

Mechanical Engineering

Attainment of Program Outcomes (POs) and Program Specific Outcomes (PSOs) of 2016 - 2020 batch (IARE - R16)

S.No	Subject	COURSE	Sub Code	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
1	English for communication	C101	AHS001										2.80					
2	Linear algebra and ordinary differential equations	C102	AHS002	2.20	1.80													
3	Engineering chemistry	C103	AHS005	1.40	1.40					1.80								
4	Applied physics	C104	AHS007	1.80	1.40		2.50											0.80
5	Engineering drawing	C105	AME001	2.80		2.70							2.80		2.90	2.90		
6	Communication skills laboratory	C106	AME101									3.00	3.00					
7	Engineering chemistry laboratory	C107	AHS101	3.00	3.00					3.00								
8	Basic workshop	C108	AHS103	3.00	3.00			3.00							3.00			3.00
9	Engineering mechanics	C109	ACS113	2.70		2.70						2.70		2.70				2.70
10	Computational mathematics and integral calculus	C110	AME002	1.10	1.10	1.10	1.10		1.10									1.00

11	Modern physics	C111	AHS003	1.10	1.20												
12	Environmental studies	C112	AHS008	2.10	2.40		2.10										2.60
13	Computer programming	C113	AHS009	1.80			1.80			1.80							
14	Computational mathematics laboratory	C114	ACS001	1.00	0.90	1.00		1.00					1.00	1.00	0.80		
15	Engineering physics laboratory	C115	AME102	2.40	2.40		2.40								2.40		
16	Computer programming laboratory	C116	ACS101	2.70	2.70		2.70										2.70
17	Computer aided engineering drawing practice	C117	AHS105	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30		2.30	2.30	2.30		2.30
18	Probability and Statistics	C118	AHS102	2.40		2.40		2.40				2.40	2.40				2.40
19	Thermodynamics	C201	AHS010	1.60	1.50		2.10										
20	Mechanics of Solids	C202	AME003	1.70	2.00	1.90	1.60		1.10							1.60	
21	Metallurgy and Material Science	C203	AME004	1.20	1.20	1.00	1.20		1.50					1.20	1.20		1.00
22	Basic Electrical and Electronics Engineering	C204	AME005	1.40	0.80	0.60									1.60		0.50
23	Metallurgy and Mechanics of Solids Laboratory	C205	AEE018	1.60	2.00										1.60		
24	Machine drawing through cad laboratory	C206	AME104	2.40	2.40	2.40						2.40			2.40	2.40	
25	Basic Electrical and Electronics Engineering Laboratory	C207	AME105		3.00	3.00	3.00	3.00				3.00	3.00		3.00		

26	Mathematical transform techniques	C208	AEE103	2.30	2.30						2.30	2.30	2.30		2.30	2.30		
27	Production technology	C209	AHS011	1.30	1.00		1.00									1.00		
28	Applied thermodynamics	C210	AME006	2.90	2.80	2.80			2.90	2.90								2.80
29	Mechanics of Fluids and Hydraulic Machines	C211	AME007	2.10	2.00	2.10											2.20	
30	Kinematics of Machinery	C212	AME008	1.50	1.10		2.30											1.10
31	Computational mechanical engineering laboratory	C213	AME009	2.10	2.10	2.30	2.30	1.20		1.20	2.80		2.90	2.80	2.30	2.80		2.30
32	Production technology laboratory	C214	AME106	0.90	0.90	0.90		0.90					0.90			0.90	0.90	
33	Mechanics of Fluids and Hydraulic Machines Laboratory	C215	AME107	2.40	2.40	2.40			2.40	2.40		2.40			2.40			2.40
34	Machine Tools and Metrology	C216	AME108	2.70	2.70	2.70	2.70	2.70				2.70			2.70		2.70	
35	Dynamics of Machinery	C301	AME010	1.10	1.20	1.20		1.10	1.10	1.10					1.10	1.20		
36	Design of Machine Members	C302	AME011	1.20	1.20	1.20	1.20	1.20		1.20	1.20				1.20			1.20
37	Thermal engineering	C303	AME012	2.60	2.90	2.40	2.80		2.30						2.20			2.50
38	Business Economics and Financial Analysis	C304	AME013	2.20	2.10	1.00	2.10		1.00	2.20					2.10		2.50	
39	Thermal engineering laboratory	C305	AHS015	1.20	1.20						1.10	1.20		1.20				1.20

