=2 INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

(Approved by AICTE | NAAC Accreditation with ‘A’ Grade | Accredited by NBA | Affiliated to JNTUH)
Dundigal, Hyderabad - 500 043, Telangana

OUTCOME BASED EDUCATION
WITH
CHOICE BASED CREDIT SYSTEM

BACHELOR OF TECHNOLOGY
INFORMATION TECHNOLOGY

ACADEMIC REGULATIONS, COURSE STRUCTURE AND SYLLABI
UG.20

B.Tech Regular Four Year Degree Program
(for the batches admitted from the academic year 2020 - 2021)
&

B.Tech (Lateral Entry Scheme)
(for the batches admitted from the academic year 2021 - 2022)

These rules and regulations may be altered/changed from time to time by the academic council
FAILURE TO READ AND UNDERSTAND THE RULES IS NOT AN EXCUSE

VISION

To bring forth professionally competent and socially sensitive engineers, capable of working
across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel in
their profession, guided by dynamic intellectual community and be able to face the technically
complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that
emboldens entrepreneurship and economic development for the benefit of wide spread
community.

QUALITY POLICY

Our policy is to nurture and build diligent and dedicated community of engineers providing a
professional and unprejudiced environment, thus justifying the purpose of teaching and satisfying
the stake holders.

A team of well qualified and experienced professionals ensure quality education with its
practical application in all areas of the Institute.

ii|Page

PROGRAM OUTCOMES (PO's)

Engineering Graduates will be able to:

PO1:

PO2:

PO3:

PO4:

POS5:

POG6:

POT:

PO8:

PO9:

PO10:

PO11:

PO12:

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem Analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

Design/Development of Solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct Investigations of Complex Problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

Environment and Sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

Individual and Team Work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

Project Management and Finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

iii|Page

CONTENTS

Section

O© 00N U1l WDN P

W W WWWWWMNDNDNMNDNDNDNNMNDNNMDNNDNNNNNRPERPRPRPPRPERPRERPERPRREREER
O Ol WNPFPOOWOOONO O, WNPFPOOWOLONOO O WDNPEO

Particulars

Choice Based Credit System

Medium of Instruction

Programs Offered

Semester Structure

Registration / Dropping / Withdrawal

Credit System

Curricular Components

Evaluation Methodology

Make-up Examination

Supplementary Examinations

Attendance Requirements and Detention Policy
Conduct of Semester End Examinations and Evaluation
Scheme for the Award of Grade

Letter Grades and Grade Points

Computation of SGPA and CGPA

Illustration of Computation of SGPA and CGPA
Review of SEE Theory and Answer Books
Promotion Policies

Graduation Requirements

Betterment of Marks in the Courses Already Passed
Award of Degree

B.Tech with Honours or additional Minor in Engineering

Temporary Break of Study from the Program
Termination from the Program

Transcript

With-holding of Results

Graduation Day

Discipline

Grievance Redressal Committee

Transitory Regulations

Revision of Regulations and Curriculum

Frequently asked Questions and Answers about autonomy

Malpractice Rules

Course Catalog of Information Technology
Syllabus

Undertaking by Student / Parent

474

“Take up one idea.

Make that one idea your life-think of it, dream of it, live on that idea.

Let the brain muscles, nerves, every part of your body be full of that idea and just leave

every other idea alone. This is the way to success”

Swami Vivekananda

iv|Page

PRELIMINARY DEFINITIONS AND NOMENCLATURES
AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants Commission
(UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru Technological
University, Hyderabad) and State Government.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic programs,
granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and is
responsible for the maintenance of standards of instruction, education and examination within the
institute. Academic Council is an authority as per UGC regulations and it has the right to take decisions
on all academic matters including academic research.

Academic Year: It is the period necessary to complete an actual course of study within a year. It
comprises two main semesters i.e., (one odd + one even) and one supplementary semester.

Branch: Means specialization in a program like B.Tech degree program in Aeronautical Engineering,
B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of the
Organization for each of the departments separately. They are responsible for curriculum design and
updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failure
grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry etc., are considered
to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students’ grade in any
course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System: The credit based semester system is one which provides flexibility in
designing curriculum and assigning credits based on the course content and hours of teaching along with
provision of choice for the student in the course selection.

Certificate Course: It is a course that makes a student to have hands-on expertise and skills required for
holistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the program.
Continuous Internal Examination: It is an examination conducted towards sessional assessment.

Core: The courses that are essential constituents of each engineering discipline are categorized as
professional core courses for that discipline.

Course: A course is a subject offered by a department for learning in a particular semester.
Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic course.
The number of '‘Contact Hours' in a week of a particular course determines its credit value. One credit is
equivalent to one lecture/tutorial hour per week.

Credit point: It is the product of grade point and number of credits for a course.

v|Page

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student over
all the completed semesters. The CGPA is the ratio of total credit points secured by a student in various
courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed
up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content,
materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department: An academic entity that conducts relevant curricular and co-curricular activities, involving
both teaching and non-teaching staff, and other resources in the process of study for a degree.

Detention in a Course: Student who does not obtain minimum prescribed attendance in a course shall be
detained in that particular course.

Dropping from Semester: Student who doesn’t want to register for any semester can apply in writing in
prescribed format before the commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional
Elective and / or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his
courses. It is done through a combination of continuous internal assessment and semester end
examinations.

Experiential Engineering Education (EXEEd): Engineering entrepreneurship requires strong technical
skills in engineering design and computation with key business skills from marketing to business model
generation. Our students require sufficient skills to innovate in existing companies or create their own.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by
alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 - point scale.

Honours: An Honours degree typically refers to ahigher level of academic achievementat an
undergraduate level.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the
context.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self learning. MOOC
courses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses required
for the B.Tech degree.

Pre-requisite: A specific course or subject, the knowledge of which is required to complete before
student register another course at the next grade level.

Professional Elective: It indicates a course that is discipline centric. An appropriate choice of minimum
number of such electives as specified in the program will lead to a degree with specialization.

Program: Means, UG degree program: Bachelor of Technology (B.Tech); PG degree program: Master of
Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every student
will achieve through a strategic and sequential action plan.

Project work: It is a design or research based work to be taken up by a student during his/her final year
to achieve a particular aim. It is a credit based course and is to be planned carefully by the student.

vi|Page

Re-Appearing: A student can reappear only in the semester end examination for theory component of a
course, subject to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a program.

Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as
“TARE Regulations — R20” and are binding on all the stakeholders.

Semester: It is a period of study consisting of 15 to 18 weeks of academic work equivalent to normally
90 working days. Odd semester commences usually in July and even semester in December of every year.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at the
end of the semester.

S/he: Means “she” and “he” both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his
program of study. These skill sets are in the areas of employability, entrepreneurial, social and behavioral.

University: Means Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, is an
affiliating University.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course
within the first two weeks of odd or even semester (deadlines are different for summer sessions).
However, s/he can choose a substitute course in place of it, by exercising the option within 5 working
days from the date of withdrawal.

vii|Page

FOREWORD

The autonomy is conferred to Institute of Aeronautical Engineering (IARE), Hyderabad by University
Grants Commission (UGC), New Delhi based on its performance as well as future commitment and
competency to impart quality education. It is a mark of its ability to function independently in accordance
with the set norms of the monitoring bodies including J N T University Hyderabad (JNTUH), Hyderabad
and AICTE, New Delhi. It reflects the confidence of the affiliating University in the autonomous
institution to uphold and maintain standards it expects to deliver on its own behalf. Thus, an autonomous
institution is given the freedom to have its own curriculum, examination system and monitoring

mechanism, independent of the affiliating University but under its observance.

IARE is proud to win the credence of all the above bodies monitoring the quality in education and has
gladly accepted the responsibility of sustaining, if not improving upon the standards and ethics for which
it has been striving for more than a decade in reaching its present standing in the arena of contemporary
technical education. As a follow up, statutory bodies such as Academic Council and Board of Studies
(BOS) are constituted with the guidance of the Governing Body of the institute and recommendations of
the INTUH to frame the regulations, course structure, and syllabi under autonomous status.

The autonomous regulations, course structure, and syllabi have been prepared after prolonged and
detailed interaction with several expertise solicited from academics, industry and research, in accordance
with the vision and mission of the institute in order to produce a quality engineering graduate to the

society.

All the faculty, parents, and students are requested to go through all the rules and regulations carefully.
Any clarifications needed are to be sought at appropriate time and from the principal of the institute,
without presumptions, to avoid unwanted subsequent inconveniences and embarrassments. The
cooperation of all the stake holders is requested for the successful implementation of the autonomous

system in the larger interests of the institute and brighter prospects of engineering graduates.

