
 INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

 Dundigal, Hyderabad - 500 043

 OPERATING SYSTEMS

 Course Code: A50510

 III B. Tech I semester (JNTUH-R15)

 Prepared by:

 Mrs. B.DHANALAXMI

 Associate Professor

 IARE10034

 1

Operating System

TEXT BOOKS:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne,

“Operating System Principles”, 8e, Wiley Student Edition.

2. W. Stallings, “Operating Systems - Internals and Design

Principles”, 6e, Pearson.

REFERENCES:

1. P. C. P. Bhatt, “An Introduction to Operating Systems”, PHI.

.

UNIT-I

Syllabus

 Operating System Introduction: Operating
Systems objectives and functions, Computer
System Architecture, OS Structure, OS
Operations, Evolution of Operating Systems -
Simple Batch, Multi programmed, time-shared,
Personal Computer, Parallel, Distributed Systems,
Real-Time systems, Special-Purpose Systems,
Operating System services, User OS interface,
System Calls, Types of System Calls, System
Programs, Operating System Design and
Implementation, OS Structure, Virtual Machines.

3 Operating Systems

What is an Operating System?

 A program that acts as an intermediary between a
user of a computer and the computer hardware.

 Operating system goals:

– Execute user programs and make solving user
problems easier.

– Make the computer system convenient to use.

 Use the computer hardware in an efficient manner.

4 Operating Systems

Operating System Definitions:

A program that acts as an intermediary between a user

of a computer and the computer hardware.

Operating system is a combination of different

software's.

Operating system is a key program where it manages

the hardware and software.

5

 GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY,K.ANUSHA NAGINA,2016-17

Operating Systems

Operating system is also a manager which manages

the resources of the system.

An Operating system is a program that enables the

computer hardware to communicate and operate with

the computer hardware.

A more common definition is that the operating

system is the one program running at all times on the

computer(usually called the kernel), with all else

being system programs and application programs.

6 Operating Systems

Different types of Operating System:

1. Character User Interface(CUI)

2. Graphical User Interface(GUI)

CUI GUI

I. It is used in connection

with computers.

It is also used in connection

with computers.

II. In this, the user has to type

on keyboard to proceed.

 In this, the user use mouse

instead of a keyboard.

III. It is not easy to navigate. It is easy to navigate.

IV. There is only text in case

of CUI. Ex: DOS

Graphics & other icons are

there in GUI. Ex: Windows

7 Operating Systems

What is an Operating System ?

 A modern computer consists of:

 One or more processors

 Main memory

 Disks

 Printers

 Various input/output devices.

 Managing all these varied components

requires a layer of software – the

Operating System (OS).

8 Operating Systems

9 Operating Systems

Operating System Goals

OS goals:

– Control/execute user/application programs.

– Make the computer system convenient to use.

– Ease the solving of user problems.

– Use the computer hardware in an efficient manner.

10 Operating Systems

Computer System Overview

Computer system can be divided into four components

 1. Hardware – provides basic computing resources

(CPU, memory, I/O devices).

2. Operating system – controls and coordinates the use of

the hardware among the various application programs

for the various users.

3. Applications programs – define the ways in which the

system resources are used to solve the computing

problems of the users (compilers, database systems,

video games, business programs).

4. Users (people, machines, other computers).

 11 Operating Systems

Four Components of a Computer System

12 Operating Systems

There are two types of views:

 1. User view: Users want convenience, ease of use

and don’t care about resource utilization

 2. System view: System view of the OS is mainly

focused on resource allocation to meet the requirements

of different application programs and end users.

13 Operating Systems

The Boot/Startup Process

• BIOS Takes an inventory of software.

• CMOS provides instructions.

• Software interact directly with the CPU.

The Boot Process:

Step1: BIOS tests Hardware(POST).

Step2:BIOS searches for & loads OS.

Step3:The OS configures the system.

Step4:The user executes application.

14 Operating Systems

STEP:1

• The ROM BIOS assigns resources.

• Begin by reading configuration information stored in jumper, and the
CMOS chip & comparing that information to hardware.

STEP:2

• BIOS finds & loads the OS

• Most often the OS is loaded from logical drive C on to the hard drive.

• Configuration information on the CMOS chip tells startup BIOS when to
look for OS.

• BIOS turns on the device , reads the beginning files of the OS , copies
them into memory , then turns control over to the OS.

15 Operating Systems

STEP:3
• Os completes the booting process

• The OS checks some of the same things that startup BIOS checked
(available memory & whether memory is reliable)

• The OS loads software to control the mouse , CD-ROM , scanner and
other peripheral device drivers.

16 Operating Systems

Computer System

Organization
• Computer-system operation

– One or more CPUs, device controllers connect through

common bus providing access to shared memory

– Concurrent execution of CPUs and devices competing

for memory cycles

17 Operating Systems

Computer-System Operation
• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its operation by

causing an interrupt

18 Operating Systems

Storage Structure
• Main memory/RAM/primary memory – only large storage media

that the CPU can access directly

– Random access

– Typically volatile

• Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

• Magnetic disks – rigid metal or glass platters covered with magnetic

recording material

– Disk surface is logically divided into tracks, which are

subdivided into sectors

– The disk controller determines the logical interaction

between the device and the computer

: 19 Operating Systems

 Storage Hierarchy
• Storage systems organized in hierarchy

– Speed is faster in RAM

– Cost for RAM is costlier

– RAM size is smaller than harddisk

– Volatility-RAM is volatile

• Caching – copying information into faster storage

system; main memory can be viewed as a cache for

secondary storage

20 Operating Systems

Storage-Device Hierarchy

21 Operating Systems

Caching
• Important principle, performed at many levels in a computer

(in hardware, operating system, software)

• Information in use copied from slower to faster storage

temporarily

• Faster storage (cache) checked first to determine if

information is there

• If it is, information used directly from the cache (fast)

• If not, data copied to cache and used there

• Cache smaller than storage being cached

• Cache management important design problem

• Cache size and replacement policy

• Cache is costlier but smaller in size.

22 Operating Systems

I/O Structure

 Device driver: Operating system have a device driver for each
device controller

 To start an I/O Operation, the device driver loads appropriate
registers within the device controller. The device controller starts
transfer of data from the device to its local buffer.

 Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has
finished its operation.

 This form of interrupt-driven I/O is fine for moving small amounts
of data but can produce high overhead when used for bulk data
movement such as disk I/O. To solve this problem DMA is used.

 DMA is going to know the address of the particular process present
in the hard disk.

23 Operating Systems

Direct Memory Access Structure

Used for high-speed I/O devices able to transmit

information at close to memory speeds

Device controller transfers blocks of data from

buffer storage directly to main memory without

CPU intervention

24 Operating Systems

How a Modern Computer Works

A von Neumann architecture

25 Operating Systems

Computer-System Architecture

A computer system may be organized in two different ways:

1.Single-Processor

2.MultiProcessor

Single-Processor Systems: Where we have a single CPU

 in order to execute the program or application

 Multiprocessor systems(parallel systems, tightly coupled systems):

 When two or more processes or systems running

simultaneously which are independent of each other sharing a

particular memory and it can execute simultaneously i.e. called as

multiprocessing.

26 Operating Systems

Advantages of multiprocessor

systems
The three main advantages of a multiprocessor systems are:

1. Increased throughput

2. Economy of scale

3. Increased reliability

The two types of multiple processor systems are:

1. Asymmetric multiprocessing(Master-Slave
relationship): Each processor is assigned with some
task.

2. Symmetric multiprocessing(All processor are peers):
Each processor performs all the tasks within the os,
and all the processors may behave like cpu.

27 Operating Systems

Symmetric Multiprocessing Architecture

28 Operating Systems

Clustered Systems

Clustered systems: Clustered systems composed

of two or more individual systems or nodes joined

together.

Set of systems sharing a common memory/storage

area.

The general accepted definition is that clustered

computers share together and are closely linked via

a Local-area network(LAN)

The load balancing is happening in clustered

systems.
29 Operating Systems

Operating System Structure

 Types of Operating systems:

1. Batch Operating system

2. Multiprogramming Operating system

3. Multitasking Operating system

4. Multiprocessing Operating system

5. Real-time Operating system

 30 Operating Systems

Batch Operating system: Disadvantages of Batch OS:

1. Starvation problem is there

2. CPU will be idle

3. It is not really used for interactive applications

Multiprogramming Operating system: It is an extension

of batch os.

Advantages:

1. CPU will be busy all the time

2. Efficiency has improved

31 Operating Systems

Multitasking Operating system: It is an extension of
multiprogramming.

Advantages:

1. Interactivity has been improved

2. There will be a preemption

3. CPU will be busy all the time

Multiprocessing Operating system:Advantages:

1. Throughput(the number of jobs which are going to finish
per unit time) can be improved

2. It will be faster as all the devices are working parallely

3. Reliability also can be improved

32 Operating Systems

Real-time Operating system:

Giving some jobs and that jobs/processes will have

some dead-line.

33 Operating Systems

Multiprogramming:

 Needed for efficiency

 Single user cannot keep CPU and I/O devices busy at

all times

 Multiprogramming organizes jobs (code and data) so

CPU always has one to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (ex: for I/O), OS switches to

another job

34 Operating Systems

Memory Layout for Multi programmed System

35 Operating Systems

Timesharing (multitasking)

 Timesharing is logical extension in which CPU switches

jobs so frequently that users can interact with each job

while it is running, creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory

 process

 If several jobs ready to run at the same time CPU

scheduling

 If processes don’t fit in memory, swapping moves them in

and out to run

 Virtual memory allows execution of processes not

completely in memory

36 Operating Systems

Operating-system Operations

Interrupt Transfers Control to the Interrupt Service Routine
generally , through the interrupt vector, which contains
the addresses of all the service routines.

 Interrupt architecture must save the address of the
interrupted instruction.

Incoming interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt

A trap is a Software generated interrupt caused by an error
or a user request.

An operating system is interrupt driven.

37 Operating Systems

Dual-Mode Operation

In order to ensure the proper execution of the operating

system, we must be able to distinguish between the

execution of the OS code and user defined code.

There are two separate modes of operation:

1. User mode

2. Kernel mode(Supervisor mode/System

mode/Privileged mode)

38 Operating Systems

A bit, called the mode bit, is added to the hardware of the

computer to indicate the current mode:

 kernel(0) or user(1).

 With , we the mode bit, we are able to distinguish between a

task i.e., executed on behalf of the os and one i.e., executed

on behalf of the user.

When the computer system is executing on behalf of a user

application, the system is in usermode

And when a user application requests a service from the os,

it must transition from user to kernel mode to fulfill the

request.
39 Operating Systems

Transition from user mode to kernel mode:

40 Operating Systems

Time:

There are two situations which are being arrived while the execution of a

program

i)The primary duty of operating system is to prevent user programs from

getting stuck into an infinite loop.

ii)If that particular program the signal is not reaching the kernel

 The main task of a timer is to generate an interrupt to the CPU.

 There are two types of timers , Fixed Timer & Variable Timer.

 Every second, the timer interrupts and the counter is decremented by

1.As long as counter is positive, control is returned to the user

program. When the counter becomes negative, the operating system

terminates the programs for exceeding the assigned time limit.

41 Operating Systems

Process Management

 A process is a program in execution. It is a unit of work within the
system. Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Single-threaded process has one program counter specifying
location of next instruction to execute

 Process executes instructions sequentially, one at a time, until
completion

 Typically system has many processes, some user, some operating
system running concurrently on one or more CPUs

42 Operating Systems

Process Management Activities

The operating system is responsible for the following activities in

connection with process management:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization(Process

Synchronization means sharing system resources by processes in a such a way

that, Concurrent access to shared data is handled thereby minimizing the chance

of inconsistent data)

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

43 Operating Systems

Memory Management

 All data in memory before and after processing.

 All instructions in memory in order to execute

 Memory management determines what is in memory when

Optimizing CPU utilization and computer response to users

 Memory management activities

Keeping track of which parts of memory are currently being used

and by whom

Deciding which processes (or parts thereof) and data to move into

and out of memory

Allocating and deallocating memory space as needed

44 Operating Systems

Storage Management

 Operating system is not only managing the main memory/primary
memory/RAM, but it also manages the memory on secondary storage
devices.

File-System management:

– File management is one of the most visible component of an OS.

– Computer can store the information in the form of files. Files
represents data and programs.

– OS activities include

• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media

45 Operating Systems

 Mass-Storage Management:

 Because main memory is too small to accommodate all data and

programs, and because the data that it holds are lost when the power

is lost, the computer system must provide secondary storage to back

up main memory.

 The proper management of disk storage is of central importance to a

computer system.

 The Operating system is responsible for the following activities in

connection with disk management:

– Free-space management

– Disk scheduling

 Because secondary storage is used frequently, it must be used

efficiently. The entire speed of operation of a computer may hinge

on the speeds of the disk subsystem.

46 Operating Systems

 Caching:

 Caching is an important principle of computer systems,

Information normally kept in some storage systemm such as main

memory.

 The programmer(or compiler) implements the register-allocation

and register-placement algorithms to decide which information to

keep in registers and which to keep in main memory.

 Most systems have an instruction cache to hold the next instructions

expected to be executed. Without the cache, the CPU would have to

wait several cycles while an instruction was fetched from main

memory.

 Cache memory is between RAM and registers.

 Caching – copying information into faster storage system; main
memory can be viewed as a cache for secondary storage.

47 Operating Systems

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be explicit

or implicit

48 Operating Systems

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent

value, no matter where it is stored in the storage hierarchy.

 Multiprocessor environment must provide cache coherency in

hardware such that all CPUs have the most recent value in their

cache.

49 Operating Systems

I/O Subsystem

One purpose of OS is to hide peculiarity of hardware

devices from the user

 I/O subsystem responsible for

Memory management of I/O including buffering (storing

data temporarily while it is being transferred), caching

(storing parts of data in faster storage for performance)

General device-driver interface

 Drivers for specific hardware devices

50 Operating Systems

Protection and Security

 Protection – It involves guarding a user’s data and programs against interference

by other unauthorized users of the system.

 Security – It involves guarding of a user’s data and programs against interference

by external entities.

 Ex: Unauthorized persons, Viruses etc.

Security is provided by :PWD settings, Data Encryption, Biometrics , Firewall Settings

(S/W & H/W setup between an internal Computer & the system)

Facts to protection of information:

1. Secrecy: Only authorized user should access the information i.e., available in the

document.

2. Privacy: It is used only for the purpose which is intended and shared. So, it should

not be misused.

51 Operating Systems

Special Purpose Systems

• The main objective of special purpose system is to deal with
limited computation domains.

There are different types of special purpose systems , some of
them are listed below:

1.Real-Time Embedded Systems

2.Multimedia Systems

3.Handheld Systems

1.Real-Time Embedded Systems:

These devices are found everywhere , from car engines and
manufacturing robots , microwave ovens.

52 Operating Systems

Real-Time Embedded Systems

• An embedded system is a special purpose computer system
designed t perform one or few dedicated functions , often with
real time computing constrain.

• These are embedded as a part of complete device including
hardware and mechanical parts.

• These devices are found everywhere , from car engines and
manufacturing robots , microwave ovens.

• Basically general purpose computers , running standard
operating systems such as UNIX the special purpose
applications to implement the functionality.

• Others are hardware devices with application specific
integrated circuits (ASCIs) that perform their task without OS.

• Embedded system always runs Real-Time operating systems.

53 Operating Systems

Real-Time Control System(NIST)

Environment

sensor

sensory
processing

World
Model(DB)

Behavior
generated

value
judgment

Actuator

Internal

External

Events Actions

Observed
input

updates

Predicted
input

Perceived
Situation

Plan results

Give
response

Plan evaluations

Commanded
Actions

States

54 Operating Systems

Cont..

Process Steps for the real Time control system for taking decisions:

• Sensors will monitor the environment and update the World Model.