40	Machine Tools and Metrology laboratory	C306	AME507	3.00	3.00		3.00					3.00			3.00		3.00	
41	Research and content development	C307	AME516	2.70	2.70			2.70				2.70			2.70	2.70		
42	Unconventional machining processes	C308	AME509	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30
43	Tool design	C309	AME519	2.80	2.80			2.80		2.80					2.80	2.80		
44	Aerospace Propulsion and Combustion	C310	AME109	1.00	1.00	1.20			0.70						0.70	1.00		1.20
45	Finite element modelling	C311	AME110	1.20	1.20	1.20	1.20						1.20				1.20	1.20
46	Instrumentation and Control Systems	C312	AHS106	1.30	1.30	1.20	1.30	1.20							1.30		1.10	1.20
47	Instrumentation and Control Systems Laboratory	C313	AME014	2.20	2.10	2.60			2.50						2.10		2.60	
48	Machine design	C314	AME015	2.40	2.40	2.40	2.40	2.40		2.40		2.40			2.40		2.40	2.40
49	Heat transfer	C315	AME016	1.60	1.50	2.30	1.20	1.20	1.20									
50	Solar energy systems	C316	AME525	1.10	1.30	1.30	1.20		1.20	1.10							1.30	
51	Nondestructive testing	C317	AME526	1.80	1.80	1.70				1.70		1.40			2.00		1.50	
52	Theory of machines lab	C318	AAE551	2.90	2.80			2.80		2.90					2.90		2.90	
53	Heat transfer lab	C319	ACE551	2.70	2.70		2.70	2.70				2.70						2.70
54	Fulid, thermal modeling and simulation lab	C320	AME111	2.00	2.00			2.00				2.00						2.00
55	Ideation and product development	C321	AME112	3.00	3.00	3.00	3.00	3.00	3.00		3.00	3.00	3.00	3.00	3.00		3.00	3.00

56	Refrigeration and air conditioning	C322	AME113	2.70	2.70	2.70	2.70		2.70	2.70	2.70	2.70	2.70		2.70	2.70		2.70
57	Computer aided design/computer aided manufacturing	C401	AME017	1.50	1.40		1.20	1.70	1.70	1.10	1.40						1.60	1.70
58	Robotics	C402	AME018	2.60	2.80	2.80		2.90		2.90				2.80	2.20	2.60		
59	Computer aided modeling and analysis laboratory	C403	AME019	2.20	2.30	0.80	1.30											2.50
60	Computer aided numerical control laboratory	*C404	AME533	2.70	2.70		2.70					2.70	2.70		2.70	2.70		
61	Fundamentals of database management systems	C405	AME510	2.70	2.70	2.70	2.70	2.70	2.70	2.70		2.70		2.70	2.70	2.70		
62	Energy from waste	C406	AEE551	1.00	1.00	1.00	0.70	0.70					1.00		0.70	1.20		1.00
63	Project work	C407	ACS553	1.50		1.30			1.50	1.60					1.70			1.70
	Direct Attainm	ent Value		2	2	1.9	2.1	2.1	1.9	2.1	2.2	2.5	2.3	2.6	2.2	2.1	2.1	2

Overall Attainment

							Р	rogr	am Out	comes (P	Os)					
S.No	Assessment Components (Direct + Indirect)	PO1	PO2	РО 3	PO4	РО 5	PO 6	P 0 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
								2								
1	Direct Assessment (CIA + SEE + Course End Survey) (a)	2	2	1.9	2.1	2.1	1.9	1	2.2	2.5	2.3	2.6	2.2	2.1	2.1	2
								2								
2	Program Exit Survey (b)	2.4	2.5	2.0	2.0	2.5	2.6	5	2.6	2.5	2.5	2.5	2.4	2.5	2.4	2.5