PRINCIPAL

viii|Page

ez INSTITUTE OF AERONAUTICAL ENGINEERING

) @ . (Autonomous)

ACADEMIC REGULATIONS - UG.20

B.Tech. Regular Four Year Degree Program
(for the batches admitted from the academic year 2020 - 2021)
&
B.Tech. (Lateral Entry Scheme)
(for the batches admitted from the academic year 2021 - 2022)

For pursuing four year undergraduate Bachelor of Technology (B.Tech) degree program of study in
engineering offered by Institute of Aeronautical Engineering under Autonomous status.

A student shall undergo the prescribed courses as given in the program curriculum to obtain his/her degree in
major in which he/she is admitted with 160 credits in the entire program of 4 years. Additional 20 credits can
be acquired for the degree of B.Tech with Honours or additional Minor in Engineering. These additional 20
credits will have to be acquired with massive open online courses (MOOCS), to tap the zeal and excitement of
learning beyond the classrooms. This creates an excellent opportunity for students to acquire the necessary
skill set for employability through massive open online courses where the rare expertise of world famous
experts from academics and industry are available.

Separate certificate will be issued in addition to major degree program mentioning that the student has cleared
Honours / Minor specialization in respective courses.

1. CHOICE BASED CREDIT SYSTEM

The credit based semester system provides flexibility in designing program curriculum and assigning credits
based on the course content and hours of teaching. The Choice Based Credit System (CBCS) provides a
‘cafeteria’ type approach in which the students can take courses of their choice, learn at their own pace,
undergo additional courses and acquire more than the required credits, and adopt an interdisciplinary approach
to learning.

A course defines learning objectives and learning outcomes and comprises lectures / tutorials / laboratory work
/ field work / project work / comprehensive examination / seminars / assignments / MOOCs / alternative
assessment tools / presentations / self-study etc., or a combination of some of these. Under the CBCS, the
requirement for awarding a degree is prescribed in terms of number of credits to be completed by the students.

2. MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and project
work. The program curriculum will comprise courses of study as given in course structure, in accordance with
the prescribed syllabi.

3. PROGRAMS OFFERED
Presently, the institute is offering Bachelor of Technology (B.Tech) degree programs in eleven disciplines.
The various programs and their two-letter unique codes are given in Table 1.

1|Page

Table 1: B.Tech Programs offered

S. No Name of the Program Title Code
1 Aeronautical Engineering AE 07
2 Computer Science and Engineering CS 05
3 Computer Science and Engineering (Al & ML) CA 34
4 Computer Science and Engineering (Data Science) CD 35
5 Computer Science and Engineering (Cyber Security) CcC 36
6 Computer Science and Information Technology Cl 37
7 Information Technology IT 06
8 Electronics and Communication Engineering EC 04
9 Electrical and Electronics Engineering EE 02
10 Mechanical Engineering ME 03
11 Civil Engineering CE 01

4, SEMESTER STRUCTURE

Each academic year is divided into three semesters, TWO being MAIN SEMESTERS (one odd + one even)
and ONE being a SUPPLEMENTARY SEMESTER. Main semesters are for regular class work.
Supplementary Semester is primarily for failed students i.e. registration for a course for the first time is
generally not permitted in the supplementary semester.

4.1 Each main semester shall be of 21 weeks (Table 1) duration and this period includes time for registration
of courses, course work, examination preparation, and conduct of examinations.

4.2 Each main semester shall have a minimum of 90 working days.

4.3 The supplementary semester shall be a fast track semester consisting of eight weeks and this period
includes time for registration of courses, course work, and examination preparation, conduct of
examinations, assessment, and declaration of final results.

4.4 All subjects may not be offered in the supplementary semester. The student has to pay a stipulated fee
prescribed by the institute to register for a course in the supplementary semester. The supplementary
semester is provided to help the student in not losing an academic year. It is optional for a student to
make use of supplementary semester. Supplementary semester is a special semester and the student
cannot demand it as a matter of right and will be offered based on availability of faculty and other
institute resources.

4.5 The institute may use supplementary semester to arrange add-on courses for regular students and / or
for deputing them for practical training / FSI model. A student can register for a maximum number of 15
credits during a supplementary semester.

The registration for the supplementary semester (during May — July, every year) provides an opportunity
to students to clear their backlogs (‘F’ grade) or who are prevented from appearing for SEE
examinations due to shortage of attendance less than 65% in each course (‘SA’ Grade) in the earlier
semesters or the courses which he / she could not register (Drop / Withdraw) due to any reason.

Students will not be permitted to register for more than 15 credits (both | and Il semester) in the
supplementary semester. Students required to register for supplementary semester courses are to pay a
nominal fee within the stipulated time. A separate circular shall be issued at the time of supplementary
semester.

It will be optional for a student to get registered in the course(s) of supplementary semester; otherwise,
he / she can opt to appear directly in supplementary examination. However, if a student gets registered
in a course of supplementary semester, then it will be compulsory for a student to fulfill attendance
criterion (>90%) of supplementary semester and he / she will lose option to appear in immediate
supplementary examination.

2|Page

The students who have earlier taken SEE examination and register afresh for the supplementary
semester may revoke the CIA marks secured by them in their regular/earlier attempts in the same course.
Once revoked, the students shall not seek restoration of the CIA marks.

Supplementary semester will be at an accelerated pace e.g. one credit of a course shall require two
hours/week so that the total number of contact hours can be maintained same as in normal semester.

Instructions and guidelines for the supplementary semester course:
¢ A minimum of 36 to 40 hours will be taught by the faculty for every course.

e Only the students registered and having sufficient percentage of attendance for the course will be
permitted to write the examination.

e The assessment procedure in a supplementary semester course will be similar to the procedure for a
regular semester course.

e Student shall register for the supplementary semester as per the schedule given in academic
calendar.

e Once registered, students will not be allowed to withdraw from supplementary semester.

4.6 The academic calendar shown in Table 2 is declared at the beginning of the academic year.

Table 2: Academic Calendar

| Spell Instruction Period 8 weeks
I Continuous Internal Assessment 1 week
Examinations (Mid-term)
FIRST Il Spell Instruction Period 8 weeks 19 weeks

SEMESTER -
(21 weeks) | Con_tmqous Intgrnal Assessment 1 week
Examinations (Mid-term)

Preparation and Practical Examinations 1 week

Semester End Examinations 2 weeks
Semester Break and Supplementary Exams 2 weeks
I Spell Instruction Period 8 weeks
| Continuous Internal Assessment 1 week
Examinations (Mid-term)
SECOND Il Spell Instruction Period 8 weeks 19 weeks
SEMESTER -
(21 weeks) Il Continuous Internal Assessment 1 week
Examinations (Mid-term)
Preparation & Practical Examinations 1 week
Semester End Examinations 2 weeks
Summer Vacation, Supplementary Semester and Remedial Exams 8 weeks

4,7 Students admitted on transfer from JNTUH affiliated institutes, Universities and other institutes in the
subjects in which they are required to earn credits so as to be on par with regular students as prescribed
by concerned ‘Board of Studies’.

5.0 REGISTRATION/DROPPING /WITHDRAWAL

The academic calendar includes important academic activities to assist the students and the faculty. These
include, dates assigned for registration of courses, dropping of courses and withdrawal from courses. This
enables the students to be well prepared and take full advantage of the flexibility provided by the credit
system.

3|Page

5.1.

5.2.
5.3.

5.4.

5.5.

5.6.

o.1.

6.0

Each student has to compulsorily register for course work at the beginning of each semester as per the
schedule mentioned in the Academic Calendar. It is compulsory for the student to register for courses in
time. The registration will be organized departmentally under the supervision of the Head of the
Department.

In ABSENTIA, registration will not be permitted under any circumstances.

At the time of registration, students should have cleared all the dues of Institute and Hostel for the
previous semesters, paid the prescribed fees for the current semester and not been debarred from the
institute for a specified period on disciplinary or any other ground.

In the first two semesters, the prescribed course load per semester is fixed and is mandated to registered
all courses. Withdrawal / dropping of courses in the first and second semester is not allowed.

In higher semesters, the average load is 22 credits / semester, with its minimum and maximum limits
being set at 16 and 28 credits. This flexibility enables students (from IV semester onwards) to cope-up
with the course work considering the academic strength and capability of student.

Dropping of Courses:

Within one week after the last date of first internal assessment test or by the date notified in the
academic calendar, the student may in consultation with his / her faculty mentor/adviser, drop one or
more courses without prejudice to the minimum number of credits as specified in clause 5.4. The
dropped courses are not recorded in the memorandum of grades. Student must complete the dropped
subject by registering in the supplementary semester / forthcoming semester in order to earn the required
credits. Student must complete the dropped subject by registering in the supplementary semester /
forthcoming semester in order to earn the required credits.

Withdrawal from Courses:

A student is permitted to withdraw from a course by the date notified in the academic calendar. Such
withdrawals will be permitted without prejudice to the minimum number of credits as specified in clause
5.4. A student cannot withdraw a course more than once and withdrawal of reregistered courses is not
permitted.