• Behavior Generation submits tentative plan to World Model.

• World Model generates expected results and send to Value Judgment
(cost /benefit/uncertainty attributes).

• Actuator interacts with environment.

Rules for Real-time system:

• It has a well defined , fixed time constraints.

• Processes must be done within the defined constraints or the system
will fail.

• Real-Time system functions correctly only if it returns correct
results within its time constrain.

55 Operating Systems

Multimedia Systems

• All operating systems designed only to handle conventional
data like Text files ,programs , word-processing , spread
sheets.

• In technology there is incorporation of Multimedia Data into
computer system.

• Multimedia Data consists of audio , video files as well as
conventional data.

• Multi media includes audio files such as DVD’S MP3 ,VIDEO
CONFERENCING, SHORT VIDEO CLIPS , NEW STORIES
DOWNLOADED FROM INTERNET, LIVE WEBCASTS.

• As technology increases they are being directed towards
smaller devices , cellular telephones etc..

56 Operating Systems

Handheld Systems

• Handheld systems includes Personal Digital
Assistance(PDAs), such as PALM & POCLET-PCs,
CELLULAR TELEPHONES , uses special purpose embedded
systems.

LIMITATIONS OF HANDELD SYSTEMS:

1.Physical memory in a handheld depends on the device – 1MB
and 1 GB.(memory must be efficiently used)

2.Speed of the processor used in the device-(Higher power the
higher processing).

3.I/O-(Lack of physical space limits input methods to small
keyboards , small monitors etc.)

57 Operating Systems

Computing Environments

• The word computing is referred as a process of using a
computer technology for completion of a task.

• There are 4 different types of Computing Environments they
are:

1. Traditional Computing

2. Client-Server Computing

3. Peer-Peer Computing

4. Web-Based Computing

58 Operating Systems

Traditional Computing

• In past they used to have a PCs connected to network with
servers providing files and print services.

• No possibility of remote access and portability was achieved
only with laptops.

• So , the companies have provided with a “portals” which
provides web access to their internal servers.

• Through this service their was little remote access and
portability options achieved.

59 Operating Systems

Client-Server Computing

• This is a specialized distributed system , called a client-server
system.

• The computer Server system provides an interface to which a
client can send a request to perform an action in response the
server executes the action and send back to the client.

• The File-server system provides a file-system interface where
clients can create , update , read and delete files.

60 Operating Systems

Peer-to-Peer Computing

• Another structure of Distributed system is Peer-to-Peer system
model.

• Clients and servers are not distinguished from one another instead
all nodes are considered as peers .

• Each may act as a server or client depending whether it is requesting
a service or providing a service.

• To Participate in a peer-to-peer system , a node must first join the
network of peers.

• To Determine what services are available is accomplish in two
general ways:

When a node joins a network it registers its service with a centralized
lookup service on a network.

A discovery protocol must be provided by other peers in the network.

61 Operating Systems

System Calls

• The user want to interact with all the devices inorder to solve
the problem.

• System calls basically manages hardware and instruct to do
some action requested by the user.

• A system call is processed in kernel Mode.
Generally available as assembly-language instructions.
Languages defined to replace assembly language for systems
programming allow system calls to be made directly (e.g., C,
C++)

• Access to the hardware is via High Level Application Program
Interface (API) rather than direct system call use.

• Three most common APIs are win32 for windows , POSIX for
linux and Mac OS X, java API for java programs.

62 Operating Systems

Example of System calls Execution

63 Operating Systems

64 Operating Systems

Cont..

• Description of parameters passed for ReadFile():

1.HANDLE file:the file to be read.

2.LPVOID buffer : a buffer where the data will be read into and
written from.

3.DWORD bytesToRead : The number of bytes to be read into
buffer.

4.LPDWORD bytesRead- The number of bytes read during last
read.

5.LPOVERLAPPED ovl-indicate if overlapped i/o is used.

65 Operating Systems

System Calls Implementation

• Typing a number associated with each system call.

 System call interface maintains a table indexed according
to these numbers.

• The system call interface invokes intended system call in OS
kernel and returns status to the system call and any return
values.

• The caller need nothing to know how a system call is
implemented.

 Just need to obey API and understand what OS will do as a
result file.

• Most details of OS are hidden from Programmer by API.

 Managed by run-time support library (set of functions
build into library along with compiler)

66 Operating Systems

fig: Handing of user application invoking the open()system call

67 Operating Systems

fig: Standard C library handling of write()

68 Operating Systems

Cont..
Often more information is required than simply identity of
desired system call.

Exact type and amount of information vary according to OS and
call.

Three general methods are used to pass parameters between
a running program and the operating system.
Simplest : pass the parameters in register.

In some cases may be more parameters than registers.

 Parameters stored in a block , or table , in memory , and

address of block passed as a parameter in register.
 This approach was taken by LINUX & SOLARIS.

 Parameters placed or pushed on to stack by the program

and popped off the stack by the operating system.

 Block or Stack methods donot limit the number or length

of parameters being passed

69 Operating Systems

Passing as a Parameters

70 Operating Systems

Types of System calls

System calls can be roughly divided into five major

categories:

1. Process control:

 end, abort

load, execute

create process, terminate process

2. File management

Create file, delete file

 Open, close

71 Operating Systems

Cont..

3.Device management:

 read, write

Request device, release device

4. Information ,maintenance

Get process, file, or device attributes

Get time or date, set time or date

5. Communications

Create, delete communication connection

Send, receive messages

72 Operating Systems

System Generation (SYSGEN)

• Operating systems are designed to run on any of a

class of machines; the system must be configured for

each specific computer site.

• SYSGEN program obtains information concerning the

specific configuration of the hardware system.

• Booting – starting a computer by loading the kernel.

• Bootstrap program – code stored in ROM that is able

to locate the kernel, load it into memory, and start its

execution.

73 Operating Systems

The evolution of the Operating systems are as

follows:

1. Serial Processing system

2. Simple batch Processing system

3. Multiprogramming Operating system

4.Time sharing system(Multitasking system)

5. Multiprocessor system

74 Operating Systems

UNIT-II

Syllabus

Process and CPU Scheduling - Process Concepts-The Process,

Process State, Process Control Block, Threads, Process Scheduling-

Scheduling Queues, Schedulers, Context Switch, Preemptive

Scheduling, Dispatcher, Scheduling Criteria, Scheduling

algorithms, Multiple-Processor Scheduling, Real-Time Scheduling,

Thread Scheduling, Case Studies: Linux, Windows.

Process Coordination-Process Synchronization, The Critical

Section Problem, Peterson’s solution,

Synchronization Hardware, Semaphores, and Classic Problems of

Synchronization, Monitors, Case Studies: Linux, Windows.

Program/process

• A process invokes or initiates a program. It is an

instance of a program that can be multiple and

running the same application.

• Example:- Notepad is one program and can be

opened twice.

• A process is a program in execution.

• It is an active entity whereas a program is an passive

entity. It is a set of instructions.

• Program becomes process when executable file

loaded into memory

76 Operating Systems

What is a process?

• A process can be thought of as a program in

execution,

• A process will need certain resources—such as CPU

time, memory, files, and I/O devices to accomplish its

task.

• These resources are allocated to the process either

when it is created or while it is executing.

77 Operating Systems

Process

• It contains

– Text Section-contains text code

– Data Section-global variables

– HeapSection -dynamic memory allocation

– Stack Section

• Temporary data like function parameters, local

data

78 Operating Systems

Process in Memory

79 Operating Systems

Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to

occur

– ready: The process is waiting to be assigned to a

processor

– terminated: The process has finished execution

80 Operating Systems

Diagram of Process State

81 Operating Systems

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

– CPU-bound process – spends more time doing

computations; few very long CPU bursts

82 Operating Systems

Schedulers

• Three types

– Long Term Scheduler

– Medium Term Scheduler

– Short Term Scheduler

83 Operating Systems

Schedulers

• Long-term scheduler (or job scheduler)

– Selects which processes should be brought into the ready

queue

– It is invoked very in-frequently (seconds, minutes) (may

be slow)

– Controls the degree of multiprogramming i.e the no. of

processes in memory.

• Short-term scheduler (or CPU scheduler)

– selects which process should be executed next and allocates

CPU

– It is invoked very frequently (milliseconds) for CPU

(must be fast)

84 Operating Systems

Cont..

• Medium Term Scheduler(swapping in/out):

•Medium term scheduling is a part of the swapping.

•It move a blocked process temporarily to

secondary storage.

• It reduces the degree of the multiprogramming .

• The medium term scheduler is in-charge of

handling the swapped out-processes.

85 Operating Systems

Addition of Medium Term Scheduling

86 Operating Systems

Process Control Block (PCB)

Information associated with each process

• Process id

• Program counter

• Process state

• Priority

• CPU registers/General Purpose Registers

• CPU scheduling information

• Memory-management information

• Accounting Information

• I/O status information

87 Operating Systems

Process Control Block (PCB)

Information associated with each process

• Process Id: Every process have a unique id’s

• Process state

– The state may be new, ready, running, waiting, halted, and

so on.

• Program counter

– The counter indicates the address of the next instruction to

be executed for this process

• CPU registers/General Purpose Registers

– The registers vary in number and type, depending on the

computer architecture. They include accumulators, index

registers, stack pointers, and general-purpose register etc.

88 Operating Systems

Process Control Block (PCB)
• CPU scheduling information

– scheduling queues, and any other scheduling parameters.

• Memory-management information

– the value of the base and limit registers, the page tables, or

the segment tables, depending on the memory system used

by the operating system

• Accounting information

– includes the amount of CPU and real time used, time limits,

account numbers, job or process numbers,

• I/O status information

– the list of I/O devices allocated to the process, a list of open

files, and so on.

89 Operating Systems

Process Control Block (PCB)

90 Operating Systems

Context Switch

• Context Switch

– When CPU switches to another process, the system must

save the state of the old process and load the saved state for

the new process

– Context-switch time is overhead

– The system does no useful work while switching

– The more complex the OS and the PCB longer the

context switch

– Some hardware provides multiple sets of registers per CPU

multiple contexts loaded at once

91 Operating Systems

CPU Switch From Process to Process

92 Operating Systems

Process Scheduling
• The main objective of multiprogramming is to have some

process running at all times, to maximize CPU Utilization.

• The process scheduler is responsible to meet the objective.

Scheduling Queues:

• Job Queue: All the processes are inside the system.

• Ready Queue :The processes which are residing in Mani
Memory and are ready and waiting to be executed by the CPU.

• Device queues – set of processes waiting for an I/O devices.

• Processes migrate among the various queues

 93 Operating Systems

Process Representation in Linux

• Represented by the C structure task_struct
pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */ struct task struct

parent; / this process’s parent */ struct list head children; /* this

process’s children */ struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this pro */

94 Operating Systems

Ready Queue And Various I/O Device Queues

95 Operating Systems

Representation of Process Scheduling

96 Operating Systems

Operation on Process

• Process Creation

• Process Scheduling

• Process Executing

• Process Termination

97 Operating Systems

Operation on Process

• Process Creation
– process will need certain resources (CPU time,

memory, files,I/O devices) to accomplish its task.

– These resources can be obtained from two sources
• Operating Systems

• Parent Process

– The parent may have to partition/Share its resources
among its children,

– In addition to the various physical and logical
resources that a process obtains when it is created,
initialization data (input) may be passed along by the
parent process to the child process.

98 Operating Systems

• When a process creates a new process, two
possibilities exist in terms of execution

1. The parent continues to execute concurrently
with its children.

2. The parent waits until some or all of its children
have terminated.

• These are two possibilities in terms of the address
space of the new process.

1. The child process is a duplicate of the parent
process.

2. The child process has a new program loaded into
it.

99 Operating Systems

Process Creation

100 Operating Systems

C Program Forking Separate Process
#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 return 1;

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child */

 wait (NULL);

 printf ("Child Complete");

 }

 return 0;

}

101 Operating Systems

A Tree of Processes on Solaris

102 Operating Systems

Operation on Process

• Process Termination

– A process terminates when it finishes executing its
final statement and asks the operating system to delete
it by using an appropriate system call eg. the exit()
system call in Unix system

– A parent may terminate the execution of one of its
children for a variety of reasons, such as these:

• The child has exceeded its usage of some of the resources
that it has been allocated.

• The task assigned to the child is no longer required.

• The parent is exiting, and the operating system does not
allow a child to continue if its parent terminates.

103 Operating Systems

Cooperating Processes

• Independent process: Any process that does not share the data
with any other process

• Cooperating/Dependent process: Any process that share the
data with any other process

• Advantages of process cooperation

– Information sharing

– Computation speed-up

– Modularity

– Convenience

104 Operating Systems

• Different ways to communicate with Processes.

1. Processes can communicate using files.

2. Os supports something called as pipes.

3. Processes could communicate through
variables that are shared between them.

4. Processes could communicate by sending &
receiving messages to each other.

105 Operating Systems

Inter process Communication

• Cooperating processes need inter

process communication (IPC)

• Two models of IPC

–Shared memory

–Message passing

106 Operating Systems

Communications Models

107 Operating Systems

Communications Models

• Shared Memory Model

– In the shared-memory model, a region of memory
that is shared by cooperating processes is
established. Processes can then exchange
information by reading and writing data to the
shared region

• Message Passing Model

– In the message passing model, communication
takes place by means of messages exchanged
between the cooperating processes.

108 Operating Systems

Message passing

• It refers to a mean of communication between

1. Different threads within a process.

2. different processes running on same node.

3. different processes running on different nodes.

• In this a sender or a source process sends a message
to a known receiver or destination process.

• Message has a predefined structure and message
passing uses two system calls send & receive.

send(name of destination, message);

receive(name of the source, message);

109 Operating Systems

• Mode of communication can take place
through two methods

Direct addressing

Indirect addressing.

• Direct addressing: In this type , the two
process should need to know each other to
communicate.

1. symmetric mode: Both sender and receiver
should know their identity.

2. Asymmetric mode: The receiver will not
know where the information is coming from

110 Operating Systems

• Indirect addressing: In this message send &
receive from a mailbox . A mailbox can be
abstractly viewed as an object into which a
message may be placed & from which message
may be removed by process.

• The sender & receiver process should share that
mailbox to communicate

Different communication links are:

1. one to one link

2. Many to one link

3. one to many link

4. many to many link

111 Operating Systems

Communication Models
Message Passing systems Shared Memory Systems

Message passing is useful for exchanging
smaller amounts of data, because no
conflicts need be avoided.

 Shared memory allows maximum speed
and convenience of communication, as it
can be done at memory speeds when
within a computer.

Message passing is easier to implement
than Shared Memory systems
communication

Difficult to implement than Message
Passing Systems

Message-passing systems are typically
implemented using system calls and thus
require the more time consuming task of
kernel intervention.

Shared memory is faster than message
passing, as in shared-memory systems,
system calls are required only to establish
shared-memory regions. Once shared
memory is established, all accesses are
treated as routine memory accesses, and
no assistance from the kernel is required

112 Operating Systems

Shared Memory Systems
• A shared-memory region resides in the address space

of the process creating the shared-memory segment.

• Other processes that wish to communicate using this

shared-memory segment must attach it to their

address space

• The form of the data and the location are determined

by these processes and are not under the operating

system's control.

• The processes are also responsible for ensuring that

they are not writing to the same location

simultaneously
113 Operating Systems

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process

• A producer process produces information that is
consumed by a consumer process.

• Among this producer/consumer process the situations
can happen like this:

- As the producer generates the item is same as the
rate at which the consumer process consumes the
items.

114 Operating Systems

Producer-Consumer Problem

If the producer process produces the items at faster
rate, then the rate at which the consumer process
can consume the items so naturally some of the
items will lost.

 Similarly, if the consumer process can consume at
faster rate, then the rate at which the items
produced by the producer will be less, i.e., the
consumer process has to wait for the availability of
items.

