operation with speed changer set
0 give a scheduled frequency of 100% at full load. The ‘droop’ or slope of this

relationship 1 -

I
B+(I/R) )

Power system parameter B is generally much smaller than 1/R (a typical
alue is B = 0.01 pu MW/Hz and 1/R = 1/3) so that B can be neglected in
comparison. Equation (8.16) then simplifies to

A=- R(dP



The droop of the load frequency curve is thus mainly determined by R, the

speed governor regulation,

It s also observed from the above that increase in load demand (4P 1s met
ander steady conditions partly by increased generation (AP) due to opening of
the steam valve and partly by decreased load demand due to drop in system
frequency. From the block diagram of Fig. =~ (with K K,=1)

I I
4p,=- Laf ——-)AP
TR il
bR
Decrease in system load = BAf = ( RH)JPD
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Of course, the contribution of decrease in system load is much less than the
ncrease in generation, For typical values of B and R quoted earlier

AP, = 0971 4P,
Decrease in system load = 0.029 4P
Consider now the steady effect of changing speed changer  setting
AP

AP (s)= = | with load demand remaining fixed i APy = 0). The steady
;

stte change n frequency s obtained as follows.



K KK
AF()| gp, 0= A Xeo
(4T s)+ TN 4 To) + KK K IR s
R 14
)] P— ror AFe
L“p,,iﬁ“ 14K KK IR,
If

KK, =1

Afz(mll/R)AP‘




If the speed changer setting is changed by AP while the load demand
changes by AP, the steady frequency change is obtained by superposition, 1.¢

|
Af = AP~ AP
/ {BH! J{ 4

According to Eqg. (8.21) the frequency change caused by load demand can be
compensated by changing the setting of the speed changer, 1.¢

AP[-: A.Fﬂ-. ﬂ]'l' .“jf=ﬂ

Figure  depicts two load frequency plots—one to give scheduled
frequency at 100% rated load and the other to give the same frequency at 60%

rated load.
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Dynamic Response

To obain th dynamic esponse iving the change n frequency a funcio of

et for & e change in oad, we must otain the Laplace nverse o Eg
The characterstic equation being of third order, dynamic response can

oy be obtained for a specific numerical case. However, the charactensti

equation can e approximated a5 first order by examinig the relave

magnitudes of the ime constans nvolved. Typical valuesof te {ime constants

of load frequency control system are related as




I, <71, <T,
Typically’ I, =04 sec, T, = 0.5 sec and I = 20 sec.

APp(s)
AP(;(S) D(
Y
————t -..»—b 1 —L:(\ > __Kps - —@ »
APs) & | Wi ~ AF(s)
o 1L '
R

Fig. First order approximate block diagram of load
frequency control of an isolated area
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Leting T, = T, = 0, (and K K, 21), the block diagram of Fig,
reduced to that of Fig, 8.8, from which we can write

K ahy

) —

I+K/R+Ts

K., L APp

AF(S)IJQ(:):O = -

BT,

R+ K
s[s-i— ps]

RT,,

XAPD




REK-.: | - 2
Af () = — B )y e 2
f ) R+ Kps cxXp ps R+Km f APD

Taking R =3, K, = 1/B = 100, T, = 20, AP}, = 0.01 pu
Af (1) = - 0.029 (1 - 1717y
A geaty e = — 0.029 Hz

—

(rst order approximation

noe in frequency versus time for |
The plot of change In frequenc) i

given above and he exact TESpOM U shown
spproximation is obviously & poor approximation
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-

Afx 104

2 a6 &0 B

First order approximation

Exact response

Fig. Dynamic response of change in freque

ncy for a step change in load
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Control Area Concept

e have considered the simplfied G of 4 single turbo-gencralo
oud, Considr now a practical st with a number of
3 oads, s posible to dvide ame ended power systern
s (may be, e ecticity Boards) n which
pld fogether $0 480 o4 colierent group, 1.
o nion 10 changes in load or gpecd Change

S0 far
aplying an 1olae
generling Satons
sy, ntional grid)nfo S
e generators ar ightly €0
Jl he generalors respond

—

—

"
S— -

—

" -

QUINgS.
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TWO-AREA LOAD FREQUENCY CONTROL

An extended power system can be divided nto a number of load frequency
~ontrol areas interconnected by means of tie lines. Without loss of generality we
chall consider a two-area case connected by a single tie line as illustrated in

Fi O
t'

- Tie line

Control area | _ Control area
1 , 2

Fig. Two interconnected control areas (single tie line)
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For incremental changes in &, and 4,, the incremental tie line power can be
expressed as
dpuc. l(p“) - le(dél - Ahz)
Where VIv,I
I = Pl x-‘--cos((.‘{ &) = synchronizing coefficient
142

Since incremental power angles are integrals of incremental frequencies, we
can write Eq. (8.27) as

ap, = 2xT,2(jJﬁdt : I.Jj;d:)

where Jf, and Jf, are incremental frequency changes of areas | and 2
respectively.
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laking the Laplace transform of Eq and reorganizing, we gel