3	Alumni Survey (c)	2.4	2.5	2.1	2.0	2.5	2.6	2 5	2.6	2.5	2.5	2.5	2.4	2.5	2.4	2.5
4	Employer Survey (d)	2.6	2.8	2.5	2.4	2.4	2.7	2 6	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
Final atta	inment = a*0.8 + b*0.1 + c*0.05 + d*0.05	2.1	2.1	2	2.1	2.2	2	2 2	2.3	2.5	2.3	2.6	2.2	2.2	2.2	2.1

Actions taken based on the results of evaluation of each of the POs & PSOs

Measures identified and implemented to improve POs & PSOs attainment levels.

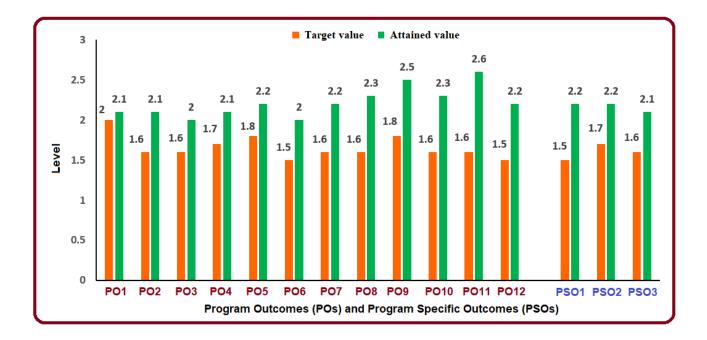
POs Attainment Levels and Actions for improvement

Pos	Target	Attainment	Observation
	Level	Level	
PO1: Engineering l	Knowledge: Apply the knowledge of	mathematics, sci	ence, engineering fundamentals, and an engineering
specialization to the	solution of complex engineering prob	olems.	
			Target level has been Achieved. However, following observations were made:
PO1	2.0	2.1	Students should give more attention to solve the subjects having critical thinking.
Action: 1. To emphasize stud	dents to involve in solving different ty	pes of engineering	ng problems
PO2: Problem ana	lysis: Identify, formulate, review r	esearch literature	e, and analyze complex engineering problems reaching
substantiated conclu	sions using first principles of mathem	atics, natural scie	ences, and engineering sciences.
			Target level has been Achieved. However, following observations were made:

PO2	1.6	2.1	It is found that students find it difficult to correlate theory with practical and interpret the results
Action :			
1. Additional cla	sses to be conducted to introduce M	lechanical Engined	ering fundamental.
2. Practical appro	bach of teaching to be adapted.	_	
PO3: Design/develop	oment of solutions: Design solution	ons for complex e	engineering problems and design system components or
processes that meet th	e specified needs with appropriate	consideration for t	he public health and safety, and the cultural, societal, and
environmental conside	erations.		
			Target level has been Achieved.
PO3	16	2.0	Lack of knowledge of product development, materials
POS	1.6	2.0	and hands on practical experience.
Action:	· · · · ·		•
1. More design classe	s to be taught in tutorial classes		
-	nce Fest and motivating students to	prepare/built prot	otype models.
		* * *	d knowledge and research methods including design of
	and interpretation of data, and synthesis		
			Target level has been Achieved. However, following observations were made:
PO4	1.7	2.1	Subject involves both analysis and design.
Action:			•
1. More emphasis	on mathematical basic to be given in the	he previous course	
	age: Create, select, and apply appro- ng to complex engineering activitie		resources, and modern engineering and IT tools including nding of the limitations.
			Target level has been Achieved. However, following observations were made:
PO5	1.8	2.2	1. Use of CAD and analysis tools must be done by the students for project work.
			2. Students were also need these techniques for the better placement and/or higher studies.