CREDIT SYSTEM

The B.Tech Program shall consist of a number of courses and each course shall be assigned with credits. The
curriculum shall comprise Theory Courses, Elective Courses, Laboratory Courses, Value Added Courses,
Mandatory Courses, Experiential Engineering Education (EXEEd), Internship and Project work.

Depending on the complexity and volume of the course, the number of contact periods per week will be
assigned. Each theory and laboratory course carries credits based on the number of hours / week.

Contact classes (Theory): 1 credit per lecture hour per week, 1 credit per tutorial hour per week.
Laboratory hours (Practical): 1 credit for 2 practical hours per week.

Project work: 1 credit for 2 hours of project work per week.

Mandatory Courses: No credit is awarded.

Value Added Courses: No credit is awarded.

Experiential Engineering Education (EXEEd): 1 credit for two per hours.

Credit distribution for courses offered is given in Table 5.

Table 5: Credit distribution

S. No Course Hours Credits
1 Theory Course 2/13/4 2/3/4
2 Elective Courses 3 3
3 Laboratory Courses 2/3/4 1/15/2

4|Page

4 Mandatory Course / Value Added Course - 0

5 Project Work - 10

6 Full Semester Internship (FSI) Project work - 10

Major benefits of adopting the credit system are listed below:

e Quantification and uniformity in the listing of courses for all programs at College, like core, electives
and project work.

e Ease of allocation of courses under different heads by using their credits to meet national /international
practices in technical education.

e Convenience to specify the minimum / maximum limits of course load and its average per semester in
the form of credits to be earned by a student.

e Flexibility in program duration for students by enabling them to pace their course load within
minimum/maximum limits based on their preparation and capabilities.

e Wider choice of courses available from any department of the same College or even from other similar
Colleges, either for credit or for audit.

o Improved facility for students to optimize their learning by availing of transfer of credits earned by
them from one College to another.

7.0 CURRICULAR COMPONENTS
Courses in a curriculum may be of three kinds: Foundation / Skill, Core and Elective Courses.

Foundation / Skill Course:

Foundation courses are the courses based upon the content leads to enhancement of skill and knowledge as
well as value based and are aimed at man making education. Skill subjects are those areas in which one needs
to develop a set of skills to learn anything at all. They are fundamental to learning any subject.

Professional Core Courses:
There may be a core course in every semester. This is the course which is to be compulsorily studied by a
student as a core requirement to complete the requirement of a program in the said discipline of study.

Elective Course:

Electives provide breadth of experience in respective branch and application areas. Elective course is a course
which can be chosen from a pool of courses. It may be:

Supportive to the discipline of study

Providing an expanded scope

Enabling an exposure to some other discipline / domain

Nurturing student’s proficiency / skill.

An elective may be Professional Elective, is a discipline centric focusing on those courses which add generic
proficiency to the students or may be Open Elective, chosen from unrelated disciplines.

There are six professional elective tracks; students can choose not more than two courses from each track.
Overall, students can opt for six professional elective courses which suit their project work in consultation with
the faculty advisor/mentor. Nevertheless, one course from each of the four open electives has to be selected. A
student may also opt for more elective courses in his/her area of interest.

Every course of the B.Tech program will be placed in one of the eight categories with minimum credits as
listed in the Table 6.

5|Page

Table 6: Category Wise Distribution of Credits

Breakup of
S. No Category Credits
1 Humanities and Social Sciences (HSMC), including Management. 6
Basic Science Courses (BSC) including Mathematics, Physics and
2 . 18.5
Chemistry.
Engineering Science Courses (ESC), including Workshop, Drawing,
3 EXEEd, Basics of Electrical / Electronics / Mechanical / Computer 20.5
Engineering.
4 Professional Core Courses (PCC), relevant to the chosen specialization / 78
branch.
5 Professional Electives Courses (PEC), relevant to the chosen 18
specialization / branch.
6 Open Elective Courses (OEC), from other technical and/or emerging 09
subject areas.
7 Project work (PROJ) / Full Semester Internship (FSI) Project work 10
8 Mandatory Courses (MC) / Value Added Courses (VAC). Non-Credit
TOTAL 160

Semester wise course break-up

Following are the TWO models of course structure out of which any student shall choose or will
be allotted with one model based on their academic performance.

i. Full Semester Internship (FSI) Model and
ii. Non Full Semester Internship (NFSI) Model

In the FSI Model, out of the selected students - half of students shall undergo Full Semester Internship in VII
semester and the remaining students in VIII semester. In the Non-FSI Model, all the selected students shall
carry out the course work and Project work as specified in the course structure. A student who secures a
minimum CGPA of 7.5 upto IV semester with no current arrears and maintains the CGPA of 7.5 till VI
Semester shall be eligible to opt for FSI.

8. EVALUATION METHODOLOGY

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal
Assessment (CIA) and 70 marks for Semester End Examination (SEE). Student's performance in a course shall
be judged by taking into account the results of CIA and SEE together. Table-7 shows the typical distribution of
weightage for CIA and SEE.

Table 7: Assessment pattern for Theory Courses

Component Marks Total Marks
CIA | Continuous Internal Examination — 1 (Mid-term) 10
Continuous Internal Examination — 2 (End-term) 10 30
Tech talk / Quiz — 1 and Quiz — 2 5
Concept video / Alternative Assessment Tool (AAT) 5
SEE | Semester End Examination (SEE) 70 70
Total Marks 100

6|Page

8.1. Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into
FIVE modules and each modules carries equal weightage in terms of marks distribution. The question paper
pattern is as follows.

Two full questions with ‘either’ ‘or’ choice will be drawn from each module. Each question carries 14 marks.
There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 % To test the objectiveness of the concept
50 % To test the analytical skill of the concept OR to test the application skill of the concept

8.1. Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty / teacher handling the course. CIA is
conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz
and 05 marks for Alternative Assessment Tool (AAT). Two CIE Tests are Compulsory and sum of the two
tests, along with the scores obtained in the quizzes (average of Quiz — 1 and Quiz — 2) / AAT shall be
considered for computing the final CIA of a student in a given course.

The CIE Tests/quizzes/AAT shall be conducted by the course faculty with due approval from the HOD.
Advance notification for the conduction of Quiz/AAT is mandatory and the responsibility lies with the
concerned course faculty.

8.1.1. Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8" and 16" week of the semester respectively for 10 marks
each of 2 hours duration consisting of five descriptive type questions out of which four questions have to be
answered. The valuation and verification of answer scripts of CIE exams shall be completed within a week
after the conduct of the Examination.

8.1.2. Quiz — Online Examination

Two Quiz exams shall be conducted along with CIE in online mode for 5 marks each, consisting of 10 short
answers questions (Definitions and Terminology) and 10 multiple choice questions (having each question to be
answered by tick marking the correct answer from the choices (commonly four) given against it. Such a
guestion paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and
understanding of the students. Average of two quiz examinations shall be considered.

8.1.3. Alternative Assessment Tool (AAT)

In order to encourage innovative methods while delivering a course, the faculty members are encouraged to
use the Alternative Assessment Tool (AAT). This AAT enables faculty to design own assessment patterns
during the CIA. The AAT enhances the autonomy (freedom and flexibility) of individual faculty and enables
them to create innovative pedagogical practices. If properly applied, the AAT converts the classroom into an
effective learning centre.

The AAT may include tech talk, tutorial hours/classes, seminars, assignments, term paper, open ended
experiments, concept videos, partial reproduction of research work, oral presentation of research work,
developing a generic tool-box for problem solving, report based on participation in create-a-thon, make-
a-thon, code-a-thon, hack-a-thon conducted by reputed organizations / any other. etc.

However, it is mandatory for a faculty to obtain prior permission from the concerned HOD and spell out the
teaching/assessment pattern of the AAT prior to commencement of the classes.

8.2 Laboratory Course

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and
70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment

7|Page

will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.
The semester end laboratory examination for 70 marks shall be conducted internally by the respective
department with at least two faculty members as examiners, both nominated by the Principal from the panel of
experts recommended by the Chairman, BOS.

All the drawing related courses are evaluated in line with laboratory courses. The distribution shall be 30
marks for internal evaluation (20 marks for day—to—day work, and 10 marks for internal tests) and 70 marks for
semester end laboratory examination. There shall be ONE internal test of 10 marks in each semester.

8.3 Audit Courses

In Addition, a student can register for courses for audit only with a view to supplement his/her knowledge
and/or skills. Here also, the student’s grades shall have to be reflected in the Memorandum of Grades. But,
these shall not be taken into account in determining the student’s academic performance in the semester. In
view of this, it shall not be necessary for the institute to issue any separate transcript covering the audit courses
to the registrants at these courses. Its result shall be declared as “Satisfactory” or ‘“Not Satisfactory”
performance.

8.4 Mandatory Courses (MC)

These courses are among the compulsory courses but will not carry any credits. However, a pass in each such
course during the program shall be necessary requirement for the student to qualify for the award of Degree. Its
result shall be declared as “Satisfactory” or “Not Satisfactory”” performance.