K
-—\Fl(” = |JPG|[-” - «-1IP11|{5} - n’-]Pn',_.‘ |{.'J]] K—m'] e

I+ T8

where as defined earlier [see Eg, | K, =15,

TFJ.'I = ZHIEBIIH

Compared to Eq. - of the isolated control area case, the only change is
the appearance of the signal AP, (s) as shown in Fig. .
Taking the Laplace transform of Eq. 1, the signal AP, (s) is obtained

d5
APy \(5) = i T”

[AK (s)~ AF(s)]
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| A Pe 1(5)
'1'-.___::-1:.. Hl-p.s1 I- L
APg1(s) "i;r-" 1+Tps1S | AF4(S)
|.-ﬂ.PDf{S_}
Fig.

B =sponding block diagram is shown in Fig.

- | ) |
- f 27Ti2 N | .
P 105 _'-q'_ ‘ | 1 | APy 2(8)

&,
AF(s) WS - . AFs)
Fig.

i the control area 2, AP, -(5) is given by [Eq.

AP 2ls) = —2 izl [AF (5)— AF(s)]
' 5
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Let the step changes in loads 4Py, and AT

control areas | and 2. respectively, When Steady conditions are reached, the

output signals of ] Integrating blocks wil| become constant and iy order for

this to be so, their Input signals must become zero, We have, therefore, from
Fig. 8.16

be simultaneous| y applied in

JP;. | + b4, =) ( mput of Integrating block i )

J

4P, 5 + byAf, = () (inpul of integrating block - Ll )

t" .

af, - 4df, =) (inpul of integrating block - Zﬂ-“ ]
)
From Egs. and |
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o

4
|

Xy ____l | |
21!%12 |
, 1 ACE;
g | O T 4 l JORUNUI
‘ *z%L Ly Bl AL o bl o
]| . PV 1\V4 s T L\ b A RPNV
1+Tf1’ $ O +TP'1’ PO ol “*Tm’ ) * 1+Tg’ 1'|'T.°2’ O 8 t‘( Y
| fe | | - | R

i

B

U W P by
| 1 A
- | | _

Fig,

State space model of two-area system
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Integral APg(s) | APp(s)

controller
o ——
W KL :'1-."\ > 7—14 — : >\ > _K = *—r
«s ﬂ T 3 (1+T5gs)(1+Tss) 7?1%3 AF{(s)
APq(s) | _r‘
___~_4 1 |e
Frequency sensor

Fig. Proportional plus integral load frequency control
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The signal AP {s) generated by the integral control must be of opposite sign
to AF(s) which accounts for negative sign in the block for integral controller.
Now

K,y AP,

AF(s) = -
(5) | K)x K X -

U+Q§H(—+4- _
R (1+ TysX1 + T,5)

0“ J

RK , s(1+ T s)(1+T;s) AP,
- X
S(1+ T )1+ Tis)H1+ Ty )R+ K (KiR +5)

Obviously,
Af | = .s-OAF(s) =i0

steady state
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LOAD COMPENSATION

Load compensation is the management of reactive power (o improve power
guality i.e. V profile and pf. Here the reactive power flow is controlled by
nstalling shunt compensating devices (capacitors/reactors) at the load end
Bringing about proper balance between generated and consumed reactive power,
This is most effective in improving the power transfer capability of the system
and its voltage stability. It is desirable both economically and techmcally to
operate the system near unity power factor. This is why some utilities impose
2 penalty on low pf loads. Yet another way of improving the system
rformance is to operate it under near balanced conditions so as to reduce the
fow of negative sequence currents thereby increasing the system's load
ability and reducing power loss.
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SERIES COMPENSATION

A capacitor in series with a line gives control over the effective reactance
hetween line ends. This effective reactance 1 given by
Xi=X-X
where X, = line reactance
Y. = canacitor reactance
It is easy lo see that capacitor reduces the effective line reactance™.
This results in improvement in performance of the system as below.

(i) Voltage drop in the line reduces (gets com vensated) i.e. minimization of

end-voltage variations.
(ii) Prevents voltage collapse.
(iii) Steady-state power transfer increases; I is inversely proportional to X}
iv) As a result of (if) transient stability limit increases.
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The benefits of the series capacitor compensator are associated with a problem.
The capacitive reactance X forms series resonant circuit with the total series

reactance
X=X+ chn + Xians
The natural frequency of oscillation of this circuit is given by.

fom
3 2%\/1_6
I B
2«\(" 27 C X
“Noaf 24

where  f= system frequency
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X
(’ -
~ = degree of compensation

— 25 to 75% (recommended)

For this degree of compensation

fe<f

which is subharmonic oscillation.
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UNCOMPENSATED TRANSMISSION LINE :
The basic equation describing a transmission Tine given as

“I; _ }le.-'r

=3

o

a’l
!

¥

=17

and

where ¥° = (r + jol) (g + joC)

and Z = (r + jwl), ¥ = (g + jwl)
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