

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

CIVIL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. K HARI PRASAD	Department:	Civil Engineering	
Regulation:	IARE - BT23	Batch:		
Course Name:	Applied Physics	Course Code:	AHSD07	
Semester:	II	Target Value:	60% (1.8)	

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Use the general rules of indexing of directions and planes in lattices to identify the crystal systems and the Bravais lattices.	2.60	2.10	2.5	Attained
CO2	Extend the principles of dual nature of matter and Schrodinger wave equation to a particle enclosed in simple systems.	0.80	2.10	1.1	Not Attained
CO3	Analyze the concepts of laser with normal light in terms of mechanism for applications in different fields and scientific practices.	0.80	2.10	1.1	Not Attained
CO4	Comprehend the knowledge on functionality of components in optical fiber communication system by using the basics of signal propagation, attenuation and dispersion.	1.20	2.10	1.4	Not Attained
CO5	Gain knowledge on properties of magnetic and superconducting materials suitable for engineering applications.	1.00	2.10	1.2	Not Attained
CO6	Formulate the principle factors, fabrication, characterization techniques and the applications of nanomaterials.	0.80	2.10	1.1	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO2: Problem-solving assignments on the Schrodinger wave equation will be provided, along with conceptual discussions on the dual nature of matter applied to particle-in-a-box models.

CO3: Giving comparative study assignments on laser and normal light mechanisms along with case studies on laser applications in fields like medicine and industrial processing.

CO4: Providing assignments on optical fiber components and signal transmission analyzing their impact on communication system performance. CO5: Providing study materials on magnetic and superconducting properties and case studies on their applications in electrical, biomedical, and transportation engineering.

CO6: Giving study materials on nanomaterial fabrication and characterization techniques and case studies on real-world applications in electronics, medicine, and energy sectors.

Course Coordinator

- Marian

Head of the Department

NSTITUTE OF AERONAUTICAL ENGINEES Dundigal, Hyderabad - 500 043