

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr GVR Seshagiri Rao	Department:	ME 2017 - 2021	
Regulation:	IARE - R16	Batch:		
Course Name:	Design of Machine Members	Course Code:	AME012	
Semester:	V	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
COI	Outline the knowledge of design process and design standards, theories of failures, analyzes the stresses and strains for various machine elements.		2.30	1.2	Attainment target not reached
CO2	Develop the Design procedure of riveted joints and welded joints for engineering applications like boilers, pressure vessels, ships and trusses.	0.90	2.30	1.2	Attainment target not reached
CO3	Classify various types of keys and cotter joints used to employee secure to gears, pulleys, disc applications.	0.90	2.30	1.2	Attainment target not reached
CO4	Develop the design procedures of knuckle joint for different loading conditions in propeller applications.		2.20	2.8	Attainment target reached
CO5	Select appropriate design procedures on the basis of strength, torsional rigidity for shafts and Couplings.	1.60	2.10	1.7	Attainment target not reached
CO6	Evaluate the natural frequency, energy storage, stresses and deflections of helical springs for static and fatigue loadings.		2.10	1.7	Attainment target not reached

Action taken report:

CO1: Extra tutorial hours essential to discuss theories of failures and analyzes the stresses and strains for various machin elements.

CO2: More problems to be solved in design procedure of riveted joints and welded joints.

CO3: Extra tutorial hours essential to discuss keys and cotter joints.

CO5: More practice required to design the basis of strength, torsional rigidity for shafts and Couplings.

CO6: Additional Tutorial hours required to solve the helical springs for static and fatigue loading problems.

Course Coordinator

Mentor

Mechanical EHODering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043