8.5 Additional Mandatory Courses for lateral entry B.Tech students

In addition to the non-credit mandatory courses for regular B.Tech students, the lateral entry students shall take

up the following three non-credit mandatory bridge courses (one in Il semester, one in IV semester and one in

V semester) as listed in Table 8. The student shall pass the following non-credit mandatory courses for the

award of the degree and must clear these bridge courses before advancing to the VI semester of the program.
Table-8: Additional Mandatory Courses for lateral entry

S. No Additional mandatory courses for lateral entry students

Dip-Mathematics

Dip-Programming for Problem Solving

3 Dip-English Communication Skills

8.6 Value Added Courses

The value added courses are audit courses offered through joint ventures with various organizations providing
ample scope for the students as well as faculty to keep pace with the latest technologies pertaining to their
chosen fields of study. A plenty of value added programs will be proposed by the departments one week before
the commencement of class work. The students are given the option to choose the courses according to their
desires and inclinations as they choose the desired items in a cafeteria. The expertise gained through the value
added programs should enable them to face the formidable challenges of the future and also assist them in
exploring new opportunities. Its result shall be declared with “Satisfactory” or “Not Satisfactory” performance.

8.7 Experiential Engineering Education (EXEED)

Engineering entrepreneurship requires strong technical skills in engineering design and computation with key
business skills from marketing to business model generation. Students require sufficient skills to innovate in
existing companies or create their own.

This course will be evaluated for a total of 200 marks consisting of 30 marks for internal assessment and 70
marks for semester end Examination. Out of 30 marks of internal assessment, The Student has to submit
Innovative Idea in a team of four members in the given format. The semester end examination for 70 marks
shall be conducted internally, students has to present the Innovative Idea and it will be evaluated by internal
EXEEd faculty with at least one faculty member as examiner from the industry, both nominated by the Principal
from the panel of experts recommended by the Dean-CLET.

8|Page

8.8 Project Work / FSI Project Work

This gives students a platform to experience a research driven career in engineering, while developing a device /
systems and publishing in reputed SCI / SCOPUS indexed journals and/or filing an Intellectual Property (IPR-
Patent/Copyright) to aid communities around the world. Students should work individually as per the
guidelines issued by head of the department concerned. The benefits to students of this mode of learning
include increased engagement, fostering of critical thinking and greater independence.

The topic should be so selected that the students are enabled to complete the work in the stipulated time with the
available resources in the respective laboratories. The scope of the work be handling part of the consultancy
work, maintenance of the existing equipment, development of new experiment setup or can be a prelude to the
main project with a specific outcome.

Project report will be evaluated for 100 marks in total. Assessment will be done for 100 marks out of which, the
supervisor / guide will evaluate for 30 marks based on the work and presentation / execution of the work.
Subdivision for the remaining 70 marks is based on publication, report, presentation, execution and viva-voce.
Evaluation shall be done by a committee comprising the supervisor, Head of the department and an examiner
nominated by the Principal from the panel of experts recommended by Chairman, BOS in consultation with
Head of the department.

8.8.1 Project work

The student’s project activity is spread over in VIl semester and in VIl semesters. A student shall carry out the
project work under the supervision of a faculty member or in collaboration with an Industry, R&D
organization or another academic institution/University where sufficient facilities exist to carry out the project
work.

Project work (phase-I) starts in VII semester as it takes a vital role in campus hiring process. Students shall
select project titles from their respective logins uploaded by the supervisors at the beginning of VII semester.
Three reviews are conducted by department review committee (DRC) for 10 marks each. Student must submit
a project report summarizing the work done up to design phase/prototype by the end of VII semester. The
semester end examination for project work (phase-1) is evaluated based on the project report submitted and a
viva-voce exam for 70 marks by a committee comprising the head of the department, the project supervisor
and an external examiner nominated by the Principal.

Project Work (phase-1l) starts in VIII semester, shall be evaluated for 100 marks out of which 30 marks
towards continuous internal assessment and 70 marks for semester end examination. Three reviews are to be
conducted by DRC on the progress of the project for 30 marks. The semester end examination shall be based
on the final report submitted and a viva-voce exam for 70 marks by a committee comprising the head of the
department, the project supervisor and an external examiner nominated by the Principal.

A minimum of 40% of maximum marks shall be obtained to earn the corresponding credits.

8.8.2 Full Semester Internship (FSI)

FSI is a full semester internship program carry 10 credits. The FSI shall be opted in VII semester or in VIII
semester. During the FSI, student has to spend one full semester in an identified industry / firm / R&D
organization or another academic institution/University where sufficient facilities exist to carry out the project
work.

Following are the evaluation guidelines:

. Quizzes: 2 times

Quiz #1 - About the industry profile, weightage: 5%

Quiz #2 - Technical-project related, weightage: 5%

Seminars - 2 times (once in six weeks), weightage: 7.5% + 7.5%

Viva-voce: 2 times (once in six weeks), weightage: 7.5% + 7.5%

Project Report, weightage: 15%

Internship Diary, weightage: 5 %

Final Presentation, weightage: 40%

9|Page

FSl shall be open to all the branches with a ceiling of maximum 10% distributed in both semesters. The
selection procedure is:

o Choice of the students.

° CGPA (> 7.5) upto IV semester having no credit arrears.

° Competency Mapping / Allotment.

It is recommended that the FSI Project work leads to a research publication in a reputed Journal/Conference
or the filing of patent/design with the patent office, or, the start-up initiative with a sustainable and viable
business model accepted by the incubation center of the institute together with the formal registration of the
startup.

8.9 Plagiarism index for Project Report:

All project reports shall go through the plagiarism check and the plagiarism index has to be less than 20%.
Project reports with plagiarism more than 20% and less than 60% shall be asked for resubmission within a
stipulated period of six months. Project reports with plagiarism more than 60% shall be rejected.

9. MAKEUP EXAMINATION

The make-up examination facility shall be available to students who may have missed to attend CIE/Quiz of
one or more courses in a semester for valid reasons. The CIE make-up examination shall have comprehensive
online objective type questions for 20 marks and Quiz for 5 marks. The content for the make-up examination
shall be on the whole syllabus. The Makeup examination shall be conducted at the end of the respective
semester.

10. SUPPLEMENTARY EXAMINATIONS

In addition to the Regular Semester End Examinations held at the end of each semester, Supplementary
Semester End Examinations will be conducted within three weeks of the commencement of the teaching of the
next semester. Candidates taking the Regular / Supplementary examinations as Supplementary candidates may
have to take more than one Semester End Examination per day. A student can appear for any number of
supplementary examinations till he/she clears all courses which he/she could not clear in the first attempt.
However the maximum stipulated period for the course shall not be relaxed under any circumstances.

11. ATTENDANCE REQUIREMENTS AND DETENTION POLICY

11.1 It is desirable for a candidate to have 100% attendance in each course. In every course
(theory/laboratory), student has to maintain a minimum of 75% attendance including the days of
attendance in sports, games, NCC and NSS activities to be eligible for appearing in Semester End
Examination of the course.

11.2 In case of medical issues, deficiency of attendance in each course to the extent of 10% may be condoned
by the College Academic Committee (CAC) on the recommendation of the Head of the Department if
the attendance is between 75% and 65% in every course, subjected to the submission of medical
certificates, medical case file, and other needful documents to the concerned departments.

11.3 The basis for the calculation of the attendance shall be the period prescribed by the institute by its
calendar of events. For late admission, attendance is reckoned from the date of admission to the
program. However, in case of a student having less than 65% attendance in any course, s/he shall be
detained in the course and in no case such process will be relaxed.

11.4 A candidate shall put in a minimum required attendance in atleast 60% of (rounded to the next highest
integer) theory courses for getting promoted to next higher class / semester. Otherwise, s/he shall be
declared detained and has to repeat semester.

11.5 Students whose shortage of attendance is not condoned in any subject are not eligible to write their
semester end examination of that courses and their registration shall stand cancelled.

11.6 A prescribed fee shall be payable towards condonation of shortage of attendance.

10|Page

11.7

11.8

12.
121

12.2

12.3

124

12.5

13.
13.1

13.2

13.3

13.4

14.
141

A student shall not be promoted to the next semester unless he satisfies the attendance requirement of
the present semester, as applicable. They may seek readmission into that semester when offered next. If
any candidate fails to fulfill the attendance requirement in the present semester, he shall not be eligible
for readmission into the same class.

Any student against whom any disciplinary action by the institute is pending shall not be permitted to
attend any SEE in that semester.

CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting
Question Papers from the External Examiners.

Question papers may be moderated for the coverage of syllabus, pattern of questions by a Semester End
Examination Committee chaired by Head of the Department one day before the commencement of
semester end examinations. Internal Examiner shall prepare a detailed scheme of valuation.

The answer papers of semester end examination should be evaluated by the internal examiner
immediately after the completion of exam and the award sheet should be submitted to COE in a sealed
cover.

