

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

		Department:	Aeronautical Engineering		
Name of the faculty:	Dr. YAGYA DUTTA DWIVEDI	Department			
Regulation: Course Name:	IARE - BT23	Batch:	2023-2027		
	Fluid Dynamics	Course Code:	AAED03		
		Target Value:	60% (1.8)		
Comester:		raiget value.			

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Identify the suitable pressure measuring devices for determining the flow measurements in fluid systems	1.80	2.30	1.9	Attained
CO2	Utilize the concept of Similitude and Non Dimensional numbers for validating physical parameters of a designed prototype	1.20	2.30	1.4	Not Attained
CO3	Apply the law of conservation of mass and momentum for obtaining numerical solutions of internal fluid flow systems	1.20	2.30	1.4	Not Attained
CO4	Utilize the principle of Bernoulli equation for measurement of discharge in internal and external fluid flow systems	1.20	2.30	1.4	Not Attained
CO5	Apply boundary layer theory for internal and external flow systems in determining drag forces and frictional losses.	2.40	2.30	2.4	Attained
C06	Classify the types of hydraulic machines based on working principle and performance characteristics for the selection in real world applications.	1.20	2.30	1.4	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO2: learned how to use similitude and non-dimensional numbers to check and validate the physical features of a designed prototype.

CO3: Applied the laws of conservation of mass and momentum to solve internal fluid flow problems, with the help of digital content and videos for better understanding.

CO4: Experimental work is carried for better understanding of concept

CO6: Supported by digital content and videos for performance characteristics for the selection in real world applications.

Course Coordinator

Head of the Department Aeronautical Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043