INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500043, Telangana

AEROSPACE ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Mr. GUNDA SHIVA KRISHNA	Department:	Aerospace Engineering 2022-2024 BAEC13 60% (1.8)	
Regulation:	IARE - R21	Batch:		
Course Name:	Flight Dynamics and Control	Course Code:		
Semester:	11	Target Value:		

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Make use of the principles of flight and governing aerodynamics laws for the control of aircraft motions forgetting the desired aircraft attitude characteristics.	0.90	2.30	1.2	Not Attained
CO2	Model the range, endurance and stability of equilibrium under different types of motions for calculating the aerodynamic performance of an airplane.	0.90	2.40	1.2	Not Attained
CO3	Analyse the concept of aircraft dynamics, equations of motion in linear and nonlinear motion for optimal flight conditions.	0.90	2.30	1.2	Not Attained
CO4	Determine the linear equations off motion and derivatives for the coupled and decoupled motion in terms of stability axis system by using small perturbation theory for obtaining the state of dynamic stability	0.60	2.20	0.9	Not Attained
CO5	Develop the mathematical model for the dynamic and static stability and its derivatives by using computational numerical simulation for the different types of aircrafts.	0.90	2.40	1.2	Not Attained
CO6	Examine the flight control system by using control theories and modern computational tools system for the conventional and automatic flight of the aircraft.	0.90	2.30	1.2	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO1: Digital content on principles of flight and governing aerodynamics laws is to be provided.
CO2: Additional reading content on calculating aerodynamic performance of airplane is to be given.
CO3: Assignments on aircraft dynamics are needed to be given for better understanding of concepts.
CO4: Additional reading materials on perturbation theory are needed to be given.
CO5: Digital content on developing mathematical models for aircraft stability are to be given.
CO6: Additional content on control theories are to be provided for better understanding of the concept.

Head of the Department Aeronautical Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043