COE shall invite 3 - 9 internal/external examiners to evaluate all the semester end examination answer
books on a prescribed date(s). Practical laboratory exams are conducted involving external examiners.

Examinations Control Committee shall consolidate the marks awarded by examiner/s and award grades.

SCHEME FOR THE AWARD OF GRADE

A student shall be deemed to have satisfied the minimum academic requirements and earn the credits
for each theory course, if s/he secures

a) Not less than 35% marks for each theory course in the semester end examination, and

b) A minimum of 40% marks for each theory course considering Continuous Internal Assessment
(CIA) and Semester End Examination (SEE).

A student shall be deemed to have satisfied the minimum academic requirements and earn the credits
for each Laboratory / Project work / FSI Project work, if s/he secures

a) Not less than 40% marks for each Laboratory / Project work / FSI Project work course in the
semester end examination,

b) A minimum of 40% marks for each Laboratory / Project work / FSI Project work course
considering both internal and semester end examination.

If a candidate fails to secure a pass in a particular course, it is mandatory that s/he shall register and
reappear for the examination in that course during the next semester when examination is conducted in
that course. It is mandatory that s/he should continue to register and reappear for the examination till
s/he secures a pass.

A student shall be declared successful or ‘passed’ in a semester, if he secures a Grade Point > 5 (‘C’
grade or above) in every course in that semester (i.e. when the student gets an SGPA =25.0 at the end of
that particular semester); and he shall be declared successful or ‘passed’ in the entire under graduate
programme, only when gets a CGPA =5.0 for the award of the degree as required.

LETTER GRADES AND GRADE POINTS

Performances of students in each course are expressed in terms of marks as well as in Letter Grades
based on absolute grading system. The UGC recommends a 10-point grading system with the following
letter grades as given in the Table-9.

11|Page

14.2

14.3

144

145

14.6
14.7

14.8

Table-9: Grade Points Scale (Absolute Grading)

Range of Marks Grade Point Letter Grade

100-90 10 S (Superior)
89 - 80 9 A+ (Excellent)
79-70 8 A (Very Good)
69 — 60 7 B+ (Good)
59 - 50 6 B (Average)
49 - 40 5 C (Pass)

Below 40 0 F (Fail)
Absent 0 AB (Absent)

Authorized Break of Study 0 ABS

A student is deemed to have passed and acquired to correspondent credits in particular course if s/he
obtains any one of the following grades: “S”, “A+”, “A”, “B+”, “B”, “C”.

A student obtaining Grade F shall be considered Failed and will be required to reappear in the
examination.

For non credit courses, ‘Satisfactory’ or “Not Satisfactory” is indicated instead of the letter grade and
this will not be counted for the computation of SGPA/CGPA.

“SA” denotes shortage of attendance (as per item 11) and hence prevention from writing Semester End
Examination.

“W” denotes withdrawal from the exam for the particular course.

At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the
student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

Award of Class:

Sometimes, it is necessary to provide equivalence of these averages, viz.,, SGPA and CGPA with the
percentages and/or Class awarded as in the conventional system of declaring the results of University
examinations. This shall be done by Autonomous Colleges under the University only at one stage by
prescribing certain specific thresholds in these averages for First Class with Distinction, First Class and
Second Class, at the time of Degree Award. This provision given in Table-10 follows the approach of
the Council for this purpose as reproduced from the AICTE Approval Process Handbook:

Table 10: Percentage Equivalence of Grade Points (for a 10 — Point Scale)

Grade Point Percentage of Marks / Class
5.5 50
6.0 55
6.5 60
7.0 65
7.5 70
8.0 75

Note:
(1) The following Formula for Conversion of CGPA to percentage of marks to be used only after a
student has successfully completed the program:
Percentage of Marks = (CGPA —0.5) x 10
(2) Class designation:
>75% (First Class with Distinction),
> 60% and <75 % (First Class),

12|Page

> 50 % and <60% (Second Class),
>45% and <50% (Pass Class).

(3) The SGPA will be computed and printed on the Memorandum of Grades only if the candidate
passes in all the courses offered and gets minimum B grade in all the courses.

(4) CGPA is calculated only when the candidate passes in all the courses offered in all the semesters.

15. COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point
Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade Point
Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important performance
indices of the student. SGPA is equal to the sum of all the total points earned by the student in a given
semester divided by the number of credits registered by the student in that semester. CGPA gives the sum of
all the total points earned in all the previous semesters and the current semester divided by the number of
credits registered in all these semesters. Thus,

SGPA=3(C.G.)/>C,
i=1 i=1

Where, C; is the number of credits of the i course and Gi is the grade point scored by the student in the i™"
course and n represent the number of courses in which a student is registered in the concerned semester.

CGPA = i(cj Sj)/icj
Jj=1 j=1

Where, S; is the SGPA of the j" semester and Cj is the total number of credits upto the semester and m
represent the number of semesters completed in which a student registered upto the semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

16. ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA

16.1 Illustration for SGPA
Course Name Course Credits | Grade letter | Grade point (Cfggﬁif(lz):;(tje)
Course 1 3 A 8 3x8=24
Course 2 4 B+ 7 4x7=28
Course 3 3 B 6 3x6=18
Course 4 3 S 10 3x10=30
Course 5 3 C 3x5=15
Course 6 4 B 4x6=24
20 139
Thus, SGPA =139 /20 =6.95
16.2 lustration for CGPA
Semester 1 Semester 2 Semester 3 Semester 4
Credit: 20 Credit: 22 Credit: 25 Credit: 26
SGPA: 6.9 SGPA: 7.8 SGPA: 5.6 SGPA: 6.0
Semester 5 Semester 6

13|Page

Credit: 26 Credit: 25
SGPA: 6.3 SGPA: 8.0

Thus, CGPA _20x6.9 + 22x7.8 + 25X5.611-426X6.0 + 26x6.3 + 25x8.0 _ 6.73

17. REVIEW OF SEE THEORY ANSWER BOOKS

Semester end examination answer books are made available online in CMS portal on the day of publication of
results. A student, who is not satisfied with the assessment, is directed to apply for the review of his/her
semester end examination answer book(s) in the theory course(s), within 2 working days from the publication
of results in the prescribed format to the Controller of Examinations through the Head of the department with
prescribed fee.

The Controller of Examinations shall appoint two examiners (chief examiner of original exam and a new
examiner) for the review of the semester end examination (theory) answer book. Both examiners shall jointly
review and marks awarded in the previous assessment shall be kept open.

The marks obtained by the candidate after the review shall be considered for grading, only if, the change in
mark is more than or equal to 10% of total mark of semester end examination (theory). Marks obtained after
re-evaluation shall stand final even if it is less than the original marks. Review is not permitted to the courses
other than theory courses.

18. PROMOTION POLICIES

The following academic requirements have to be satisfied in addition to the attendance requirements
mentioned in item no. 11.

18.1 For students admitted into B.Tech (Regular) program
18.1.1 A student will not be promoted from Il semester to Il semester unless s/he fulfills the
academic requirement of securing 50% of the total credits (rounded to the next lowest integer)
from I and 1l semester examinations, whether the candidate takes the examination(s) or not.

18.1.2 A student will not be promoted from IV semester to V semester unless s/he fulfills the
academic requirement of securing 60% of the total credits (rounded to the next lowest integer)
upto 11 semester or 60% of the total credits (rounded to the next lowest integer) up to IV
semester, from all the examinations, whether the candidate takes the examination(s) or not.

18.1.3 A student shall be promoted from VI semester to V11 semester only if s/he fulfills the academic
requirements of securing 60% of the total credits (rounded to the next lowest integer) up to V
semester or 60% of the total credits (rounded to the next lowest integer) up to VI semester
from all the examinations, whether the candidate takes the examination(s) or not.

18.1.4 A student shall register for all the 160 credits and earn all the 160 credits. Marks obtained in
all the 160 credits shall be considered for the award of the Grade.

18.2 For students admitted into B.Tech (lateral entry students)

18.2.1 A student will not be promoted from IV semester to V semester unless s/he fulfills the
academic requirement of securing 60% of the total credits (rounded to the next lowest integer)
up to IV semester, from all the examinations, whether the candidate takes the examination(s)
or not.

18.2.2 A student shall be promoted from VI semester to V11 semester only if s/he fulfills the academic
requirements of securing 60% of the total credits (rounded to the next lowest integer) up to V
semester or 60% of the total credits (rounded to the next lowest integer) up to VI semester
from all the examinations, whether the candidate takes the examination(s) or not.

18.2.3 A student shall register for all the 126 credits and earn all the 126 credits. Marks obtained in
all the 126 credits shall be considered for the award of the Grade.

14|Page

19.

GRADUATION REQUIREMENTS

The following academic requirements shall be met for the award of the B.Tech degree.

19.1

19.2

19.3

20.

