

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

CIVIL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:

Dr. BDY SUNIL

Department:

Civil Engineering

Regulation:

IARE - R20

Batch:

2022-2026

Course Name:

Engineering Mechanics

Course Code:

AMEC01

Semester:

II

Target Value:

60% (1.8)

Attainment of COs:

41	Course Outcome	Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Identify the resultant and unknown forces by free body diagram to a given equilibrium force system through mechanics laws and derived laws	2.70	2.60	2.7	Attained .
CO2	Interpret the static and dynamic friction laws for the equilibrium state of a wedge, ladder and screw jack.	2.10	2.60	2.2	Attained
CO3	Identify the centroid and centre of gravity for the simple and composite plane sections from the first principles.	3.00	2.70	2.9	Attained
CO4	Calculate moment of inertia and mass moment of inertia of a circular plate, cylinder, cone, sphere other composite sections from the first principles.	2.10	2.60	2.2	Attained [*]
CO5	Apply D'Alembert's principle and work energy equations to dynamic equilibrium system by introducing the inertia force for knowing the acceleration and forces involved in the system.	2.10	2.70	2.2	Attained .
CO6	Develop the governing equation for momentum and vibratational phenomena of mechanical system by using energy principles for obtaining coefficient of restitution and drcular frequency	1.40	2.70	1.7	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO6: Provided extra assignment problems to students on vibratational phenomena of mechanical system by using energy principles.

Head of the Department Civil Engineering