115 Operating Systems

Producer-Consumer Problem

So, instead of sending the data directly from

producer to consumer, in between the producer and

consumer we have a buffer pool.

In this buffer pool, we have two types of situations:

– unbounded-buffer places no practical limit on the

size of the buffer

– bounded-buffer assumes that there is a fixed limit

on the buffer size

116 Operating Systems

Bounded-Buffer – Shared-Memory

Solution
• Shared data

type item= ;//type item as a variable type item

Var buffer=array[0…..n-1] of item;//buffer is an array having ‘n’

no. of

locations

in,out=0…..n-1;//to point the items in the buffer

next p,next c: item;

in=0;

Out=0;

117 Operating Systems

Bounded-Buffer – Producer
producer: request

 begin

 repeat

 produce an item in the next p;

 while(count=n) do skip;//buffer is full

 while(in+1)mod n=out do skip;//buffer is full, producer

process keeps on executing this while loop

 buffer[in]=next p;//produces the items at a buffer location

‘in’

 in=[in+1]mod n;//its circular buffer in nature

 count=count+1;//After placing the new items in the buffer it

increments the count value by 1

 until false;

 end

118 Operating Systems

Bounded-Buffer – Consumer
consumer: begin

 repeat

 while(count=0) do skip;//buffer is empty

 while in=out do skip;//consumer process will wait in this while loop

as buffer is empty

 next c=buffer[out];//consumer process takes the items from the

buffer into a variable next c

 out=(out+1) modn;

 consumes item in next c;

 count=count-1;//once the consumer process consumes the items

from the buffer, it will reduce the count by 1.

 until false;

 end

119 Operating Systems

Message Passing
• Mechanism for processes to communicate and to synchronize

their actions

• Message system – processes communicate with each other
without resorting to shared variables

• IPC facility provides two operations:

– send(message) – message size fixed or variable

– receive(message)

• If P and Q wish to communicate, they need to:

– establish a communication link between them

– exchange messages via send/receive

• Implementation of communication link

– physical (e.g., shared memory, hardware bus)

– logical (e.g., logical properties)
120 Operating Systems

Message Passing
Direct Communication

 • Processes must name each other
explicitly:

– send (P, message) – send a
message to process P

– receive(Q, message) – receive a
message from process Q

• Properties of communication link

– Links are established
automatically

– A link is associated with exactly
one pair of communicating
processes

– Between each pair there exists
exactly one link

– The link may be unidirectional,
but is usually bi-directional

Indirect Communication

 • Messages are directed and received
from mailboxes (also referred to as
ports)

– Each mailbox has a unique id

– Processes can communicate only
if they share a mailbox

• Properties of communication link

– Link established only if processes
share a common mailbox

– A link may be associated with
many processes

– Each pair of processes may share
several communication links

– Link may be unidirectional or bi-
directional 121 Operating Systems

Synchronization

Message passing may be either blocking or nonblocking

• Blocking is considered synchronous
– Blocking send has the sender block until the message is

received

– Blocking receive has the receiver block until a message is
available

• Non-blocking is considered asynchronous

– Non-blocking send has the sender send the message and
continue

– Non-blocking receive has the receiver receive a valid
message or null

122 Operating Systems

Communications in Client-Server

Systems

• Sockets

• Remote Procedure Calls

• Pipes

• Remote Method Invocation (Java)

123 Operating Systems

Sockets

• A socket is defined as an endpoint for communication

• Concatenation of IP address and port

• The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8

• Communication consists between a pair of sockets

124 Operating Systems

Socket Communication

125 Operating Systems

Remote Procedure Calls
• Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

• Stubs – client-side proxy for the actual procedure on the

server

• The client-side stub locates the server and marshalls the

parameters

• The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

126 Operating Systems

Execution of RPC

127 Operating Systems

Ordinary Pipes
• Ordinary Pipes allow communication in standard producer-

consumer style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating processes

128 Operating Systems

UNIT-III

Syllabus

Memory Management and Virtual Memory –

Logical & Physical Address Space, Swapping,

Contiguous Allocation, Paging, Structure of Page

Table, Segmentation, Segmentation with Paging,

Virtual Memory, Demand Paging, Performance

of Demanding Paging, Page Replacement, Page

Replacement Algorithms, Allocation of Frames,

Thrashing.

129 Operating Systems

Basic Hardware

• Main memory and the registers built into the processor

itself are the only storage that the CPU can access directly.

• The Instructions in execution and any data being used by

the Instructions, must be in one of these direct-access

storage devices.

• Registers that are built into CPU generally accessible

within one cycle of CPU clock.

• The same cannot be said as Main Memory, which is

accessed via a transaction on the memory bus, memory

access may take many CPU cycles.

• Remedy is to add fast memory between the CPU and Main

Memory called a cache.

130 Operating Systems

• Ensuring correct operation to protect the operating system

from access by user processes and also to protect user

processes from one another.

• The protection is provided by hardware.

• First of all we need to make sure that each process has a

separate memory space. To do this, we need the ability to

determine the range of legal addresses that the process may

access and to ensure that the process can access only these

legal addresses.

• We can provide this protection by using two registers

1.Base Register(Holds the smallest legal physical memory

address)

2.Limit Register(specifies the size of the range)

eg:If base register holds 300040 and the limit register is 120900

then the program can legally access all addresses from 300040

to 420939.
131 Operating Systems

A base and a limit register define a logical address space

132 Operating Systems

HW address protection with base and limit registers

133 Operating Systems

Address Binding

• Normally, a program resides on a disk as a binary

executable file.

• To be executed, the program must be brought into

memory and placed with in a process.

• Depending on the memory management in use, the

program may be moved between disk and memory

during its execution.

• The processes on the disk that are waiting to be brought

into memory for execution form the input queue.

• As a process is executed, it accesses instructions and

data from memory. Eventually, the process terminates,

and its memory space is declared as available.

134 Operating Systems

Binding of Instructions and Data to Memory

• Compile time: If memory location known a priori,

absolute code can be generated; must recompile code

if starting location changes

• Load time: Must generate relocatable code if

memory location is not known at compile time

• Execution time: Binding delayed until run time if

the process can be moved during its execution from

one memory segment to another. Need hardware

support for address maps (e.g., base and limit

registers).

Address binding of instructions and data to memory addresses can

happen at three different stages

135 Operating Systems

Multistep Processing of a User Program

136 Operating Systems

Dynamic Loading

1.To obtain better memory utilization , we can use dynamic

loading.

2.The main program is loaded into memory and is executed

.

3.All routines are placed in a relocatable load format, with

dynamic loading a routine is not loaded until it is called.

Advantages:

1.Better Memory space utilization.

2.Performance of CPU Increases.

137 Operating Systems

Dynamic Linking& Shared Libraries

• Some operating system supports Static Linking & some

supports Dynamic Linking.

• Linking feature is usually used with system libraries ,

such as language subroutine libraries.

• The CPU links the dependent programs to main

executing program when it is needed.

138 Operating Systems

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to

a separate physical address space is central to proper

memory management

– Logical address – generated by the CPU; also

referred to as virtual address

– Physical address – address seen by the memory

unit

• Logical and physical addresses are the same in

compile-time and load-time address-binding schemes;

logical (virtual) and physical addresses differ in

execution-time address-binding scheme

139 Operating Systems

Dynamic relocation using a relocation register

140 Operating Systems

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical

address

• In MMU scheme, the value in the relocation

register is added to every address generated by

a user process at the time it is sent to memory

• The user program deals with logical addresses;

it never sees the real physical addresses

141 Operating Systems

Swapping
• A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for
continued execution

• Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped
out so higher-priority process can be loaded and executed

• Major part of swap time is transfer time; total transfer time
is directly proportional to the amount of memory swapped

• Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

142 Operating Systems

Schematic View of Swapping

143 Operating Systems

Contiguous Memory Allocation
• Main memory usually into two partitions:

– Resident operating system, usually held in low memory

with interrupt vector

– User processes then held in high memory

– Each process contained in single contiguous sections of

memory

• Relocation register used to protect user processes from each

other, and from changing operating system code and data

Base register contains value of smallest physical address

Limit register contains range of logical addresses-each logical

address must be less than the limit resister.

MMU maps logical address dynamically

144 Operating Systems

Hardware support for relocation and
limit Register

Base register (ba)

Logical

address

(ma)

Physical

address

(pa)

Base register

Memory

CPU

pa = ba + ma

145 Operating Systems

Fixed partitions

146 Operating Systems

Contiguous Allocation (cont.)

• Multiple partition Allocation

• Hole - block of available memory; holes of various sizes

are scattered throughout memory.

• When a process arrives, it is allocated memory from a

hole large enough to accommodate it.

• Operating system maintains information about

– allocated partitions

– free partitions (hole)

147 Operating Systems

Contiguous Allocation example

OS OS OS OS

Process 5 Process 5 Process 5 Process 5

Process 2 Process 2 Process 2 Process 2

Process 8

Process 9 Process 9

Process 10

148 Operating Systems

Dynamic Storage Allocation Problem

– How to satisfy a request of size n from a list of free holes.

• First-fit

– allocate the first hole that is big enough

• Best-fit

– Allocate the smallest hole that is big enough; must search

entire list, unless ordered by size. Produces the smallest

leftover hole.

• Worst-fit

– Allocate the largest hole; must also search entire list. Produces

the largest leftover hole.

– First-fit and best-fit are better than worst-fit in terms of speed and

storage utilization.

149 Operating Systems

Fragmentation

• External Fragmentation – total memory space exists to satisfy a

request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is memory

internal to a partition, but not being used

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in

one large block

– Though Compaction is possible it is a costlier solution.

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

150 Operating Systems

Fragmentation example

151 Operating Systems

Compaction
Memory compaction is the process of moving allocated objects together, and leaving
empty space together. Consider a system with 3 pages and about 50% of their objects are
allocated. By compacting all the living objects into the first two pages, leaving the third
page completely empty.

152 Operating Systems

Paging

• Divide physical memory into fixed-sized blocks called frames

(size is power of 2, between 512 bytes and 8192 bytes)

• Logical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

• Divide logical memory into blocks of same size called pages.

• Keep track of all free frames

• To run a program of size n pages, need to find n free frames and

load program

• Set up a page table to translate logical to physical addresses

• To overcome the external fragmentation, and even in order to

use RAM efficiently we go for a Paging concept.

153 Operating Systems

Example of Paging

Page 0

Page 1

Page 2

Page 3

0

1

2

3

:

1

4

7

3

:

Page 0

Page 1

Page 2

Page 3

Physical memory Logical memory

154 Operating Systems

Paging Hardware

155 Operating Systems

Paging Hardware(Cont.)

The hardware support for paging is illustrated in the above figure.

• Every address generated by the CPU is divided into two

parts: a page number(p) and a page offset(d).

• The page number is used as an index into a page table.

• The page table contains the base address of each page in

physical memory. This base address is combined with the

page offset to define the physical memory address that is

sent to the memory unit.

• This paging model of memory is shown in the below figure:

156 Operating Systems

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number(p)

– used as an index into page table which contains base address
of each page in physical memory.

• Page offset(d)
– combined with base address to define the physical memory

address that is sent to the memory unit.

157 Operating Systems

Address Translation Architecture

CPU

:

:

f

p f d d

Physical

Memory

p

158 Operating Systems

Paging Example for a 32-byte

memory with 4-byte pages

159 Operating Systems

Free Frames

• The operating system is managing physical memory, it must be

aware of the allocation details of physical memory—which

frames are allocated, which frames are available, how many

total frames there are, so on.

• This information is generally kept in a data structure called a

frame table.

• The frame table has one entry for each physical page frame,

indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

• The free frames before allocation and after allocation is shown

in the below figure:

160 Operating Systems

Free Frames

Before allocation After allocation

161 Operating Systems

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PRLR) indicates size of the

page table

• In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the

data/instruction.

• The two memory access problem can be solved by the

use of a special fast-lookup hardware cache called

associative memory or translation look-aside buffers

(TLBs)

162 Operating Systems

• If a particular page is present in TLB Hit, then it

will find the particular frame number and access the

frame in the memory.

• If a particular page is not present in TLB Hit, then

it will go to main memory and check the page table

where it contains whole bunch of pages and frames

and then it will access that particular frame in the

memory.

• If a page is present in TLB Cache, then it is much

faster similarly if a page is not present in TLB

Cache then it becomes slower.

163 Operating Systems

Paging Hardware With TLB

164 Operating Systems

Memory Protection

• Memory protection implemented by associating

protection bit with each frame

• Valid-invalid bit attached to each entry in the page

table:

– “valid” indicates that the associated page is in

the process’s logical address space, and is thus a

legal(valid) page

– “invalid” indicates that the page is not in the

process’s logical address space

165 Operating Systems

Valid (v) or Invalid (i) Bit In a Page Table

166 Operating Systems

Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical

address space of all processes

• Private code and data

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear

anywhere in the logical address space

167 Operating Systems

Shared Pages Example

168 Operating Systems

Page Table Structure
• Page Tables are the data structures used

to store the mappings of logical address

present in process memory to physical

address present in RAM.

Different approaches for reducing page

search in TLB are as follows:

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

169 Operating Systems

Hierarchical Page Tables

• Break up the logical address space into multiple

page tables.

• Each logical address is divided into array page

table , sets offset to various level of pages &

final offset is specific to memory access.

• A simple technique is a two-level page table

170 Operating Systems

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits

– a page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided into:

– a 10-bit page number

– a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table

page number page offset

pi p2 d

10 10 12

171 Operating Systems

Two-Level Page-Table Scheme

172 Operating Systems

Hashed Page Tables

• A Common approach for address spaces larger than 32

bits, then it has to store in a hashed page table.

• The virtual page number is hashed into a page table.

This page table contains a chain of elements hashing to

the same location i.e., virtual page number will be

generated in the hash function.

• Virtual page numbers are compared in this chain

searching for a match. If a match is found, the

corresponding physical frame is extracted.

173 Operating Systems

Hashed Page Tables(Cont)

The virtual page number will be ultimately pointing to

the particular physical address on the physical memory.

Each element consists of three fields:

i. The Virtual Page number,

ii. The value of the mapped page frame,

iii. A pointer to the next element in the linked list.

174 Operating Systems

Hashed Page Table

175 Operating Systems

Inverted Page Tables

• One entry for each real page of memory

• Entry consists of the virtual address of the page

stored in that real memory location, with

information about the process that owns that page

• Decreases memory needed to store each page table,

but increases time needed to search the table when a

page reference occurs

• Use hash table to limit the search to one — or at

most a few — page-table entries

• Each inverted page table entry is a pair of

 <Process-id,page-number,offset>

176 Operating Systems

Inverted Page Table Architecture

177 Operating Systems

Segmentation
• A program is divided into parts known as segments.

• Paging is fixed in size where as segment is variable in size.

• Paging is physical entity where as segmentation is a logical
entity.

• Like paging, logical address converts into two parts:

i. Segment-number

ii. Offset

• The logically stored segments should be physically stored
in the main memory that the CPU may access.

• Paging is invisible but segmentation is visible to the user

• Minimum size of a segment is equal to page size.

• Maximum size of a segment will be virtual address space
i.e., it is the limit of CPU addressability.(Each segment
consist of many pages)

178 Operating Systems

User’s View of a Program

179 Operating Systems

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

180 Operating Systems

Segmentation Architecture

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses;

each table entry has:

– base – contains the starting physical address where the

segments reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment

table’s location in memory

• Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

181 Operating Systems

Segmentation Architecture (Cont.)

• Protection. With each entry in segment table associate:

– validation bit = 0 illegal segment

– read/write/execute privileges

• Protection bits associated with segments; code sharing

occurs at segment level

• Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

• A segmentation example is shown in the following diagram

182 Operating Systems

Segmentation hardware

183 Operating Systems

Example of Segmentation

184 Operating Systems

Segmentation(Cont)
• For example the CPU generates <segmentation no, offset>

The steps followed for segmentation :

Step 1:Base address is fetched

Step 2: It must check the offset and length of the
segment

Step 3:If step 2 is satisfied it will take the base
address and add to the offset of the given.