Student shall register and acquire minimum attendance in all courses and secure 160 credits (with
minimum CGPA of 5.0), for regular program and 126 credits (with minimum CGPA of 5.0), for lateral
entry program.

A student of a regular program, who fails to earn 160 credits within eight consecutive academic years
from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit his/her degree and his/her
admission stands cancelled.

A student of a lateral entry program who fails to earn 126 credits within six consecutive academic years
from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit his/her degree and his/her
admission stands cancelled.

BETTERMENT OF MARKS IN THE COURSES ALREADY PASSED

Students who clear all the courses in their first attempt and wish to improve their CGPA shall register and
appear for betterment of marks for one course of any theory courses within a period of subsequent two
semesters. The improved marks shall be considered for classification / distinction but not for ranking. If there
is no improvement, there shall not be any change in the original marks already awarded.

21.
21.1

21.2

21.3

21.4

21.5

21.6

21.7

21.8.

AWARD OF DEGREE
Classification of degree will be as follows:

CGPA >6.5 and CGPA >5.5and CGPA >5.0 and
CGPA >8.0 <80 <65 <55 CGPA<5.0
Flrs'g C;Iassf with First Class Second Class Pass Class Fail
Distinction

A student with final CGPA (at the end of the under graduate programme) >8.00, and fulfilling the
following conditions - shall be placed in ‘first class with distinction’. However,

(@ Should have passed all the courses in ‘first appearance’ within the first 4 academic years (or 8
sequential semesters) from the date of commencement of first year first semester.

(b)

Should have secured a CGPA >8.00, at the end of each of the 8 sequential semesters, starting from
| year | semester onwards.

(c) Should not have been detained or prevented from writing the semester end examinations in any
semester due to shortage of attendance or any other reason.

A student not fulfilling any of the above conditions with final CGPA >8 shall be placed in “first class’.

Students with final CGPA (at the end of the B.Tech program) >6.50 but <8.00 shall be placed in “first
class’.

Students with final CGPA (at the end of the B.Tech program) >5.50 but <6.50, shall be placed in
‘second class’.

All other students who qualify for the award of the degree (as per item 19), with final CGPA (at the end
of the B.Tech program) >5.0 but <5.50, shall be placed in ‘pass class’.

A student with final CGPA (at the end of the B.Tech program) < 5.00 will not be eligible for the award
of the degree.

Students fulfilling the conditions listed under item 21.2 alone will be eligible for award of ‘Gold
Medal’.

In order to extend the benefit to the students with one/two backlogs after either VI semester or VIII
semester, GRAFTING option is provided to the students enabling their placements and fulfilling
graduation requirements. Following are the guidelines for the Grafting:

15|Page

(a) Grafting will be done among the courses within the semester shall draw a maximum of 7 marks
from the any one of the cleared courses in the semester and will be grafted to the failed course in
the same semester.

(b) Students shall be given a choice of grafting only once in the 4 years program, either after VI
semester (Option #1) or after V111 semester (Option #2).

(c) Option#1: Applicable to students who have maximum of TWO theory courses in VV and / or VI
semesters.

Option#2: Applicable to students who have maximum of TWO theory courses in VII and/ or
VII1 semesters.

(d) Eligibility for grafting:
i. Prior to the conduct of the supplementary examination after the declaration of VI or VIII
semester results.
ii. S/he must appear in all regular or supplementary examinations as per the provisions laid
down in regulations for the courses s/he appeals for grafting.

iii. The marks obtained by her/him in latest attempt shall be taken into account for grafting
of marks in the failed course(s).

21.9 Student, who clears all the courses upto VII semester, shall have a chance to appear for Quick
Supplementary Examination to clear the failed courses of VIII semester.

21.10 By the end of VI semester, all the students (regular and lateral entry students) shall complete one of the
Value added course and mandatory course with acceptable performance.

21.11 In case, a student takes more than one attempt in clearing a course, the final marks secured shall be
indicated by * mark in the grade sheet.

All the candidates who register for the semester end examination will be issued a memorandum of grades sheet
by the institute. Apart from the semester wise memorandum of grades sheet, the institute will issue the
provisional certificate and consolidated grades memorandum subject to the fulfillment of all the academic
requirements.

22. B.TECH WITH HONOURS OR ADDITIONAL MINORS IN ENGINEERING

Students acquiring 160 credits are eligible to get B.Tech degree in Engineering. A student will be eligible to
get B.Tech degree with Honours or additional Minors in Engineering, if s/he completes an additional 20
credits (3/4 credits per course). These could be acquired through MOOCs from SWAYAM / NPTEL / edX /
Coursera / Udacity / PurdueNext / Khan Academy / QEEE etc. The list for MOOCs will be a dynamic one, as
new courses are added from time to time. Few essential skill sets required for employability are also identified
year wise. Students interested in doing MOOC courses shall register the course title at their department office at
the start of the semester against the courses that are announced by the department. Any expense incurred for the
MOOC course / summer program should be met by the students.

Only students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are
eligible to register for B.Tech (Honours / Minor). After registering for the B.Tech (Honours / Minor) program,
if a student fails in any course, s/fhe will not be eligible for B.Tech (Honours / Minor).

Every Department to develop and submit a Honours / Minors — courses list of 5 - 6 theory courses.

Honours Certificate for Vertical in hissfher OWN Branch for Research orientation; Minor in any other
branch for Improving Employability.

For the MOOC:s platforms, where examination or assessment is absent (like SWAYAM) or where certification
is costly (like Coursera or edX), faculty members of the institute prepare the examination question papers, for
the courses undertaken by the students of respective Institutes, so that examinations Control Office (ECO) can
conduct examination for the course. There shall be one Continuous Internal Examination (Quiz exam for 30
marks) after 8 weeks of the commencement of the course and semester end examination (Descriptive exam for
70 marks) shall be done along with the other regular courses.

A student can enroll for both Minor & Honours or for two Minors. The final grade sheet will only show the

16|Page

basic CGPA corresponding to the minimum requirement for the degree. The Minors/Honours will be indicated
by a separate CGPA. The additional courses taken will also find separate mention in the grade sheet.

If a student drops (or terminated) from the Minor/Honours program, they cannot convert the earned credits into
free or core electives; they will remain extra. These additional courses will find mention in the grade sheet (but
not in the degree certificate). In such cases, the student may choose between the actual grade or a “Pass (P)”
grade and also choose to omit the mention of the course as for the following:

. All the courses done under the dropped Minor/Honours will be shown in the grade sheet
. None of the courses done under the dropped Minor/Honours will be shown in the grade sheet.

Honours will be reflected in the degree certificate as “B.Tech (Honours) in XYZ Engineering”. Similarly,
Minor as “B.Tech in XYZ Engineering with Minor in ABC”. If a student has done both Honours & Minor, it
will be acknowledged as “B.Tech (Honours) in XYZ Engineering with Minor in ABC”. And two minors will
be reflected as “B.Tech in XYZ Engineering with Minor in ABC and Minor in DEF”.

22.1. B.Tech with Honours

The total of 20 credits required to be attained for B.Tech Honours degree are distributed from V semester to
VII semester in the following way:

For V semester 4 — 8 credits
For VI semester 4 — 8 credits
For VIl semester 4 — 8 credits

Following are the details of such Honours which include some of the most interesting areas in the
profession today:

S. No | Department Honours scheme

1 Aeronautical Engineering Aerospace Engineering / Space Science etc.

2 Computer Science and Big data and Analytics / Cyber Physical Systems,
Engineering / Information Information Security / Cognitive Science / Artificial
Technology Intelligence/ Machine Learning / Data Science / Internet

of Things (loT) etc.

3 Electronics and Communication | Digital Communication / Signal Processing /
Engineering Communication Networks / VLSI Design / Embedded

Systems etc.

4 Electrical and Electronics Renewable Energy systems / Energy and Sustainability /
Engineering 10T Applications in Green Energy Systems etc.

5 Mechanical Engineering Industrial Automation and Robotics / Manufacturing

Sciences and Computation Techniques etc.
6 Civil Engineering Structural Engineering / Environmental Engineering etc.

22.2 B.Tech with additional Minor in Engineering

Every department to develop and submit Minor courses list of 5 - 6 Theory courses. Student from any
department is eligible to apply for Minor from any other department. The total of 20 credits to complete the
B.Tech (Minor) program by registering for MOOC courses each having a minimum of 3/4 credits offered by
reputed institutions / organization with the approval of the department. Registration of the student for B.Tech
(Minor), is from V Semester to VII Semester of the program in the following way:

For V semester 4 — 8 credits
For VI semester 4 — 8 credits
For VII semester 4 — 8 credits

Only students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are
eligible to register for B.Tech (Minor). After registering for the B.Tech (Minor) program, if a student fails in
any course, s/he will not be eligible for B.Tech (Minor).