Action: 1. Conducted hands on the	raining and certification programmes	on modelling and	simulation tools.
			extual knowledge to assess societal, health, safety, legal and
cultural issues and the	consequent responsibilities releva	nt to the professi	Onal engineering practice. Target level has been Achieved. However, following observations were made:
PO6	1.5	2.0	Investigation of problems faced by society were addressed
Action: 1. To understand the safe practices in engineerin		ents visited industry	y to expand their practical knowledge with the effect of improved
	nd sustainability: Understand the s, and demonstrate the knowledge		ofessional engineering solutions in societal and sustainable development.
			Target level has been Achieved. However, following observations were made:
PO7	1.6	2.2	The concept of sustainability should reach the students.
Action: 1. Students are encourag (Bio fuel).	ged to do projects on composite mater	ials, Solar energy	operated vehicle, Solar Refrigeration system and alternate fuels
PO8: Ethics: Apply et	thical principles and commit to pro-	ofessional ethics	and responsibilities and norms of the engineering practice.
			Target level has been Achieved. However, following observations were made:
PO8	1.6	2.3	Ethical practice of engineering system is implemented.
2. More examples on the	ight to be ethical in their work. subject to be practiced by students in		
PO9: Individual and multidisciplinary settir		as an individual,	and as a member or leader in diverse teams, and in

			Target level has been Achieved. However, following observations were made:
PO9	1.8	2.5	Give importance to team work.
Actions Taken:	1.8	2.3	Give importance to team work.
Action :			
	hade to do their projects as a team w	ork	
	ld be sent to Industries to do project.		
	1 5		ing activities with the engineering community and with
			ports and design documentation, make effective
	e and receive clear instructions.	·····	, , , ,
			Target level has been Achieved. However, following observations were made:
PO10	1.6	2.3	Imparting the knowledge of effective communication.
Action : 1.Report writing is tau	ight to students		
2. Soft skill training is			
P11: Project manage	ement and finance: Demonstrate kn		nderstanding of the Engineering and management a team, to manage projects and in multidisciplinary
environments.			Target level has been Achieved. However, following observations were made:
PO11	1.6	2.6	Complete details of project management
Action 1: :			
1. Students are taught	to work in multidisciplinary approad	ch.	
		e the preparatio	n and ability to engage in independent and life-long
learning in the broade	st context of technological change.	1	
			Target level has been Achieved. However, following observations were made:
PO12	1.5	2.2	Adaptation of new technologies will improve the lifelong learning.


Action: 1. Latest design and analysis software's are taught to the students

PSOs Attainment Levels and Actions for improvement

PSOs	Target Level	Attainment Level	Observation
	Ideation and Research towards Digital man nulation and high speed machining.	ufacturing in Product develop	pment using Additive manufacturing, Computer Numerical
PSO1	1.5	2.2	 Target level has been Achieved. However, following observations were made: Different manufacturing methods and designs are used to develop/ implement, test, validate and maintain the Mechanical engineering foundation for industry. Publish/ exhibit/ innovate through conferences, journals etc.
Action: 1. students are mo 2. Arrange Industr	tivated to attend curricular activities in other	institutions.	
-		stems to provide solutions for	Inter Disciplinary Engineering Applications
-		stems to provide solutions for 2.2	 Inter Disciplinary Engineering Applications. Target level has been Achieved. However, following observations were made: Concepts of Thermo-fluid systems provide various solutions through modelling and optimization methods.
PSO2: Formulate	e and Evaluate concepts of Thermo-Fluid Sy		Target level has been Achieved. However, following observations were made:Concepts of Thermo-fluid systems provide various solutions through modelling and
PSO2: Formulate PSO2 Action : 1.Students are end	e and Evaluate concepts of Thermo-Fluid Sy 1.7 couraged to learn the inter disciplinary engine	2.2 eering applications	Target level has been Achieved. However, following observations were made:Concepts of Thermo-fluid systems provide various solutions through modelling and optimization methods.
PSO2: Formulate PSO2 Action : 1.Students are end	e and Evaluate concepts of Thermo-Fluid Sy 1.7 couraged to learn the inter disciplinary engine	2.2 eering applications	Target level has been Achieved. However, following observations were made:Concepts of Thermo-fluid systems provide various solutions through modelling and

PSO3	1.6	2.1	Computational and Experimental knowledge / skills to be transferred to the Mechanical
			engineers.
Action:			

1. Project works are encouraged that involve the usage of modern tools and techniques of Data Collection/ Analysis/ Implementing

HOD, ME