Step 4:Then it will go to the address and will
fetch that address.

185 Operating Systems

Segmentation(Cont)
• Segment in virtual address space/logical address space

where as paging is in physical address space

• Holes: Portions of memory space which are not utilized

• Previously in paging, we saw how to translate logical
address to physical address. Now, we will see how to
translate virtual address to physical address.

186 Operating Systems

Segmentation Architecture (Cont.)

• Relocation.

– dynamic

– by segment table

• Sharing.

– shared segments

– same segment number

• Allocation.

– first fit/best fit

– external fragmentation

187 Operating Systems

Sharing of Segments

188 Operating Systems

Virtual Memory

• Background

• Demand paging

– Performance of demand paging

• Page Replacement

– Page Replacement Algorithms

• Thrashing

189 Operating Systems

Need for Virtual Memory

• Virtual Memory
• Separation of user logical memory from physical

memory.
• Only PART of the program needs to be in memory for

execution.
• Logical address space can therefore be much larger

than physical address space.
• Need to allow pages to be swapped in and out.

• Virtual Memory can be implemented via
– Paging
– Segmentation

190 Operating Systems

Virtual Memory(Cont)

• There are many benefits to execute a program that is only
partially in memory:

i) A program would no longer be constrained by the amount of
physical memory that is available. Users would be able to
write programs for an extremely large virtual address space
simplifying the program task.

ii) Because each user program could take less physical memory
so that more programs can run at the same time, So that
CPU utilization and throughput will increase.

iii) Less I/O would be needed to load or swap user programs
into memory so each user program would run fast.

 Thus, running a program that is not entirely in
memory would benefit both user and the system.

191 Operating Systems

Virtual Memory That is Larger Than Physical Memory

192 Operating Systems

Virtual address space

• The virtual address space of a process refers to the logical(or virtual) view of how
a process is stored in memory.

193 Operating Systems

Shared Library using virtual memory

194 Operating Systems

Demand Paging

• Bring a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed reference to it

– invalid reference abort

– not-in-memory bring to memory.

• The pages which are in need by the CPU for execution is known as

 Demand paging

• The demand paging system is similar to a paging system with swapping where
a process reside in secondary memory when we want to execute a process we
swap it into memory.

• A lazy swapper will never swap a page into memory unless that page will be
needed.

195 Operating Systems

Transfer of a Paged Memory to Contiguous Disk Space

196 Operating Systems

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1 in-memory, 0 not-in-memory)
• Initially valid–invalid but is set to 0 on all entries.
• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page table entry is 0
page fault.

1

1

1

1

0

0

0

Frame # valid-invalid bit

page table

197 Operating Systems

Page Table When Some Pages Are Not in Main Memory

198 Operating Systems

•If the process tries to access a page that was not bought into memory ,access to a
page marked invalid causes a “Page Fault”.
•The paging hardware , in translating the address through the page table, will notice
that the invalid bit is set , causes the trap to the operating system .
•This trap is the result of the operating system’s failure to bring the desired page into
memory.
The procedure for handling this page fault is:
1.We check an internal table for this process to determine whether the reference was
a valid or an invalid memory access.
2.If the reference was invalid , we terminate the process. If it was valid , but we have
not yet brought in that page , we now page in it.
3.We find a free frame.(by taking one from the free frame list).
4.We schedule a disk operation to read the desired page into the newly allocated
frame.
5. When disk read is completed , we modify the internal table kept with the process
and the page table to indicate that the page is now in memory.
6.We restart the instruction that was interrupted by the trap . The process can now
access the page as though it had always been in memory.

Page Fault

199 Operating Systems

Steps in Handling a Page Fault

200 Operating Systems

Performance of Demand Paging
• Page Fault Rate 0 p 1.0

– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

 EAT = (1 – p) x memory access + p (page
fault time)

201 Operating Systems

To calculate the effective access time , we must know how much time is needed to service a
page fault.

1. Trap the Operating System.

2. Save the user registers & process states.

3. Determine that interrupt was a page fault.

4. Check that the page reference was legal and determine the location of the page on the
disk.

5. Issue a read from the disk to a free frame.

a) wait in a queue for the device until the read request is serviced.

b) wait for the device seek and /or latency time.

c) Begin the transfer of the page to free frame.

6. While waiting , allocate the CPU to some other user.

7. Receive an interrupt from the disk I/O subsystem.

8. Save the registers and process for the other users.(if step 6 is executed)

9. Determine the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers , process state , and new page table , and then resume the
interrupted instruction.

202 Operating Systems

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been modified and therefore
needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 msec

 EAT = (1 – p) x 1 + p (15000)

 1 + 15000P (in msec)

203 Operating Systems

Basic Page Replacement

1.Find the location of the desired page on disk
2.Find a free frame:
3. If there is a free frame, use it
4. If there is no free frame, use a page replacement algorithm to select a victim
frame
5. Write victim frame to disk if dirty
6.Bring the desired page into the (newly) free frame; update the page and
frame tables
7.Continue the process by restarting the instruction that caused the trap

204 Operating Systems

Page Replacement

205 Operating Systems

Page and Frame Replacement Algorithms

•Frame-allocation algorithm determines
–How many frames to give each process
–Which frames to replace

•Page-replacement algorithm
–Want lowest page-fault rate on both first access and re-
access

•Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

–String is just page numbers, not full addresses
–Repeated access to the same page does not cause a page
fault

•In all our examples, the reference string is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

206 Operating Systems

FIFO Page Replacement

FIFO Illustrating Belady’s
Anomaly

207 Operating Systems

Optimal Algorithm

Replace page that will not be used for longest period of time
– optimal for the example on the next slide

208 Operating Systems

Least Recently Used (LRU) Algorithm

Use past knowledge rather than future
Replace page that has not been used in the most amount of time
Associate time of last use with each page

12 faults – better than FIFO but worse than OPT
Generally good algorithm and frequently used

209 Operating Systems

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially -= 0

– When page is referenced bit set to 1.

– Replace the one which is 0 (if one exists). We do not know the
order, however.

• Second chance

– Need reference bit.

– Clock replacement.

– If page to be replaced (in clock order) has reference bit = 1. then:

• set reference bit 0.

• leave page in memory.

• replace next page (in clock order), subject to same rules.

210 Operating Systems

Counting Algorithms

• Keep a counter of the number of references that have been made to each page.

• LFU Algorithm: replaces page with smallest count.

• MFU Algorithm: based on the argument that the page with the smallest count was
probably just brought in and has yet to be used.

211 Operating Systems

Thrashing

• If a process does not have “enough” pages, the page-fault rate is very high. This
leads to:

– low CPU utilization.

– operating system thinks that it needs to increase the degree of
multiprogramming.

– another process added to the system.

• Thrashing a process is busy swapping pages in and out.

212 Operating Systems

Thrashing Diagram

• Why does paging work?
Locality model

– Process migrates from one locality to another.

– Localities may overlap.

• Why does thrashing occur?
 size of locality > total memory size

213 Operating Systems

 Deadlocks

214 Operating Systems

 Deadlocks

• The Deadlock Problem

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

215 Operating Systems

Chapter Objectives

• To develop a description of deadlocks,
which prevent sets of concurrent
processes from completing their tasks

• To present a number of different
methods for preventing or avoiding
deadlocks in a computer system.

216 Operating Systems

Deadlocks

• A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

• In a multiprogramming environment, several processes may
compete for a finite number of resources. A process requests
resources; if the resources are not available at that time, the
process enters into a waiting state. Sometimes, a waiting process
is never again able to change its state, because the resources it
has requested are held by some other waiting processes. This
situation is called as Deadlock.

217 Operating Systems

System Model
• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices.

• Each process utilizes a resource as follows:

– request : The process requests the resource. If the
request cannot be granted immediately, for e.g, if
the resource is being used by another process, then
the requesting process must wait until it can acquire
the resource.

– Use: The process can operate on the resource for
e.g, if the resource is a printer, the process can print
on the printer.

– Release: The process release the resources.

218 Operating Systems

Deadlock Characterization

• Mutual exclusion: only one process in a system which
cannot be shared simultaneously by more than one
process.

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

• No preemption: once a resource is allocated to a particular
process that resource cannot be preempted, the process
has to voluntarily should release the resource and
complete the task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by

 P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

219 Operating Systems

• If it overcome all the four conditions in a system, then we have
overcome Deadlock

• If at least one condition is overcome, then we can say sometimes
as Deadlock has been overcome.

220 Operating Systems

Resource-Allocation Graph

• A graph is represented as a pair i.e., G=(V,E)

• V is partitioned into two types of nodes:

– P = {P1, P2, …, Pn}, the set consisting of all the active
processes in the system.

– R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

• E is partitioned into two types:

• request edge – directed edge P1 Rj

• allocation edge – directed edge Rj Pi

The Deadlock can easily be identified in the graphical format.

221 Operating Systems

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

222 Operating Systems

• The Resource-allocation graph shown in the graph depicts the
following situation

The sets P,R,E.

P={P1,P2,P3}

R={R1,R2,R3,R4}

E={P1->R1 , P2->R3 , R1->P2 , R2->P2 , R2->P1 , R3->P3 }

Resources instances:

One instance of resource type R1

Two instances of resource type R2

One instance of resource type R3

Three instances of resource type R4.

Example of a Resource Allocation Graph

223 Operating Systems

Example of a Resource Allocation Graph

224 Operating Systems

Example of a Resource Allocation Graph

• In the above RAG, in resource type R1, we have got single
instance of resource.

• In resource type R2, we have got two instances of resources.

• In resource type R3, we have got single instance of a resource.

• In resource type R4, we have got three instance of a resources.

So, at a particular type of an instance, a resource type R3 is allocated
to process P3 and P3is not waiting for any other resource.

Similarly, process P2 is holding an instance of resource type R1 and
even it is holding an instance of a resource type R2, and it is
waiting for an instance of resource type R3.

Similarly, the process P1 is holding an instance of resource type R2,
and it is waiting for a resource type R1.

---------So, at this particular situation, it doesnot lead to Deadlock.

225 Operating Systems

• The Resource-allocation graph shown in the graph depicts the following
situation

The sets P,R,E.

P={P1,P2,P3}

R={R1,R2,R3,R4}

E={P1->R1 , P2->R3 , R1->P2 , R2->P2 , R2->P1 , R3->P3 , P3->R2}

Resources instances:

One instance of resource type R1

Two instances of resource type R2

One instance of resource type R3

Three instances of resource type R4.

Example of Resource Allocation Graph With A Deadlock

226 Operating Systems

Resource Allocation Graph With A Deadlock

227 Operating Systems

• The Resource-allocation graph shown in the graph depicts the following
situation

The sets P,R,E.

P={P1,P2,P3,P4}

R={R1,R2}

E={P1->R1 , R1->P2 , R1->P3 , R2->P1 , R2->P4 , P3->R2}

Resources instances:

Two instances of resource type R1

Two instances of resource type R2

Example of Resource Allocation Graph With A Cycle But No Deadlock

228 Operating Systems

Resource Allocation Graph With A Cycle But No Deadlock

229 Operating Systems

• In the above RAG, the cycle from P1R1P3R2P1, but even
in the presence of this cycle, it does not lead to a deadlock,
because the process P2 and P4 though they r holding the
resource types R1 and R2 but they are not waiting for any other
resource, they will complete their operation and will release the
resources, and whenever they release the resources that
resources are allocated to the requesting processes.

• So, this is an example of RAG even when there is a cycle, then it
does not lead to deadlock.

• However, if every resource type contains a single instance of the
resource in that case existence of a cycle means there is always a
deadlock.

• In the above RAG, if we remove a single instance from R1 and R2,
then there is an existence of deadlock

230 Operating Systems

Basic Facts

• If graph contains no cycles there can be a deadlock
or may not be a deadlock.

• If graph contains a cycle there can be a deadlock or
may not be a deadlock.

• If every resource type contains a multiple instance of a
resource, then the existence of cycle means then there
may be a deadlock or may not be a deadlock.

• If every resource type contains a single instance of a
resource, then the existence of cycle means then there
is a deadlock.

231 Operating Systems

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state.

• Allow the system to enter a deadlock state and
then recover.

• Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX.

232 Operating Systems

Different kinds of strategies

1. Deadlock Prevention: Preventing the deadlock from the
occurrence.

2. Deadlock Avoidance: Avoiding the deadlock from the
occurrence.

3. Deadlock detection and Recovery: In this, we allow the
system to allocate the resources whenever it is available
and periodically it check whether there has been a
deadlock or not.

 If there is a deadlock, we will try to break
down it.

 This will also lead insufficient utilization of resources.

The three different kinds of strategies to overcome deadlock:

233 Operating Systems

Deadlock Prevention

• In this, we will try to break either,Mutual Exclusion or hold
and wait, No Preemption, Circular wait.

• Mutual Exclusion – Cannot be broken.i.e., always there is
some resource in a system which is always mutual exclusive.

• Hold and Wait – can be avoided i.e., it means whenever a
process is requesting an additional resource it is holding
some other resource with it.

– For each process it must require all the resources before
its execution.

– A Process must request a resource if it doesn’t have any.

Disadvantages

1. It uses poor utilization of resources but it solves the
deadlock problem.

2. Starvation is possible.

There will be a restrictions on the processes, the way they request for the resources

234 Operating Systems

Deadlock Prevention (Cont.)

• No Preemption –can be broken

– If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

– Preempted resources are added to the list of resources for
which the process is waiting.

235 Operating Systems

• Circular Wait – can be broken if we allow the processes to request a
resource in a particular order.

 We define a mapping function:

 F:RN i.e., for every resource type I have a corresponding
integer number.

 A process while holding a resource type Ri put a request for a resource
type Rj only when F(Rj)>F(Ri).

Before putting a request for Rj, it should release the resource type Ri. So,
if this condition cannot satisfy then the process cannot put the
request for a resource type Rj.

236 Operating Systems

Deadlock Avoidance

• Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need.

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

• Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

Requires that the system has some additional a priori information
available.

237 Operating Systems

Safe State

• When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

• System is in safe state if there exists a safe sequence of all
processes.

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj, with j<I.

– If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

– When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

– When Pi terminates, Pi+1 can obtain its needed resources, and
so on.

238 Operating Systems

Basic Facts

• If a system is in safe state no deadlocks.

• If a system is in unsafe state possibility of
deadlock.

• Avoidance ensure that a system will never
enter an unsafe state.

239 Operating Systems

Safe, Unsafe , Deadlock State

240 Operating Systems

Banker’s Algorithm

• Multiple instances.

• Each process must a priori claim maximum use.

• When a process requests a resource it may have
to wait.

• When a process gets all its resources it must
return them in a finite amount of time.

241 Operating Systems

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there are
k instances of resource type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

242 Operating Systems

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available

Finish [i] = false for i - 1,2,3, …, n.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe
state.

243 Operating Systems

Resource-Request Algorithm for Process Pi

 Request = request vector for process Pi. If Requesti [j] = k then process
Pi wants k instances of resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

 Available = Available - Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe the resources are allocated to Pi.

 If unsafe Pi must wait, and the old resource-allocation
state is restored

244 Operating Systems

Example of Banker’s Algorithm

• 5 processes P0 through P4; 3 resource types A
(10 instances),
B (5instances, and C (7 instances).

• Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

245 Operating Systems

Example (Cont.)

• The content of the matrix. Need is defined to be Max –
Allocation.

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2,
P0> satisfies safety criteria.

246 Operating Systems

Example P1 Request (1,0,2) (Cont.)

• Check that Request Available (that is, (1,0,2) (3,3,2) true.

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence <P1, P3, P4, P0,
P2> satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

247 Operating Systems

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

248 Operating Systems

Single Instance of Each Resource Type

• Maintain wait-for graph

– Nodes are processes.