17|Page

Every student shall also have the option to do a minor in engineering. A major is a primary focus of study and
a minor is a secondary focus of study. The minor has to be a subject offered by a department other than the
department that offers the major of the student or it can be a different major offered by the same
department. For example, a student with the declared major in Computer Science and Engineering (CSE) may
opt to do a minor in Physics; in which case, the student shall receive the degree B.Tech, Computer Science and
Engineering with a minor in Physics. A student can do Majors in chosen filed as per the career goal, and a
minor may be chosen to enhance the major thus adding the diversity, breadth and enhanced skills in the field.

22.3 Advantages of Minor in Engineering:

The minors mentioned above are having lots of advantages and a few are listed below:

1.

2.
3.
4

8.
9.

To apply the inter-disciplinary knowledge gained through a Major (Stream) + Minor.

To enable students to pursue allied academic interest in contemporary areas.

To provide an academic mechanism for fulfilling multidisciplinary demands of industries.

To provide effective yet flexible options for students to achieve basic to intermediate level
competence in the Minor area.

Provides an opportunity to students to become entrepreneurs and leaders by taking business/
management minor.

Combination in the diverse fields of engineering e.g., CSE (Major) + Electronics (Minor)
combination increases placement prospects in chip designing companies.

Provides an opportunity to Applicants to pursue higher studies in an inter-disciplinary field of
study.

Provides opportunity to the Applicants to pursue interdisciplinary research.

To increase the overall scope of the undergraduate degrees.

22.4 Following are the details of such Minor / Honours which include some of the most interesting
areas in the profession today:

Nk~ wNE

Aerospace Engineering

Space Science

Industrial Automation and Robotics
Computer Science and Engineering
Data Analytics

Machine Learning

Data Science

Acrtificial Intelligence

Information Security

Internet of Things

. Cyber Physical Systems
. Electronic System Design
. Renewable Energy Sources

Energy and Sustainability

. Manufacturing Sciences and Computation Techniques
. Structural Engineering

. Environmental Engineering

. Technological Entrepreneurship

. Materials Engineering

Physics (Materials / Nuclear / Optical / Medical)

. Mathematics (Combinatorics / Logic / Number theory / Dynamical systems and differential

equations/ Mathematical physics / Statistics and Probability).

23.0 TEMPORARY BREAK OF STUDY FROM THE PROGRAM

23.1 A candidate is normally not permitted to take a break from the study. However, if a candidate intends to
temporarily discontinue the program in the middle for valid reasons (such as accident or hospitalization
due to prolonged ill health) and to rejoin the program in a later respective semester, s/he shall seek the
approval from the Principal in advance. Such application shall be submitted before the last date for

18|Page

payment of examination fee of the semester in question and forwarded through the Head of the
Department stating the reasons for such withdrawal together with supporting documents and
endorsement of his / her parent / guardian.

23.2 The institute shall examine such an application and if it finds the case to be genuine, it may permit the
student to temporarily withdraw from the program. Such permission is accorded only to those who do
not have any outstanding dues / demand at the College / University level including tuition fees, any
other fees, library materials etc.

23.3 The candidate has to rejoin the program after the break from the commencement of the respective
semester as and when it is offered.

23.4 The total period for completion of the program reckoned from the commencement of the semester to
which the candidate was first admitted shall not exceed the maximum period specified in clause 19. The
maximum period includes the break period.

23.5 If any candidate is detained for any reason, the period of detention shall not be considered as ‘Break of
Study’.

24, TERMINATION FROM THE PROGRAM
The admission of a student to the program may be terminated and the student is asked to leave the institute in
the following circumstances:

a. The student fails to satisfy the requirements of the program within the maximum period stipulated for
that program.

b. A student shall not be permitted to study any semester more than three times during the entire program
of study.

C. The student fails to satisfy the norms of discipline specified by the institute from time to time.

25. TRANSCRIPT

The Transcript will be issued to the student as and when required and will contain a consolidated record of all
the courses undergone by him/her, grades obtained and CGPA upto the date of issue of transcript. Only last
letter grade obtained in a course by the student upto the date of issue of transcript will be shown in the
Transcript.

26. WITH-HOLDING OF RESULTS
If the candidate has not paid any dues to the institute / if any case of indiscipline / malpractice is pending
against him, the results and the degree of the candidate will be withheld.

27. GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of degrees to the students completing the
prescribed academic requirements in each case, in consultation with the University and by following the
provisions in the Statute. The college shall institute prizes and medals to meritorious students and award them
annually at the Graduation Day. This will greatly encourage the students to strive for excellence in their
academic work.

28. DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and are
expected not to indulge in any activity which will tend to bring down the honour of the institute. If a student
indulges in malpractice in any of the theory / practical examination, continuous assessment examinations,
he/she shall be liable for punitive action as prescribed by the institute from time to time.

19|Page

29. GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the Course
Teacher and the HOD as the members. This Committee shall solve all grievances related to the course under
consideration.

30. TRANSITORY REGULATIONS

A candidate, who is detained or has discontinued a semester, on readmission shall be required to do all the
courses in the curriculum prescribed for the batch of students in which the student joins subsequently.
However, exemption will be given to those candidates who have already passed such courses in the earlier
semester(s) he was originally admitted into and substitute subjects are offered in place of them as decided by
the Board of Studies. However, the decision of the Board of Studies will be final.

a) Four Year B.Tech Regular course:
A student who is following Jawaharlal Nehru Technological University (JNTUH) curriculum and
detained due to the shortage of attendance at the end of the first semester shall join the autonomous
batch of first semester. Such students shall study all the courses prescribed for the batch in which the
student joins and considered on par with regular candidates of Autonomous stream and will be governed
by the autonomous regulations.

A student who is following INTUH curriculum, detained due to lack of credits or shortage of attendance
at the end of the second semester or at the subsequent semesters shall join with the autonomous batch in
the appropriate semester. Such candidates shall be required to pass in all the courses in the program
prescribed by the Board of Studies concerned for that batch of students from that semester onwards to be
eligible for the award of degree. However, exemption will be given in the courses of the semester(s) of
the batch which he had passed earlier and substitute courses will be offered in place of them as decided
by the Board of Studies. The student has to clear all his backlog courses up to previous semester by
appearing for the supplementary examinations conducted by JNTUH for the award of degree. The total
number of credits to be secured for the award of the degree will be sum of the credits up to previous
semester under JNTUH regulations and the credits prescribed for the semester in which a candidate
seeks readmission and subsequent semesters under the autonomous stream. The class will be awarded
based on the academic performance of a student in the autonomous pattern.

b) Three Year B.Tech program under Lateral Entry Scheme:
A student who is following JINTUH curriculum and detained due to the shortage of attendance at the end
of the first semester of second year shall join the autonomous batch of third semester. Such students
shall study all the courses prescribed for the batch in which the student joins and considered on par with
Lateral Entry regular candidates of Autonomous stream and will be governed by the autonomous
regulations.

A student who is following JNTUH curriculum, if detained due to lack of credits or shortage of
attendance at the end of the second semester of second year or at the subsequent semesters shall join
with the autonomous batch in the appropriate semester. Such candidates shall be required to pass in all
the courses in the program prescribed by the Board of Studies concerned for that batch of students from
that semester onwards to be eligible for the award of degree. However, exemption will be given in the
courses of the semester(s) of the batch which he had passed earlier and substitute courses are offered in
place of them as decided by the Board of Studies. The student has to clear all his backlog courses up to
previous semester by appearing for the supplementary examinations conducted by JNTUH for the award
of degree. The total number of credits to be secured for the award of the degree will be sum of the
credits up to previous semester under INTUH regulations and the credits prescribed for the semester in
which a candidate seeks readmission and subsequent semesters under the autonomous status. The class
will be awarded based on the academic performance of a student in the autonomous pattern.

20|Page

c)

d)

Transfer candidates (from non-autonomous college affiliated to INTUH):

A student who is following JNTUH curriculum, transferred from other college to this institute in third
semester or subsequent semesters shall join with the autonomous batch in the appropriate semester. Such
candidates shall be required to pass in all the courses in the program prescribed by the Board of Studies
concerned for that batch of students from that semester onwards to be eligible for the award of degree.
However, exemption will be given in the courses of the semester(s) of the batch which he had passed
earlier and substitute courses are offered in their place as decided by the Board of Studies. The student
has to clear all his backlog courses up to previous semester by appearing for the supplementary
examinations conducted by JNTUH for the award of degree. The total number of credits to be secured
for the award of the degree will be the sum of the credits up to the previous semester under JINTUH
regulations and the credits prescribed for the semester in which a candidate joined after transfer and
subsequent semesters under the autonomous status. The class will be awarded based on the academic
performance of a student in the autonomous pattern.

