

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500043, Telangana

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. ATHOTA RATHAN	Department:	Aeronautical Engineering
Regulation:	IARE - UG20	Batch: 2021-2025	
Course Name:	Computational Aerodynamics	Course Code:	AAEC25
Semester:	VI	Target Value:	60% (1.8)

Attainment of COs:

Course Outcome		Direct Attainment	Indirect Attainment	Overall Attainment	Observation
CO1	Summarize the concepts of computational fluid dynamics and its applications in industries as a tool for fluid analysis	2.10	2.20	2.1	Attained
CO2	Choose the type of flow from the finite control volume and infinitesimal small fluid element for the fluid flow analysis.	1.70	2.20	1.8	Attained
CO3	Select the quasi linear partial differential equation for estimating the behavior in computational fluid dynamics.	1.60	2.20	1.7	Not Attained
CO4	Identify CFD techniques for relevant partial differential equations for getting analytical solutions for fluid flow problems.	2.30	2.20	2.3	Attained
CO5	Make use of finite difference approach for numerical formulations based on fluid mechanics and heat transfer concepts for getting the solutions of fluid flow problems.	1.60	2.20	1.7	Not Attained
CO6	Utilize the grid generation and transformation techniques in implementation of finite difference and finite volume methods in solving complex fluid and aerodynamic problems.	0.90	2.10	1.1	Not Attained

Action Taken Report: (To be filled by the concerned faculty / course coordinator)

CO3: Additional content on solving the quasi-linear partial differential equation for CFD will be provided.

CO5: Additional examples on numerical formulations based on fluid mechanics and heat transfer are to be provided.

CO6: Additional examples to use grid generation and transformation techniques is to be provided.

Course Coordinator

Mentor

Head of the Department

Aeronautical Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043