– Pi Pj if Pi is waiting for Pj.

• Periodically invoke an algorithm that searches for a cycle
in the graph.

• An algorithm to detect a cycle in a graph requires an order
of n2 operations, where n is the number of vertices in the
graph.

249 Operating Systems

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

250 Operating Systems

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type.

• Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

• Request: An n x m matrix indicates the current
request of each process. If Request [ij] = k, then
process Pi is requesting k more instances of
resource type. Rj.

251 Operating Systems

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

252 Operating Systems

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to
detect whether the system is in deadlocked state.

253 Operating Systems

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i.

 254 Operating Systems

Example (Cont.)

• P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

• State of system?

– Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes; requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

255 Operating Systems

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?

– How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may
be many cycles in the resource graph and so we would
not be able to tell which of the many deadlocked
processes “caused” the deadlock.

256 Operating Systems

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes.

• Abort one process at a time until the deadlock cycle is eliminated.

• In which order should we choose to abort?

– Priority of the process.

– How long process has computed, and how much longer to
completion.

– Resources the process has used.

– Resources process needs to complete.

– How many processes will need to be terminated.

– Is process interactive or batch?

257 Operating Systems

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart process for
that state.

• Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

258 Operating Systems

 I/O Systems

259 Operating Systems

 I/O Systems

• I/O Hardware

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware
Operations

• Streams

• Performance

260 Operating Systems

Objectives

• Explore the structure of an operating system’s I/O
subsystem

• Discuss the principles of I/O hardware and its
complexity

• Provide details of the performance aspects of I/O
hardware and software

261 Operating Systems

I/O Hardware
• Incredible variety of I/O devices

• Common concepts

– Port :It serves as an interface between the computer and
other peripheral dvices.It has many uses to connect a
monitor , webcam , speakers mouse etc.

– Port typically consists of 4 things:

1. Status : device busy , ready or error condition

2. Control : Commands to perform

3. Data-in : data sent from device to CPU

4. Data-out : data sent from CPU to device

– Bus (daisy chain or shared direct access)

262 Operating Systems

Cont..

•Controller (host adapter):Acts as an interface to the bus and
actual devices . It receives the commands from the bus,
translates them into device actions and reads/writes data on
to the system bus.

•I/O instructions control devices
Traditional Devices : Disk drivers , printers , keyboards ,
modem , mouse display.
Non – Traditional Devices : Joystick , robot actuator etc.

• Devices have addresses, used by

– Direct I/O instructions

– Memory-mapped I/O

263 Operating Systems

A Typical PC Bus Structure

264 Operating Systems

Device I/O Port Locations on PCs (partial)

265 Operating Systems

Polling
• The CPU will repeatedly ask for any new requests if

any for the I/O devices.

• Determines state of device

– command-ready

– busy

– Error

• Steps for Polling:

Step1: If bus is not busy makes bus request.

Step2:For every device there will be an device ID.

Step 3: If device gets bus grant , then it changes bus
status as busy

• Busy-wait cycle to wait for I/O from device

266 Operating Systems

Disadvantages:

1. Device inputs must be waiting for polling
intervals.

2. Shortening polling intervals leads to inefficiency ,
since system must spend a lot of time checking
idle devices.

Interrupts:

• The hardware device only signals OS system with
events occur.

• OS preempts any running process to handle the
event.

267 Operating Systems

Interrupts

• CPU Interrupt-request line triggered by I/O device

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct handler

– Based on priority

– Some nonmaskable

• Interrupt mechanism also used for exceptions

268 Operating Systems

Interrupt-Driven I/O Cycle

269 Operating Systems

Intel Pentium Processor Event-Vector Table

270 Operating Systems

Direct Memory Access

• Used to avoid programmed I/O for large data movement

• Requires DMA controller

• Bypasses CPU to transfer data directly between I/O device
and memory

271 Operating Systems

Six Step Process to Perform DMA Transfer

272 Operating Systems

Application I/O Interface

• I/O system calls encapsulate device behaviors in
generic classes

• Device-driver layer hides differences among I/O
controllers from kernel

• Devices vary in many dimensions

– Character-stream or block

– Sequential or random-access

– Sharable or dedicated

– Speed of operation

– read-write, read only, or write only

273 Operating Systems

A Kernel I/O Structure

274 Operating Systems

Characteristics of I/O Devices

275 Operating Systems

• The major access conventions include block I/O ,
character stream I/O , memory mapped file access and
network sockets.

• Most OS have an escape that transparently passes
arbitrary commands from an application to device driver.

• The system call is ioctl()-for I/O Control.

• the ioctl() system call has 3 arguments

1. file descriptor - connects application to the driver by
referring to the hardware device.

2. integer that select one of the command implemented in
the driver.

3. pointer to an arbitrary data structure in memory that
enables the application and the driver to communicate
any necessary control information or data.

276 Operating Systems

Block and Character Devices
• block device interface captures all the aspects necessary

for accessing disk drivers and block –oriented devices.

• Block devices include disk drives

– Commands include read, write, seek

– Raw I/O or file-system access

– Memory-mapped file access possible

• Character devices include keyboards, mice, serial ports

– Commands include get, put

– Libraries layered on top allow line editing

277 Operating Systems

Network Devices
• one interface available in many operating systems , including

UNIX and Windows NT is the network socket interface.

• The system call in the socket interface enable an application to
create a socket.

• To connect a local socket to remote address which plugs this
socket created by another application , to listen for any remote
application to plug into the local socket , and to send receive
packets over the connection.

• Socket interface also provides a function select() that manages a
set of sockets.

• The select() returns the information about which socket is have a
packet waiting to be received and which socket have a room to
accept a packet to be sent.

• Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

278 Operating Systems

Clocks and Timers

• Provide current time, elapsed time, timer

• Programmable interval timer used for timings,
periodic interrupts

• ioctl (on UNIX) covers odd aspects of I/O such as
clocks and timers

279 Operating Systems

Blocking and Nonblocking I/O

• Blocking - process suspended until I/O completed

– Easy to use and understand

– Insufficient for some needs

• Nonblocking - I/O call returns as much as available(keyborad,
mouse , video conferencing)

– User interface, data copy (buffered I/O)

– Implemented via multi-threading

– Returns quickly with count of bytes read or written

• Asynchronous - process runs while I/O executes

– Difficult to use

– I/O subsystem signals process when I/O completed

280 Operating Systems

Two I/O Methods

Synchronous Asynchronous

281 Operating Systems

Kernel I/O Subsystem

• I/O Scheduling

– Some I/O request ordering via per-device queue

Device –status table:contains entry for each I/O device
indicating its type , address and state.

OS indexes into I/O device table to determine device
status and to modify table entry to include
interrupt.

• Buffering - store data in memory while transferring
between devices

– To cope with device speed mismatch

– To cope with device transfer size mismatch(web)

– To maintain “copy semantics”(buffer of data
modified) 282 Operating Systems

Device-status Table

283 Operating Systems

Sun Enterprise 6000 Device-Transfer Rates

284 Operating Systems

Kernel I/O Subsystem

• Caching - fast memory holding copy of data

– Always just a copy

– Key to performance

• Spooling - hold output for a device

– If device can serve only one request at a time

– i.e., Printing

• Device reservation - provides exclusive access to a device

– System calls for allocation and deallocation

– Watch out for deadlock

285 Operating Systems

Error Handling

• OS can recover from disk read, device unavailable, transient write
failures

• Most return an error number or code when I/O request fails

• System error logs hold problem reports

286 Operating Systems

I/O Protection

• User process may accidentally or purposefully attempt
to disrupt normal operation via illegal I/O instructions

– All I/O instructions defined to be privileged

– I/O must be performed via system calls

• Memory-mapped and I/O port memory
locations must be protected too

287 Operating Systems

Use of a System Call to Perform
I/O

288 Operating Systems

Kernel Data Structures

• Kernel keeps state info for I/O components, including
open file tables, network connections, character
device state

• Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

• Some use object-oriented methods and message
passing to implement I/O

289 Operating Systems

UNIX I/O Kernel Structure

290 Operating Systems

I/O Requests to Hardware Operations

• A process issues a block read() system call to a file
descriptor of a file that has been opened previously.

• The system-call code in the kernel checks the parameters
for correctness . In the case of input , if data already
available in the buffer cache , the data are returned to the
process and the I/O request completed.

• Otherwise a physical I/O must be performed. The process
is moved from run queue to wait queue and the I/O request
is scheduled.

• The device driver allocates kernel buffer space to receive
the data and schedule the I/O . Device driver send
command to the device controller by writing into device
control register.

• The device controller operates the device hardware to
perform the data transfer. 291 Operating Systems

• The driver may poll for status an data or it may have set

up for DMA transfer into kernel memory. So we assume
that DMA is transferring and generates an interrupt when
transfer completes

• The correct interrupt handler receives the interrupt via
interrupt vector table, stores any necessary data , signals ,
the device driver and returns from the interrupt.

• The device driver receives the signal , determines which
I/O request has completed and signals the kernel I/O
subsystem that the request has been completed.

• The kernel transfers data to the address space of the
requesting process and moves the process from the wait
queue back to the ready queue.

292 Operating Systems

Life Cycle of An I/O Request

293 Operating Systems

Streams
• A stream is a full duplex connection between a device

driver and user level process.

• It consists of a stream head that interfaces with the

user processes.

• A driver end that controls the devices and zero or

more modules between the stream head and driver end.

• Each module contains a read queue and a write queue.

• A user writes the data into the device using write() or

putmsg().

• A user reads data from stream heads using either read()

or getmsg()

294 Operating Systems

The STREAMS Structure

295 Operating Systems

Performance

• I/O a major factor in system performance:

– Demands CPU to execute device driver, kernel I/O
code

– Context switches due to interrupts

– Data copying

– Network traffic especially stressful

296 Operating Systems

Inter computer Communications

297 Operating Systems

Improving Performance

• Reduce number of context switches

• Reduce data copying

• Reduce interrupts by using large transfers, smart
controllers, polling

• Use DMA

• Balance CPU, memory, bus, and I/O performance for
highest throughput

298 Operating Systems

Device-Functionality Progression

299 Operating Systems

UNIT-IV

 Syllabus

 File System Interface – The Concept of File,
Access methods, Directory Structure, File System
Mounting, File Sharing, Protection, File System
Implementation File System Structure, File
System Implementation, Allocation methods,
Free-Space Management, Directory
Implementation, Efficiency and Performance.

 Mass Storage Structure – Overview of Mass
Storage Structure, Disk Structure, Disk
Attachment, Disk Scheduling, Disk Management,
and Swap space Management.

300 Operating Systems

• The File system consists of two distinct parts:

1. Collection of files

2. Directory Structure.

• Computer will store information in various storage media such as magnetic tapes ,

magnetic disks, optical disks.

• A file is a named collection of related information that is recorded in secondary

storage.

• In users view a file is the smallest allotment of logical secondary storage i.e data

can be written in secondary storage unless they are within a file.

• File consists of program and data .

• File is a sequence of bits , bytes , lines or records.

• File meaning is given by file creator & user.

• The file information may be of different types, source program , object program ,

executable program , numeric data , text , payroll record , graphic images etc.

301 Operating Systems

File Attributes

• Name – only information kept in human-readable form.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing, executing.

• Time, date, and user identification – data for protection, security, and usage
monitoring.

• Information about files are kept in the directory structure, which is maintained on
the disk.

302 Operating Systems

File Operations
• create : Space should be available and entry for new file must be made in

directory.

• write : System call specifying both the name of the file and information
written to the file.(write pointer)

• read : System call specifying both the name of the file and in memory
the next block of the file should be put.(read pointer)

• reposition within file – The directory is searched for the appropriate entry
, and the current –file –position pointer is repositioned to a given value.
(file seek)

• delete : To delete a file , we search the directory for the named file.

• truncate: The user may want to erase the contents of the file

.

303 Operating Systems

Cont…
• An open system call is first made before a file is opened .

• The operating system is going to maintain a small table called as open –file

table.

• When a file operation is requested the file is specified via an index into this

table, so no searching is required.

Different piece of information are associated with an open file are:

• File pointer: On system it doesn’t include a file offset as part of the read()

and write() system calls, the system must track the last read –write location

as a current fil epointer.

• File-open count :It tracks the number of opens and closes and reaches zero

on last close.

• Disk location of the file:appending the information on the file , the

information needed to locate the file on disk for each operation.

• Access rights: Each process opens a file in an access mode.

304 Operating Systems

File Types – name, extension

Executable exe, com, bin or
none

ready-to-run machine-
language program

Object obj, o complied, machine
language, not linked

Source code c, p, pas, 177,
asm, a

source code in various
languages

Batch bat, sh commands to the
command interpreter

Text txt, doc textual data documents

Word processor wp, tex, rrf, etc. various word-processor
formats

Library lib, a libraries of routines

Print or view ps, dvi, gif ASCII or binary file

Archive arc, zip, tar related files grouped
into one file, sometimes
compressed.

File Type Usual extension Function

Operating Systems

Access Methods

• Sequential Access

 read next

 write next

 reset

 no read after last write

 (rewrite)

• Direct Access

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

306 Operating Systems

Sequential-access File Sequential-access files

•Sequential access means that a group of element such as tapes , disk file ,
memory array is accessed in a predetermined ordered sequence.
•Sequence access is something the only way of accessing the data eg: tapes
•It may also be the access method of choice , eg: if all that is wanted is to process a
sequence of data element in order.

307 Operating Systems

Simulation of Sequential Access on a Direct-access File

308 Operating Systems

Example of Index and Rela Example of Index and Relative files

309 Operating Systems

Directory Structure
• A collection of nodes containing information about all files.

F 1 F 2
F 3

F 4

F n

Directory

Files

• Both the directory structure and the files reside on disk.

• Backups of these two structures are kept on tapes.
310 Operating Systems

A Typical File-system A Typical file system organization

311 Operating Systems

Information in a Device Directory

• Name

• Type

• Address

• Current length

• Maximum length

• Date last accessed (for archival)

• Date last updated (for dump)

• Owner ID (who pays)

• Protection information (discuss later)

312 Operating Systems

Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

313 Operating Systems

Single-Level Directory
• The single level directory structure is as follows:.

• All the folders are in the same directory which is easy to support and
understand.

Limitations:

• Naming problem

• Grouping problem

314 Operating Systems

Two-Level Directory
• Separate directory for each user.

• Each user has his own user file directory (UFD).

• Can hide the information from other users

• Can have the same file name for different user

• Efficient searching

• Providing the security with in the system level

315 Operating Systems

• Advantages :

1.No Name-collision

2.Isolates Users

• Limitations:

1.If the processes are dependent on each
other.

316 Operating Systems

Tree-Structured Directories

317 Operating Systems

Tree-Structured Directories (Cont.)

• There are two types of path names:

1. Absolute pathname: It begins at the root and follows a path down to the specified
file, giving the directory names on the path.

2. Relative pathname: It defines a path from the current directory.

• Efficient searching

• Grouping Capability

• Current directory (working directory)

– cd /spell/mail/prog

– type list

318 Operating Systems

Tree-Structured Directories (Cont.)
• Absolute or relative path name

• Creating a new file is done in current directory.

• Delete a file

 rm <file-name>

• Creating a new subdirectory is done in current directory.

 mkdir <dir-name>

 Example: if in current directory /spell/mail

 mkdir count

mail

prog copy prt exp count

• Deleting “mail” deleting the entire subtree rooted by “mail”.

319 Operating Systems

Acyclic-Graph Directories
• Have shared subdirectories and files.

320 Operating Systems

Acyclic-Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list dangling pointer.

 Solutions:

– Backpointers, so we can delete all pointers.
Variable size records a problem.

– Backpointers using a daisy chain organization.

– Entry-hold-count solution.

321 Operating Systems

General Graph Directory

322 Operating Systems

General Graph Directory (Cont.)

• How do we guarantee no cycles?

