

Dundigal, Hyderabad - 500043, Telangana

MECHANICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Dr. BDY SUNIL

Department:

Mechanical Engineering

Regulation:

IARE - R20

Batch:

2020-2024

Course Name:

Engineering Mechanics

Course Code:

AMEC01

Semester:

Target Value:

60% (1.8)

Attainment of COs:

		Course Outcome	Direct attaiment	Indirect attaiment	Overall attaiment	Observation
	CO1	Identify the resultant and unknown forces by free body diagram to a given equilibrium force system through mechanics laws and derived laws	1.60	2.30	1.7	Not Attained
	CO2	Interpret the static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.	0.60	2.30	0.9	Not Attained
	CO3	Identify the centroid and centre of gravity for the simple and composite plane sections from the first principles.	0.90	2.30	1.2	Not Attained
	CO4	Calculate moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.	1.60	2.20	1.7	Not Attained
	CO5	Apply D'Alembert's principle and work energy equations to a dynamic equilibrium system by introducing the inertia force for knowing the acceleration and forces involved in the system.	0.30	2.20	0.7	Not Attained
þ	CO6	Develop the governing equation for momentum and vibratational phenomena of mechanical system by using energy principles for obtaining coefficient of restitution and circular frequency	0.30	2.20	0.7	Not Attained

Action Taken:

- CO1: More problems to be solved on the application of mechanics laws and derived laws for finding the resultant and unknown forces.
- CO2: More assignments may be given on the wedge, ladder, and screw jack.
- CO3: More problems to be solved on centroid and center of gravity for the simple and composite plane sections from the first principles.
- CO4: More problems to be solved on the calculation of moment of inertia and mass moment of inertia of various sections from the first principles.
- CO5: More assignments may be given on the D-Alemberts principle.
- CO6: More examples are to be given on finding the frequency of vibrations.

Mentor

Head of the Department

Head of the Department Mechanical Engineering INSTITUTE OF ALPONAUTICAL ENGINEERING E indigal, hyderabad - 500 043