

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING ATTAINMENT OF COURSE OUTCOME – ACTION TAKEN REPORT

Name of Mr.Gooty Rohan		Department:	Aerospace Engineering	
Faculty: Regulation:	PG-21	Batch:	2021-2023	
Course Name:	Space Propulsion	Course Code:	BAEC01	
Semester:	Ist Semester	Target Value:	1.8	

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
CO 1	Estimate launch dynamics parameters using orbital transfer and trajectorial pertubation for calculating orbit placement propulsion weight.	0.9	2.6	1.2	Not Attained
CO 2	Make use of rocket equation and fundamental principles for designing static test bed of rockets of inlets, nozzles, combustors and after burners for choosing desired devices to the aero engines.	0.9	2.4	1.2	Not Attained
CO 3	Design solid rocket motor propellant grain for optimizing proper burn rate requirement as per mission profile.	0.9	2.6	1.2	Not Attained
CO 4	Classify solid rocket motor burn pattern for solving combustion instability in erosive burning	0.9	2.5	1.2	Not Attained
CO 5	Distinguish liquid, cryogenic and hybrid rocket systems for selecting optimal rocket propulsion system in deep space missions	0.9	2.3	1.2	Not Attained
CO 6	Illustrate advanced propulsion techniques for explaining fuel utility mitigation in long overhaul mission involving select board refuelling.	0.3	2.3	0.7	Not Attained

Action taken report(To be filled by the concerned faculty/ course coordinator):

CO 1: Digital content will be given for better understanding

CO 2: Real time problems will be discussed for more clarity

CO 3: Application oriented problems may be given

CO 4: Remedial classes may be conducted

CO 5: Real time problem may be discussed

CO 6: Practical oriented problems may be discussed

Course Coordinator

Mentor

Head of the Bepartment
Aeronautical Engineering
INSTITUTE OF AERONAUTICAL ENGINEERING
Dundigal, Hyderabad - 500 043