– Allow only links to file not subdirectories.

– Garbage collection.

– Every time a new link is added use a cycle detection
algorithm to determine whether it is OK.

323 Operating Systems

File System Mounting

• A file system must be mounted before it can be accessed

• A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

File system Mounting

324 Operating Systems

(a) Existing. (b) Un a) Existing b) Unmounted partitions

325 Operating Systems

Mount Point Mount Point

326 Operating Systems

File Sharing

---Sharing of files on multi-user systems, file naming and file

protection becomes preeminent.(Owner/Group)

---Sharing may be done through a remote file system scheme ,

through FTP protocol, DFS (Distributed File

systems),WWW(World-wide-web).

----Sharing may be done through a client-server systems,

through IP addressing.

---On distributed information systems, files may be shared by

all the systems across a network.

327 Operating Systems

Protection
• File owner/creator should be able to control:

– what can be done

– by whom

• Types of access

– Read: Read from the file

– Write: Write or rewrite the file.

– Execute: Load the file into memory and execute it.

– Append: Write new information at the end of the file.

– Delete: Delete the file and free its space for possible

reuse.

– List: List the name and attributes of the file.

328 Operating Systems

Access Lists & Groups
• Only administrators can create users & groups

• 3 modes of access: read, write, execute

• 3 classification of users in connection with each file:

a) Owner: The user who created the file is the owner.

b) Group: A set of users who are sharing the file and need
similar access is a group, or work group.

c) Universe: All other users in the system constitute the
universe.

329 Operating Systems

File-System Implementation

 • File-System Structure

• Allocation Methods

• Free-Space Management

• Directory Implementation

• Efficiency and Performance

• Recovery

330 Operating Systems

File-System Structure
• File structure

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks).

• A file system possess two quite different design problems:

------The first problem is defining how the file system should look to the
user.

-------The second problem is creating algorithms and data structures to
map the logical file system onto the physical secondary-storage
devices.

• File system organized into layers.

• File control block – storage structure consisting of information about
a file.

331 Operating Systems

Cont…
Definition:

• Set of system software's which are responsible to

provide services to the users as per file accessibility .

So , giving access to the users to access the file is the

major responsibility of File Management System.

• File Management system is concerned with

various responsibilities:

• Storage , Retrieval , Manipulation , validity etc.

• To manage all these responsibilities they have a

“File System Architecture”

332 Operating Systems

Layered File System

333 Operating Systems

Cont..
• The lowest layer is the devices , which consists of all

hardware devices which are present inside the system.

• The second lowest level , the I/O controller consists of

device drivers and the interrupt handlers to transfer

information between the hard disk and the main

memory . The device driver can be also thought of a

translator.

• The third lowest level , the Basic File System will issue

the generic commands to the appropriate device

drivers to read and write physical bocks on the disck ,

it also manages the memory buffers and cache that

holds various file systems, directories and data blocks.

334 Operating Systems

Cont..
• The next layer is the File Organization Module knows

about their logical blocks and physical blocks , by

knowing the type of the file and location of the file the

file organization module will translate the logical

block into physical block .

• The next layer is the Logical File system will maintain

the File Structure via File Control Block, which

contains the complete information of a File , It is also

responsible for Protection & security .

• The Highest level is the Application Program where

the user is Interacting with the file.

335 Operating Systems

A Typical File Control Block

336 Operating Systems

File System Implementation

• On the Disk the File System may contain the

Information of how to Boot an Operating system

stored their , the total no of blocks , the directory

structure and files.

• A Boot Control Block will contain the information

needed by the system to boot an operating system from

the volume.

• A Volume Control Block contains volume details such

as the number of blocks in the partition ,the size of the

blocks , free block count.

• Directory Structure is used to Organize a File.

• A Per-File FCB will contain the details about the File.

337 Operating Systems

• In-Memory information is used for both File-System Management

and Performance Improvement via Cache.

• An in-memory mount table contains information about each mounted

volume.

• An in-memory directory –structure holds the directory information of

recently accessed directory.

• System-wide open file table contains a copy of the FCB of each open

file .

• The Pre-process open file-table contains a pointer to the appropriate

entry in the system –wide open file table.

• The following figure illustrates the necessary file system structures

provided by the operating systems.

• Figure 12-3(a) refers to opening a file.

• Figure 12-3(b) refers to reading a file.

In-Memory File System Structures

338 Operating Systems

In-Memory File System Structures

339 Operating Systems

• Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

• VFS allows the same system call interface (the API) to be used for
different types of file systems.

• The API is to the VFS interface, rather than any specific type of file
system.

Virtual File Systems

340 Operating Systems

Schematic View of a Virtual File Systems

341 Operating Systems

• Linear list of file names with pointer to the data blocks.

– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.

– decreases directory search time

– collisions – situations where two file names hash to the same
location

– fixed size

Directory Implementation

342 Operating Systems

• An allocation method refers to how disk blocks are allocated for files:

• Contiguous allocation

• Linked allocation

• Indexed allocation

Allocation Methods

343 Operating Systems

Contiguous Allocation
• Each file occupies a set of contiguous blocks on the disk.

• Simple – only starting location (block #) and length (number of blocks) are
required.

• If these contiguous blocks you want to access then it follows sequential access
methods , Direct access methods.

Disadvantages:

• dynamic storage-allocation problem.

• Finding space for a file , Knowing file size , External Fragmentation need for a
compaction.

• Mapping from logical to physical.

LA/512

Q

R

 – Block to be accessed = ! + starting address

– Displacement into block = R

344 Operating Systems

Contiguous Allocation of Disk Space

345 Operating Systems

Linked Allocation

• Linked allocation solves all problems of contiguous allocation.

• With Linked allocation, each file is a linked list of disk blocks

• The disk blocks may be scattered anywhere on the disk

• The directory contains a pointer to the first and last blocks of the file

• Each block contains a pointer to the next block. These pointers are
not made available to the user.

346 Operating Systems

• Allocate as needed, link together; e.g., file starts at block 9

347 Operating Systems

Linked Allocation (Cont.)
• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• Mapping : Let the LA be the Logical address & let the block size be
512 bytes.

• Each block uses its first 4 bytes to hold a pointer to next bock.

– Block to be accessed is the Qth block in the linked chain of blocks
representing the file.

– Displacement into block = R + 1

• File-allocation table (FAT) – disk-space allocation used by MS-DOS and
OS/2.

LA/508
Q

R

348 Operating Systems

Linked Allocation (Cont.)

• An important variation on linked allocation is the use of a file-
allocation table(FAT).

• This simple but efficient method of disk-space allocation is used by
the MS-DOS and OS/2 operating system.

• A section of disk at the beginning of each volume is set aside to
contain the table. The table has one entry for each disk block and is
indexed by block number.

• The directory entry contains the block number of the first block of the
file.

• The table entry indexed by that block number contains the block
number of the next block in the file.

349 Operating Systems

File-Allocation Table

350 Operating Systems

Indexed Allocation

• Brings all pointers together into the one location i.e, the index block.

• Each file has its own index block, which is an array of disk-block addresses.

• Logical view.

index table

351 Operating Systems

Indexed Allocation of Disk Space

352 Operating Systems

Indexed Allocation (Cont.)
• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead
of index block.

• Mapping from logical to physical in a file of maximum size of 256K
words and block size of 512 words. We need only 1 block for index
table.

LA/512

Q

R

– Q = displacement into index table

– R = displacement into block

353 Operating Systems

Indexed Allocation – Linked
Mapping

• Mapping from logical to physical in a file of unbounded length (block
size of 512 words).

• Linked scheme – Link blocks of index table (no limit on size).

LA / (512 x 511)
Q1

R1

– Q1 = block of index table

– R1 is used as follows:

R1 / 512

Q2

R2

– Q2 = displacement into block of index table

– R2 displacement into block of file:

354 Operating Systems

Indexed Allocation – Multilevel
Indexed Mapping

• Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

– Q1 = displacement into outer-index

– R1 is used as follows:

R1 / 512

Q2

R2

– Q2 = displacement into block of index table

– R2 displacement into block of file:

355 Operating Systems

Indexed Allocation – Multilevel
Indexed Mapping

outer-index

index table file

356 Operating Systems

Combined Scheme: UNIX (4K bytes per block)

357 Operating Systems

Free-Space Management
• Free-space list: It is going to keep track of free disk space, the system

maintains a free-space list.

• The free-space list records all free disk blocks—those are not
allocated to some file or directory.

• To create a new file, we search the free space list for the required
amount of space and allocate that space to the new file. Then this
space is then removed from the free space list.

• When the file is deleted, its disk space is added to the free space list.

• The free-space list is implemented as a:

-----Bit Vector/Bit Map

------Linking

------Grouping

358 Operating Systems

Free-Space Management
• Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =

1 block[i] free

0 block[i] occupied

• Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

359 Operating Systems

Free-Space Management (Cont.)

• Linked list (free list)

– Cannot get contiguous space easily.

– No need to traverse the entire list.(if # free blocks recorded)

– No waste of space.

• Grouping

 Modifying linked list to store addresses of n free blocks in first free block. The first
n-1 of these bocks are actually free.

• Counting

 Several contiguous blocks may be allocated or freed simultaneously , particularly
when space is allocated with the contiguous-allocation algorithm or through
clustering.

360 Operating Systems

Directory Implementation

• Linear list of file names with pointer to the data blocks.

– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.

– decreases directory search time

– collisions – situations where two file names hash to the same location

– fixed size

361 Operating Systems

Linked Free-Space List on Disk

362 Operating Systems

 Secondary-Storage Structure

• Disk Structure

• Disk Scheduling

• Disk Management

• Swap-Space Management

• Disk Reliability

• Stable-Storage Implementation

• Tertiary Storage Devices

• Operating System Issues

• Performance Issues

363 Operating Systems

• Magnetic disk stores the large amount of data permanently .

• Each Disk contains n no of Platters inside a Disk.

• Each Disk Platter has a Flat Circular Shape , Like a CD .

• Each disk platter surface is covered with magnetic flux .The data can

be magnetically recorded on to the disk platter.

• The Read/Write head files are placed just above the platter .This

heads are attached to the Disk Arm.

• Spindle is going to rotate the disk platter so the data present on the

platter can be read by the Read/Write head files by changing the

sector positions.

• The Platter is divided into Circular Tracks , again the track is divide

in to sectors.

• Set of tracks that are at one arm position makes up a cylinder.

• In Hard Disk their might be thousand number of cylinders and each

track may contain hundred no .of sectors.

Overview of Mass-Storage Structure

364 Operating Systems

• whenever we are using the disk , the drive motor i.e Spindle is going

to move at High Speed , which rotates at 60 to 200 times per second.

• Disk speed has two parts:

• Transfer Rate: The time it takes to move the Data from Hard Disk to

Computer Memory (Main Memory).

• Random Access Time: Here to calculate the Random Access Time

we need to consider the Seek Time & Rotational Latency.

• Seek Time: The Time taken For the Read/Write Head File to go

the Desired Position of the sector to read the Data.

• Rotational Latency: The time taken to rotate the Spindle.

• Head Crash: If the head will make contact with the disk surface , the

disk will sometimes get damages the magnetic surface , this is called

as Head Crash.(Hard to recover the Head Crash).

• A Disk Drive is attached to a Computer by a set of wires called as an

I/O bus.

• The Data transferring is happening with the help of Controllers

called as Host Controller for the Computer , Disk Controller for the

Drivers.

Cont..

365 Operating Systems

Moving-head Disk Mechanism

366 Operating Systems

Overview of Mass Storage Structure (Cont.)

• Magnetic tape

– Was early secondary-storage medium

– Relatively permanent and holds large quantities of data

– Access time slow

– Random access ~1000 times slower than disk

– Mainly used for backup, storage of infrequently-used data, transfer
medium between systems

– Kept in spool and wound or rewound past read-write head

– Once data under head, transfer rates comparable to disk

– 20-200GB typical storage

– Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

367 Operating Systems

Disk Structure
• The Logical Block , is the smallest unit of Transfer of data between

Hard Disk & the Computer.

• The size of the logical Block will be usually 512 bytes or some may

be 1024 bytes.

• The logical locks are going to be moved on to the sectors

sequentially.

• Sector 0 is the First Sector of the First Track on the outermost

Cylinders.

Mapping From Logical to Physical:

First it Travels to the Track then rest of the tracks with in the same

cylinders and the cylinders will be travelling from outermost to the

inner most .

Whenever it want to read the data the logical block no into an Old style

address. i.e The Disk address will be Cylinder no , Track no & the

Sector no within that track.

368 Operating Systems

Disk Attachment

• Host-attached storage accessed through I/O ports talking to I/O busses

• SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests
operation and SCSI targets perform tasks

– Each target can have up to 8 logical units (disks attached to device
controller

• FC is high-speed serial architecture

– Can be switched fabric with 24-bit address space – the basis of
storage area networks (SANs) in which many hosts attach to many
storage units

– Can be arbitrated loop (FC-AL) of 126 devices

369 Operating Systems

Network-Attached Storage

• Network-attached storage (NAS) is storage made available over a
network rather than over a local connection (such as a bus)

• NFS and CIFS are common protocols

• Implemented via remote procedure calls (RPCs) between host and
storage

• New iSCSI protocol uses IP network to carry the SCSI protocol

370 Operating Systems

Storage Area Network

• Common in large storage environments (and becoming more common)

• Multiple hosts attached to multiple storage arrays - flexible

371 Operating Systems

Disk Scheduling

• The operating system is responsible for using hardware efficiently — for the disk
drives, this means having a fast access time and disk bandwidth.

• Access time has two major components

– Seek time is the time for the disk are to move the heads to the cylinder
containing the desired sector.

– Rotational latency is the additional time waiting for the disk to rotate the
desired sector to the disk head.

• Minimize seek time

• Seek time seek distance

• Disk bandwidth is the total number of bytes transferred, divided by the total time
between the first request for service and the completion of the last transfer.

372 Operating Systems

Disk Scheduling (Cont.)

• Several algorithms exist to schedule the servicing of disk I/O requests.

• We illustrate them with a request queue (0-199).

 98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

373 Operating Systems

FCFS

Illustration shows total head movement of 640 cylinders.

374 Operating Systems

SSTF

• Selects the request with the minimum seek time from the current head position.

• SSTF scheduling is a form of SJF scheduling; may cause starvation of some
requests.

• Illustration shows total head movement of 236 cylinders.

375 Operating Systems

SSTF (Cont.)

376 Operating Systems

SCAN

• The disk arm starts at one end of the disk, and moves toward the other end,
servicing requests until it gets to the other end of the disk, where the head
movement is reversed and servicing continues.

• Sometimes called the elevator algorithm.

• Illustration shows total head movement of 208 cylinders.

377 Operating Systems

SCAN (Cont.)

378 Operating Systems

C-SCAN

• Provides a more uniform wait time than SCAN.

• The head moves from one end of the disk to the other. servicing requests as it
goes. When it reaches the other end, however, it immediately returns to the
beginning of the disk, without servicing any requests on the return trip.

• Treats the cylinders as a circular list that wraps around from the last cylinder to the
first one.

379 Operating Systems

C-SCAN (Cont.)

380 Operating Systems

C-LOOK

• Version of C-SCAN

• Arm only goes as far as the last request in each direction, then reverses direction
immediately, without first going all the way to the end of the disk.

381 Operating Systems

C-LOOK (Cont.)

382 Operating Systems

Selecting a Disk-Scheduling Algorithm

• SSTF is common and has a natural appeal

• SCAN and C-SCAN perform better for systems that place a heavy load on the disk.

• Performance depends on the number and types of requests.

• Requests for disk service can be influenced by the file-allocation method.

• The disk-scheduling algorithm should be written as a separate module of the
operating system, allowing it to be replaced with a different algorithm if necessary.

• Either SSTF or LOOK is a reasonable choice for the default algorithm.

383 Operating Systems

Disk Management

• Low-level formatting, or physical formatting — Dividing a disk into sectors that the
disk controller can read and write.

• To use a disk to hold files, the operating system still needs to record its own data
structures on the disk.

– Partition the disk into one or more groups of cylinders.

– Logical formatting or “making a file system”.

• Boot block initializes system.

– The bootstrap is stored in ROM.

– Bootstrap loader program.

• Methods such as sector sparing used to handle bad blocks.

384 Operating Systems

Booting from a Disk in Windows 2000

385 Operating Systems

Swap-Space Management

• Moving entire process between disk and memory is called as swapping.

• Swapping occurs when the amount of physical memory is critically low and
process are moved from memory to swap space to free available memory.

• Swap space management is another low level task of OS.

• This is designed to provide the best throughput for the virtual memory
system.

How swap is used

swap space located on disk

swap space managed

386 Operating Systems

Swap Space Used:

• It is used in different ways based on OS , depending on the memory
management algorithms.

1. System implementing swapping may use swap space to hold an entire
process image including code and data segment.

2. System implementing paging may use swap space to hold few pages that
are pushed out of memory.

• Swap space should be over estimated but not under estimated , if it runs out
of space it may force to abort process or may crash entirely.

• Overestimation just waste memory where there is no much harm.

• Some have multiple swap spaces usually put on separate disks so that the
load placed on the I/O separated by paging and swapping can be spread
over the system’s I/O drive.

387 Operating Systems

Swap Space loaded on disk:

Swap space can be loaded in two places

1. It can be carved out of the normal file system.

2. Separate disk portion.

It can be carved out of the normal file system:

• If it is a normal simple file with in the file system , normal file system
routine can be used to create it , name it & allocate the space.

• Easy to implement & inefficient.

• External fragmentation increases.

Separate disk portion:

• Create a separate raw partition separate swap space storage manager is
used to allocate/ deallocate the blocks from the raw partition.

• Optimize the speed rather storage efficiency.

• Internal Fragmentation increases.

388 Operating Systems

Data Structures for Swapping on Linux Systems

389 Operating Systems

RAID Structure
• Suppose if there is any Failure in your Hard disk , then we

need to retrieve the information.

• The retrival of the information is possible through RAID.

• Disk Drives have continued to get smaller and cheaper , so it

is now economically feasible to attach many disks to a

computer system.

• RAID – multiple disk drives provides reliability via

redundancy.

• Raids are used to address the performance and reliability.

• RAID stands for Redundant Array of Independent Disks.

• RAID is arranged into six different levels.

• The following Figure shows RAID levels , in which P

indicates error-correcting bits & C-indicates Second copy of

the data.

390 Operating Systems

RAID (cont)

• Several improvements in disk-use techniques involve the use of

multiple disks working cooperatively.

• RAID-0:It Refers to disk arrays with stripping at the level of blocks

but without any redundancy .

• RAID-1: It refers to disk mirroring.

• RAID-2: It is also known as memory style-error correcting code.

,memory systems have long detected certain errors by using parity bits.

• RAID-3:It is known as bit-interleaved parity organization. improves on

level-2 by taking into account unlike memory systems, disk controller

can detect whether a sector has been read correctly , so a single parity

bit can be used for both error correction and detection.

Adv:1.Storage overhead has reduced.

 2. Requires fewer I/O per second.

391 Operating Systems

RAID (cont)

• RAID-4:It is known as block-interleaved parity

organization uses block level stripping .

• RAID-5: It is known as Block-Interleaved Distributed

Parity differs from spreading data and parity among all

N+1 disks , rather than storing data in N disks and parity in

one Disk.

• Raid levels 0+1 and 1+0: Raid Levels 0+1 refers to the

combination of RAID level 0 and RAID level 1 . With

RAID level -0 it provides performance and with RAID

level 1 it gives reliability.

392 Operating Systems

RAID Levels

393 Operating Systems

RAID (0 + 1) and (1 + 0)

394 Operating Systems

UNIT-V

Syllabus

Deadlocks – System Model, Deadlock Characterization,
Methods for Handling Deadlocks, Deadlock Prevention,
Deadlock Avoidance, Deadlock Detection and Recovery from
Deadlock.

Protection – System Protection, Goals of Protection,
Principles of Protection, Domain of Protection, Access
Matrix, Implementation of Access Matrix, Access Control,
Revocation of Access Rights, Capability-Based Systems,
Language-Based Protection.

Overview

• Goals of Protection

• Principles of Protection

• Domain of Protection

• Access Matrix

• Implementation of Access Matrix

• Access Control

• Revocation of Access Rights

• Capability-Based Systems

• Language-Based Protection

396 Operating Systems

 Operating system uses two sets of techniques to computer

threats to information namely:

1. Protection

2. Security

Protection: It involves guarding a user’s data programs against

interference by other authorized users of the system.

Security: It involves guarding a users' data programs against

interference by external entities. E.g.: unauthorized persons

397 Operating Systems

Protection

• It refers to a mechanism for controlling the
access of programs, processes, or users to
the resources defined by a computer system.

• Protection is required against the shared
memory , logical space etc.

• The most obvious is the need to prevent
mischievous, intentional violation of an
access restriction by a user.

398 Operating Systems

Goals of Protection

• To ensure that each shared resource is used
only in accordance with the system policies,
which may be set either by system designer or
by system administrator.

• To ensure that errant programs cause the
minimal amount of damage possible.

399 Operating Systems

Goals of Protection

• In one protection model, computer consists
of a collection of objects, hardware or
software

• Each object has a unique name and can be
accessed through a well-defined set of
operations

• Protection problem - ensure that each object
is accessed correctly and only by those
processes that are allowed to do so.

 400 Operating Systems

Goals of Protection

• The role of protection in a computer system is
to provide a mechanism for the enforcement
of the policies governing resource use.

• These policies can be established in a variety
of ways. Some are fixed in the design of the
system, while others are formulated by the
management of a system.

• Policies for resource use may vary by
application, and they may change over time.

401 Operating Systems

Principles of Protection
• Guiding principle – principle of least privilege

– Programs, users and systems should be given just enough privileges to
perform their tasks

– Limits damage if entity has a bug, gets abused

– Can be static (during life of system, during life of process)

– Or dynamic (changed by process as needed) – domain switching, privilege
escalation(RBAC)

• Must consider “grain” aspect

– Rough-grained privilege management easier, simpler, but least privilege now
done in large chunks

• For example, traditional Unix processes either have abilities of the
associated user, or of root

– Fine-grained management more complex, more overhead, but more
protective

• File ACL lists, RBAC

• Domain can be user, process, procedure

 402 Operating Systems

Domain Structure

• Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can be performed
on the object

• Domain = set of access-rights

403 Operating Systems

Domains

• A domain can be realized in a variety of ways:
• Each user may be a domain.

– The set of objects that can be accessed depends on the identity
of the user.

– Domain switching occurs when the user is changed—generally
when one user logs out and another user logs in.

• Each process may be a domain.
– The set of objects that can be accessed depends on the identity

of the process.
– Domain switching occurs when one process sends a message to

another process and then waits for a response.

• Each procedure may be a domain.
– The set of objects that can be accessed corresponds to the local

variables defined within the procedure.
– Domain switching occurs when a procedure call is made.

404 Operating Systems

• Domain = user-id

• Domain switch accomplished via file system

• Each file has associated with it a domain bit (setuid bit)

• When file is executed and setuid = on, then user-id is set to
owner of the file being executed

• When execution completes user-id is reset

• Domain switch accomplished via passwords

– su command temporarily switches to another user’s domain when
other domain’s password provided

• Domain switching via commands

– sudo command prefix executes specified command in another
domain (if original domain has privilege or password given)

Domain Implementation (UNIX)

405 Operating Systems

Access Matrix

• View protection as a matrix (access matrix)

• Rows represent domains

• Columns represent objects

• When a user creates a new object ,a column is added to the
access matrix

• Access(i, j) is the set of operations that a process executing in
Domaini can invoke on Objectj

406 Operating Systems

Access Matrix

407 Operating Systems

Access Matrix

• The access matrix provides an appropriate
mechanism for defining and implementing strict
control for both the static and dynamic
association between processes and domains.

• When we switch a process from one domain to
another, we are executing an operation (switch)
on an object (the domain).

• Processes should be able to switch from one
domain to another.

• A process executing in domain D2 can switch to
domain D3 or to domain D4.

408 Operating Systems

Access Matrix of Figure A
with Domains as Objects

409 Operating Systems

• If a process in Domain Di tries to do “op” on object Oj,
then “op” must be in the access matrix

• User who creates object can define access column for
that object

• Can be expanded to dynamic protection

– Operations to add, delete access rights

– Special access rights:

• owner of Oi

• copy op from Oi to Oj (denoted by “*”)

• control – Di can modify Dj access rights

• transfer – switch from domain Di to Dj

– Copy and Owner applicable to an object

– Control applicable to domain object

Use of Access Matrix

410 Operating Systems

Access Matrix with Copy Rights

411 Operating Systems

Access Matrix with Copy Rights

• The ability to copy an access right from one
domain (or row) of the access matrix to another
is denoted by an asterisk (*) appended to the
access right.

• The copy right allows the copying of the access
right only within the column (that is, for the
object) for which the right is defined.

• A process executing in domain D2 can copy the
read operation into any entry associated with file
F2.

412 Operating Systems

Access Matrix with Copy Rights

• A right is copied from access(i, j) to access(k,j);
it is then removed from access(i,j). This action
is a transfer of a right, rather than a copy.

• Propagation of the copy right may be limited.
That is, when the right R* is copied from
access(i,j) to access(k,j), only the right R (not
R*) is created.

• A process executing in domain Dk cannot
further copy the right R.

413 Operating Systems

Access Matrix With Owner Rights

414 Operating Systems

Access Matrix With Owner Rights

• If access(i,j) includes the owner right, then a
process executing in domain Di, can add and
remove any right in any entry in column j.

• For example, in Figure , domain Di is the
owner of F1, and thus can add and delete any
valid right in column F1.

415 Operating Systems

Access Matrix With Control Rights

• The copy and owner rights allow a process to change the
entries in a column.

• A mechanism is also needed to change the entries in a row.

• The control right is applicable only to domain objects. If
access(i,j) includes the control right, then a process executing
in domain Di can remove any access right from row j.

• For example, suppose that, we include the control right in
access(D2, D4).

• Then, a process executing in domain D2 could modify domain
D4.

416 Operating Systems

Modified Access Matrix of Figure B

417 Operating Systems

Implementation of Access Matrix

• Global table

– Store ordered triples < domain, object, rights-set > in table

– A requested operation M on object Oj within domain Di ->
search table for < Di, Oj, Rk >

• with M ∈ Rk

– But table could be large -> won’t fit in main memory

– Additional I/O is required

418 Operating Systems

Implementation of Access Matrix

• Access lists for objects(ACL)

– Each column implemented as an access list for one object

– Resulting per-object list consists of ordered pairs< domain,
rights-set > defining all domains with non-empty set of
access rights for the object

– Easily extended to contain default set -> If M ∈ default set,
also allow access

419 Operating Systems

Implementation of Access Matrix

• Capability Lists for Domains

– Instead of object-based, list is domain based

– A capability list for a domain is a list of objects together

with the operations allowed on those objects.

420 Operating Systems

Implementation of Access Matrix

• Lock Key Mechanism

– Compromise between access lists and capability lists

– Each object has a list of unique bit patterns, called

locks.

– Similarly, each domain has a list of unique bit patterns,

called keys.

– A process executing in a domain can access an object

only if that domain has a key that matches one of the

locks of the object.

421 Operating Systems

ACL and Capability List

• Each column = Access-control list for one object
Defines who can perform what operation

 Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

• Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

 422 Operating Systems

• Many trade-offs to consider

– Global table is simple, but can be large

– Access lists correspond to needs of users

• Determining set of access rights for domain non-localized so difficult

• Every access to an object must be checked

– Many objects and access rights -> slow

– Capability lists useful for localizing information for a given process

• But revocation capabilities can be inefficient

– Lock-key effective and flexible, keys can be passed freely from domain to domain, easy

revocation

• Most systems use combination of access lists and capabilities

– First access to an object -> access list searched

• If allowed, capability created and attached to process

– Additional accesses need not be checked

• After last access, capability destroyed

• Consider file system with ACLs per file

Comparison of Implementations

423 Operating Systems

Access Control

• Protection can be applied to non-file resources

• Solaris 10 provides role-based access control (RBAC) to implement least

privilege

– Privilege is right to execute system call or use an option within a

system call

– Can be assigned to processes

– Users assigned roles granting access to privileges and programs

• Enable role via password to gain its privileges

– Similar to access matrix

424 Operating Systems

Role-based Access Control in Solaris 10

425 Operating Systems

• Various options to remove the access right of a domain to an object

– Immediate vs. delayed

– Selective vs. general

– Partial vs. total

– Temporary vs. permanent

• Access List – Delete access rights from access list

– Simple – search access list and remove entry

– Immediate, general or selective, total or partial, permanent or temporary

• Capability List – Scheme required to locate capability in the system before capability can be

revoked

– Reacquisition – periodic delete, with require and denial if revoked

– Back-pointers – set of pointers from each object to all capabilities of that object (Multics)

– Indirection – capability points to global table entry which points to object – delete entry

from global table, not selective (CAL)

– Keys – unique bits associated with capability, generated when capability created

• Master key associated with object, key matches master key for access

• Revocation – create new master key

• Policy decision of who can create and modify keys – object owner or others?

Revocation of Access Rights

426 Operating Systems

What is capability

• Suppose we design a computer system so that in order to

access an object, a program must have a special token.

• This token designates an object and gives the program the

authority to perform a specific set of actions (such as

reading or writing) on that object.

• Such a token is known as a capability

427 Operating Systems

What is capability

• Capabilities can be delegated.

• Capabilities can be copied.

428 Operating Systems

• Fixed set of access rights known to and interpreted by the system

– i.e. read, write, or execute each memory segment

– User can declare other auxiliary rights and register those with protection

system

– Accessing process must hold capability and know name of operation

– Rights amplification allowed by trustworthy procedures for a specific

type

• Interpretation of user-defined rights performed solely by user's

program; system provides access protection for use of these rights

• Operations on objects defined procedurally – procedures are objects

accessed indirectly by capabilities

• Solves the problem of mutually suspicious subsystems

– Includes library of prewritten security routines

Capability-Based Systems-Hydra

429 Operating Systems

• Specification of protection in a programming language

allows the high-level description of policies for the

allocation and use of resources

• Language implementation can provide software for

protection enforcement when automatic hardware-

supported checking is unavailable

• Interpret protection specifications to generate calls on

whatever protection system is provided by the hardware

and the operating system

Language-Based Protection

430 Operating Systems

• Protection is handled by the Java Virtual Machine (JVM)

• A class is assigned a protection domain when it is loaded

by the JVM

• The protection domain indicates what operations the class

can (and cannot) perform

• If a library method is invoked that performs a privileged

operation, the stack is inspected to ensure the operation

can be performed by the library

Protection in Java 2

431 Operating Systems

• The Security Problem

• Program Threats

• System and Network Threats

• Cryptography as a Security Tool

• User Authentication

• Implementing Security Defenses

• Firewalling to Protect Systems and Networks

• Computer-Security Classifications

• An Example: Windows

Overview

432 Operating Systems

The Security Problem

• System secure if resources used and accessed as intended
under all circumstances.

– Unachievable

Normally security problem caused by the following:

• Intruders (crackers) attempt to breach security

• Threat is potential security violation

• Attack is attempt to breach security

 Attack can be accidental or malicious

 Easier to protect against accidental than malicious misuse

433 Operating Systems

Security Violation Categories

• Breach of confidentiality

– Unauthorized reading of data eg: breaking up Passwords.

• Breach of integrity

– Unauthorized modification of data eg: Checked by one of
method called as Digital Signatures.

• Breach of availability

– Unauthorized destruction of data eg: Web-site defacement

• Theft of service

– Unauthorized use of resources eg:An intruder may install a
daemon on a system that acts as a file server.

• Denial of service (DOS)

– Prevention of legitimate use

434 Operating Systems

• Masquerading (breach authentication)

– Pretending to be an authorized user to escalate privileges

eg:Gtalk

• Replay attack

– As is or with message modification

• Man-in-the-middle attack

– Intruder sits in data flow, masquerading as sender to receiver
and vice versa

• Session hijacking

– Intercept an already-established session to bypass
authentication

Security Violation Methods

435 Operating Systems

Standard Security Attacks

436 Operating Systems

Security Measure Levels
• Impossible to have absolute security, but make cost to perpetrator

sufficiently high to deter most intruders

• Security must occur at four levels to be effective:

– Physical

• Data centers, servers, connected terminals

– Human

• Avoid social engineering, phishing, dumpster diving

– Operating System

• Protection mechanisms, debugging

– Network

• Intercepted communications, interruption, DOS

• Security is as weak as the weakest link in the chain

• But can too much security be a problem?

437 Operating Systems

• Trojan Horse

– Code segment that misuses its environment

– Exploits mechanisms for allowing programs written by users to be executed by other users

– Spyware, pop-up browser windows, covert channels

– Up to 80% of spam delivered by spyware-infected systems

• Trap Door

– Specific user identifier or password that circumvents normal security procedures

– Could be included in a compiler

• Logic Bomb

– Program that initiates a security incident under certain circumstances

• Stack and Buffer Overflow

– Exploits a bug in a program (overflow either the stack or memory buffers)

– Failure to check bounds on inputs, arguments

– Write past arguments on the stack into the return address on stack

– When routine returns from call, returns to hacked address

• Pointed to code loaded onto stack that executes malicious code

– Unauthorized user or privilege escalation

Program Threats

438 Operating Systems

• A code fragment embedded in a program is called Virus.

• This has a property of “Self Replication”.

• Viruses are born via e-mail they can also be spread by downloading viral programs
from internet file sharing services (or) exchange infected disks.

• Virus dropper inserts virus onto the system

• Many categories of viruses, literally many thousands of viruses

– File / parasitic eg: Pen drive (the file extensions will be changing)

– Boot / memory eg: Boot sector code computer virus.

– Macro eg: excel sheets

– Source code

– Polymorphic to avoid having a virus signature

– Encrypted

– Stealth – it gives false information

– Tunneling –virus protected by a tunnel

– Multipartite-same virus with multiple behaviours

– Armored – hide the virus signature to be detected by the antivirus.

Program Threats (Cont.)

439 Operating Systems

A Boot-sector Computer Virus

440 Operating Systems

System and Network Threats

• Some systems “open” rather than secure by default

– Reduce attack surface

– But harder to use, more knowledge needed to administer

• Network threats harder to detect, prevent

– Protection systems weaker

– More difficult to have a shared secret on which to base access

– No physical limits once system attached to internet

• Or on network with system attached to internet

– Even determining location of connecting system difficult

• IP address is only knowledge

441 Operating Systems

System and Network Threats (Cont.)

• Worms – use spawn mechanism; standalone program

• Internet worm

– Exploited UNIX networking features (remote access) and bugs in finger and
sendmail programs

– Exploited trust-relationship mechanism used by rsh to access friendly systems
without use of password

– Grappling hook program uploaded main worm program

• 99 lines of C code

– Hooked system then uploaded main code, tried to attack connected systems

– Also tried to break into other users accounts on local system via password guessing

– If target system already infected, abort, except for every 7th time

442 Operating Systems

• Port scanning

– Automated attempt to connect to a range of ports on one or a range of IP
addresses

– Detection of answering service protocol

– Detection of OS and version running on system

– nmap scans all ports in a given IP range for a response

– nessus has a database of protocols and bugs (and exploits) to apply against a
system

– Frequently launched from zombie systems

• To decrease trace-ability

System and Network Threats (Cont.)

443 Operating Systems

• Denial of Service

– Overload the targeted computer preventing it from doing any useful work

– Distributed denial-of-service (DDOS) come from multiple sites at once

– Consider the start of the IP-connection handshake (SYN)

• How many started-connections can the OS handle?

– Consider traffic to a web site

• How can you tell the difference between being a target and being really
popular?

– Accidental – CS students writing bad fork() code

– Purposeful – extortion, punishment

System and Network Threats (Cont.)

444 Operating Systems

Cryptography as a Security Tool

• Broadest security tool available

– Internal to a given computer, source and destination of messages can be known
and protected

• OS creates, manages, protects process IDs, communication ports

– Source and destination of messages on network cannot be trusted without
cryptography

• Local network – IP address?

– Consider unauthorized host added

• WAN / Internet – how to establish authenticity

– Not via IP address

445 Operating Systems

• Means to constrain potential senders (sources) and / or receivers (destinations) of
messages

– Based on secrets (keys)

– Enables

• Confirmation of source

• Receipt only by certain destination

• Trust relationship between sender and receiver

Cryptography

446 Operating Systems

Secure Communication over
Insecure Medium

447 Operating Systems

• Encryption algorithm consists of

– Set K of keys

– Set M of Messages

– Set C of ciphertexts (encrypted messages)

– A function E : K → (M→C). That is, for each k K, E(k) is a function for generating
ciphertexts from messages

• Both E and E(k) for any k should be efficiently computable functions

– A function D : K → (C → M). That is, for each k K, D(k) is a function for
generating messages from ciphertexts

• Both D and D(k) for any k should be efficiently computable functions

• An encryption algorithm must provide this essential property: Given a ciphertext c C,
a computer can compute m such that E(k)(m) = c only if it possesses D(k)

– Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to
produce them, but a computer not holding D(k) cannot decrypt ciphertexts

– Since ciphertexts are generally exposed (for example, sent on the network), it is
important that it be infeasible to derive D(k) from the ciphertexts

Encryption

448 Operating Systems

• Same key used to encrypt and decrypt

– E(k) can be derived from D(k), and vice versa

• DES is most commonly used symmetric block-encryption algorithm (created by US
Govt)

– Encrypts a block of data at a time

• Triple-DES considered more secure

• Advanced Encryption Standard (AES), twofish up and coming

• RC4 is most common symmetric stream cipher, but known to have vulnerabilities

– Encrypts/decrypts a stream of bytes (i.e., wireless transmission)

– Key is a input to psuedo-random-bit generator

• Generates an infinite keystream

Symmetric Encryption

449 Operating Systems

• Public-key encryption based on each user having two keys:

– public key – published key used to encrypt data

– private key – key known only to individual user used to decrypt data

• Must be an encryption scheme that can be made public without making it easy
to figure out the decryption scheme

– Most common is RSA block cipher

– Efficient algorithm for testing whether or not a number is prime

– No efficient algorithm is know for finding the prime factors of a number

Asymmetric Encryption

450 Operating Systems

• Formally, it is computationally infeasible to derive D(kd , N) from E(ke , N), and so E(ke ,
N) need not be kept secret and can be widely disseminated

– E(ke , N) (or just ke) is the public key

– D(kd , N) (or just kd) is the private key

– N is the product of two large, randomly chosen prime numbers p and q (for
example, p and q are 512 bits each)

– Encryption algorithm is E(ke , N)(m) = mke mod N, where ke satisfies kekd mod
(p−1)(q −1) = 1

– The decryption algorithm is then D(kd , N)(c) = ckd mod N

Asymmetric Encryption (Cont.)

451 Operating Systems

• For example. make p = 7and q = 13

• We then calculate N = 7∗13 = 91 and (p−1)(q−1) = 72

• We next select ke relatively prime to 72 and< 72, yielding 5

• Finally, we calculate kd such that kekd mod 72 = 1, yielding 29

• We how have our keys

– Public key, ke, N = 5, 91

– Private key, kd , N = 29, 91

• Encrypting the message 69 with the public key results in the cypher text 62

• Cypher text can be decoded with the private key

– Public key can be distributed in clear text to anyone who wants to communicate
with holder of public key

Asymmetric Encryption Example

452 Operating Systems

Encryption and Decryption using RSA Asymmetric
Cryptography

453 Operating Systems

• Constraining set of potential senders of a message

– Complementary and sometimes redundant to encryption

– Also can prove message unmodified

• Algorithm components

– A set K of keys

– A set M of messages

– A set A of authenticators

– A function S : K → (M→ A)

• That is, for each k K, S(k) is a function for generating authenticators
from messages

• Both S and S(k) for any k should be efficiently computable functions

– A function V : K → (M× A→ {true, false}). That is, for each k K, V(k) is a
function for verifying authenticators on messages

• Both V and V(k) for any k should be efficiently computable functions

Authentication

454 Operating Systems

• For a message m, a computer can generate an authenticator a A such that
V(k)(m, a) = true only if it possesses S(k)

• Thus, computer holding S(k) can generate authenticators on messages so that
any other computer possessing V(k) can verify them

• Computer not holding S(k) cannot generate authenticators on messages that can
be verified using V(k)

• Since authenticators are generally exposed (for example, they are sent on the
network with the messages themselves), it must not be feasible to derive S(k)
from the authenticators

Authentication (Cont.)

455 Operating Systems

• Basis of authentication

• Creates small, fixed-size block of data (message digest, hash value) from m

• Hash Function H must be collision resistant on m

– Must be infeasible to find an m’ ≠ m such that H(m) = H(m’)

• If H(m) = H(m’), then m = m’

– The message has not been modified

• Common message-digest functions include MD5, which produces a 128-bit hash,
and SHA-1, which outputs a 160-bit hash

Authentication – Hash Functions

456 Operating Systems

• Symmetric encryption used in message-authentication code (MAC)
authentication algorithm

• Simple example:

– MAC defines S(k)(m) = f (k, H(m))

• Where f is a function that is one-way on its first argument

– k cannot be derived from f (k, H(m))

• Because of the collision resistance in the hash function, reasonably
assured no other message could create the same MAC

• A suitable verification algorithm is V(k)(m, a) ≡ (f (k,m) = a)

• Note that k is needed to compute both S(k) and V(k), so anyone able to
compute one can compute the other

Authentication - MAC

457 Operating Systems

• Based on asymmetric keys and digital signature algorithm

• Authenticators produced are digital signatures

• In a digital-signature algorithm, computationally infeasible to derive S(ks) from
V(kv)

– V is a one-way function

– Thus, kv is the public key and ks is the private key

• Consider the RSA digital-signature algorithm

– Similar to the RSA encryption algorithm, but the key use is reversed

– Digital signature of message S(ks)(m) = H(m)ks mod N

– The key ks again is a pair d, N, where N is the product of two large, randomly
chosen prime numbers p and q

– Verification algorithm is V(kv)(m, a) ≡ (akv mod N = H(m))

• Where kv satisfies kvks mod (p − 1)(q − 1) = 1

Authentication – Digital Signature

458 Operating Systems

• Why authentication if a subset of encryption?

– Fewer computations (except for RSA digital signatures)

– Authenticator usually shorter than message

– Sometimes want authentication but not confidentiality

• Signed patches et al

– Can be basis for non-repudiation

Authentication (Cont.)

459 Operating Systems

Man-in-the-middle Attack on
Asymmetric Cryptography

460 Operating Systems

• Proof of who or what owns a public key

• Public key digitally signed a trusted party

• Trusted party receives proof of identification from entity and certifies that public
key belongs to entity

• Certificate authority are trusted party – their public keys included with web
browser distributions

– They vouch for other authorities via digitally signing their keys, and so on

Digital Certificates

461 Operating Systems

• Can be done at various levels of
ISO Reference Model

– SSL at the Transport layer

– Network layer is typically
IPSec

• IKE for key exchange

• Basis of VPNs

• Why not just at lowest level?

– Sometimes need more
knowledge than available at
low levels

• i.e. User authentication

• i.e. e-mail delivery

Implementation of Cryptography

Source:
http://en.wikipedia.org/wiki/OSI_model

462 Operating Systems

• Insertion of cryptography at one layer of the ISO network model (the transport
layer)

• SSL – Secure Socket Layer (also called TLS)

• Cryptographic protocol that limits two computers to only exchange messages
with each other

– Very complicated, with many variations

• Used between web servers and browsers for secure communication (credit card
numbers)

• The server is verified with a certificate assuring client is talking to correct server

• Asymmetric cryptography used to establish a secure session key (symmetric
encryption) for bulk of communication during session

• Communication between each computer then uses symmetric key cryptography

Encryption Example - SSL

463 Operating Systems

• Crucial to identify user correctly, as protection systems depend on user ID

• User identity most often established through passwords, can be considered a special case of
either keys or capabilities

• Passwords must be kept secret

– Frequent change of passwords

– History to avoid repeats

– Use of “non-guessable” passwords

– Log all invalid access attempts (but not the passwords themselves)

– Unauthorized transfer

• Passwords may also either be encrypted or allowed to be used only once

– Does encrypting passwords solve the exposure problem?

• Might solve sniffing

• Consider shoulder surfing

• Consider Trojan horse keystroke logger

• How are passwords stored at authenticating site?

User Authentication

464 Operating Systems

• Encrypt to avoid having to keep secret

– But keep secret anyway (i.e. Unix uses super user-only readably file /etc/shadow)

– Use algorithm easy to compute but difficult to invert

– Only encrypted password stored, never decrypted

– Add “salt” to avoid the same password being encrypted to the same value

• One-time passwords

– Use a function based on a seed to compute a password, both user and computer

– Hardware device / calculator / key fob to generate the password

• Changes very frequently

• Biometrics

– Some physical attribute (fingerprint, hand scan)

• Multi-factor authentication

– Need two or more factors for authentication

• i.e. USB “dongle”, biometric measure, and password

Passwords

465 Operating Systems

• Defense in depth is most common security theory – multiple layers of
security

• Security policy describes what is being secured

• Vulnerability assessment compares real state of system / network
compared to security policy

• Intrusion detection endeavors to detect attempted or successful intrusions

– Signature-based detection spots known bad patterns

– Anomaly detection spots differences from normal behavior

• Can detect zero-day attacks

– False-positives and false-negatives a problem

• Virus protection

• Auditing, accounting, and logging of all or specific system or network
activities

Implementing Security Defenses

466 Operating Systems

Firewalling to Protect Systems
and Networks

• A network firewall is placed between trusted and untrusted hosts

– The firewall limits network access between these two security
domains

• Can be tunneled or spoofed

– Tunneling allows disallowed protocol to travel within allowed protocol
(i.e., telnet inside of HTTP)

– Firewall rules typically based on host name or IP address which can be
spoofed

• Personal firewall is software layer on given host

– Can monitor / limit traffic to and from the host

• Application proxy firewall understands application protocol and can
control them (i.e., SMTP)

• System-call firewall monitors all important system calls and apply rules to
them (i.e., this program can execute that system call)

467 Operating Systems

Network Security Through Domain
Separation Via Firewall

468 Operating Systems

• U.S. Department of Defense outlines four divisions of computer security: A, B, C,
and D

• D – Minimal security

• C – Provides discretionary protection through auditing

– Divided into C1 and C2

• C1 identifies cooperating users with the same level of protection

• C2 allows user-level access control

• B – All the properties of C, however each object may have unique sensitivity
labels

– Divided into B1, B2, and B3

• A – Uses formal design and verification techniques to ensure security

Computer Security Classifications

469 Operating Systems

• Security is based on user accounts

– Each user has unique security ID

– Login to ID creates security access token

• Includes security ID for user, for user’s groups, and special

privileges

• Every process gets copy of token

• System checks token to determine if access allowed or denied

• Uses a subject model to ensure access security

– A subject tracks and manages permissions for each program that a user

runs

• Each object in Windows has a security attribute defined by a security

descriptor

– For example, a file has a security descriptor that indicates the access

permissions for all users

Example: Windows

470 Operating Systems