Transfer candidates (from an autonomous college affiliated to INTUH):

A student who has secured the required credits up to previous semesters as per the regulations of other
autonomous institutions shall also be permitted to be transferred to this institute. A student who is
transferred from the other autonomous colleges to this institute in third semester or subsequent
semesters shall join with the autonomous batch in the appropriate semester. Such candidates shall be
required to pass in all the courses in the program prescribed by the Board of Studies concerned for that
batch of students from that semester onwards to be eligible for the award of degree. However,
exemption will be given in the courses of the semester(s) of the batch which he had passed earlier and
substitute subjects are offered in their place as decided by the Board of Studies. The total number of
credits to be secured for the award of the degree will be the sum of the credits up to previous semester as
per the regulations of the college from which he is transferred and the credits prescribed for the semester
in which a candidate joined after transfer and subsequent semesters under the autonomous status. The
class will be awarded based on the academic performance of a student in the autonomous pattern.

Readmission from IARE-R16/R18 to IARE-UG.20 regulations

A student took admission in IARE-R18 Regulations, detained due to lack of required number of credits
or percentage of attendance at the end of any semester is permitted to take re-admission at appropriate
level under any regulations prevailing in the institute subject to the following rules and regulations.

1. Student shall pass all the courses in the earlier scheme of regulations (IARE - R18). However, in
case of having backlog courses, they shall be cleared by appearing for supplementary examinations
conducted under IARE - R18 regulations from time to time.

2. After rejoining, the student is required to study the courses as prescribed in the new regulations for
the re-admitted program at that level and thereafter.

3. If the student has already passed any course(s) of readmitted program in the earlier regulation /
semester of study, such courses are exempted in the new scheme to appear for the course(s).

4. The courses that are not done in the earlier regulations / semester as compared with readmitted
program need to be cleared after readmission by appearing for the examinations conducted time to
time under the new regulations.

5. In general, after transition, course composition and number of credits / semester shall be balanced
between earlier and new regulations on case to case basis.

6. In case, the students who do not have option of acquiring required credits with the existing courses
offered as per the new curriculum, credit balance can be achieved by clearing the additional courses
offered by the respective departments (approved in Academic Council meeting). The additional
courses that are offered can be of theory or laboratory courses and shall be offered during semester.

7. Students re-joined in 11l semester shall be treated on par with “Lateral Entry” students for credits
and graduation requirements. However, the student shall clear all the courses in B.Tech | Semester
and B.Tech Il Semester as per IARE-R18 regulations.

21|Page

31. REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations and
syllabi if found necessary and on approval by the Academic Council and the Governing Body and shall be
binding on the students, faculty, staff, all authorities of the Institute and others concerned.

22|Page

FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT AUTONOMY

1. Who grants Autonomy? UGC, Govt., AICTE or University
In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is the
respective University that finally grants autonomy but only after concurrence from the respective state
Government as well as UGC. The State Government has its own powers to grant autonomy directly to
Govt. and Govt. aided Colleges.

2 Shall IARE award its own Degrees?
No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a mention of
the name IARE on the Degree Certificate.

3 What is the difference between a Deemed University and an Autonomy College?
A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed University
is usually a Non-Affiliating version of a University and has similar responsibilities like any University. An
Autonomous College enjoys Academic Autonomy alone. The University to which an autonomous college
is affiliated will have checks on the performance of the autonomous college.

4 How will the Foreign Universities or other stake — holders know that we are an Autonomous College?
Autonomous status, once declared, shall be accepted by all the stake holders. The Govt. of Telangana
mentions autonomous status during the First Year admission procedure. Foreign Universities and Indian
Industries will know our status through our website.

5 What is the change of Status for Students and Teachers if we become Autonomous?
An autonomous college carries a prestigious image. Autonomy is actually earned out of our continued past
efforts on academic performances, our capability of self- governance and the kind of quality education we
offer.

6 Who will check whether the academic standard is maintained / improved after Autonomy? How will
it be checked?
There is a built in mechanism in the autonomous working for this purpose. An Internal Committee called
Academic Program Evaluation Committee, which will keep a watch on the academics and keep its reports
and recommendations every year. In addition the highest academic council also supervises the academic
matters. The standards of our question papers, the regularity of academic calendar, attendance of students,
speed and transparency of result declaration and such other parameters are involved in this process.

7 Will the students of IARE as an Autonomous College qualify for University Medals and Prizes for
academic excellence?
No. IARE has instituted its own awards, medals, etc. for the academic performance of the students.
However for all other events like sports, cultural on co-curricular organized by the University the students
shall qualify.

8 Can IARE have its own Convocation?
No. Since the University awards the Degree the Convocation will be that of the University, but there will
be Graduation Day at IARE.

9 Can IARE give a provisional degree certificate?
Since the examinations are conducted by IARE and the results are also declared by IARE, the college
sends a list of successful candidates with their final Grades and Grade Point Averages including CGPA to
the University. Therefore with the prior permission of the University the college will be entitled to give the
provisional certificate.

23|Page

10

11

12

13

14

15

16

17

Will Academic Autonomy make a positive impact on the Placements or Employability?
Certainly. The number of students qualifying for placement interviews is expected to improve, due to
rigorous and repetitive classroom teaching and continuous assessment. Also the autonomous status is more
responsive to the needs of the industry. As a result therefore, there will be a lot of scope for industry
oriented skill development built-in into the system. The graduates from an autonomous college will
therefore represent better employability.

What is the proportion of Internal and External Assessment as an Autonomous College?
Presently, it is 60% external and 40% internal. As the autonomy matures the internal assessment
component shall be increased at the cost of external assessment.

Is it possible to have complete Internal Assessment for Theory or Practicals?
Yes indeed. We define our own system. We have the freedom to keep the proportion of external and
internal assessment component to choose.

Why Credit based Grade System?
The credit based grade system is an accepted standard of academic performance the world over in all
Universities. The acceptability of our graduates in the world market shall improve.

What exactly is a Credit based Grade System?

The credit based grade system defines a much better statistical way of judging the academic performance.
One Lecture Hour per week of Teaching Learning process is assigned One Credit. One hour of laboratory
work is assigned half credit. Letter Grades like A, B,C,D, etc. are assigned for a Range of Marks. (e.g.
91% and above is A+, 80 to 90 % could be A etc.) in Absolute Grading System while grades are awarded
by statistical analysis in relative grading system. We thus dispense with sharp numerical boundaries.
Secondly, the grades are associated with defined Grade Points in the scale of 1 to 10. Weighted Average of
Grade Points is also defined Grade Points are weighted by Credits and averaged over total credits in a
Semester. This process is repeated for all Semesters and a CGPA defines the Final Academic Performance

What are the norms for the number of Credits per Semester and total number of Credits for UG/PG
program?

These norms are usually defined by UGC or AICTE. Usually around 25 Credits per semester is the
accepted norm.

What is a Semester Grade Point Average (SGPA)?

The performance of a student in a semester is indicated by a number called SGPA. The SGPA is the
weighted average of the grade points obtained in all the courses registered by the student during the
semester.

n

SGPA:i(Ci G,)/>.C

i=1 i=1

Where, C;i is the number of credits of the i course and G; is the grade point scored by the student in the i
course and i represent the number of courses in which a student registered in the concerned semester.
SGPA is rounded to two decimal places.

What is a Cumulative Grade Point Average (CGPA)?
An up-to-date assessment of overall performance of a student from the time of his first registration is

obtained by calculating a number called CGPA, which is weighted average of the grade points obtained in
all the courses registered by the students since he entered the Institute.

CGPA=3(C;S;)/3.C;
j=1 j=1
Where, S; is the SGPA of the j" semester and C; is the total number of credits upto the semester and m

24|Page

18

19

20

21

22

23

24

25

26

27

28

29

represent the number of semesters completed in which a student registered upto the semester. CGPA is
rounded to two decimal places.

Is there any Software available for calculating Grade point averages and converting the same
into Grades?
Yes, The institute has its own MIS software for calculation of SGPA, CGPA, etc.

Will the teacher be required to do the job of calculating SGPAs etc. and convert the same into
Grades?

No. The teacher has to give marks obtained out of whatever maximum marks as it is. Rest is all done by
the computer.

Will there be any Revaluation or Re-Examination System?

No. There will double valuation of answer scripts. There will be a makeup Examination after a reasonable
preparation time after the End Semester Examination for specific cases mentioned in the Rules and
Regulations. In addition to this, there shall be a ‘summer term’ (compressed term) followed by the End
Semester Exam, to save the precious time of students.

How fast Syllabi can be and should be changed?
Autonomy allows us the freedom to change the syllabi as often as we need.

Will the Degree be awarded on the basis of only final year performance?
No. The CGPA will reflect the average performance of all the semester taken together.

What are Statutory Academic Bodies?

Governing Body, Academic Council, Examination Committee and Board of Studies are the different
statutory bodies. The participation of external members in everybody is compulsory. The institute has
nominated professors from IIT, NIT, University (the officers of the rank of Pro-vice Chancellor, Deans
and Controller of Examinations) and also the reputed industrialist and industry experts on these bodies.

Who takes Decisions on Academic matters?

The Governing Body of institute is the top academic body and is responsible for all the academic
decisions. Many decisions are also taken at the lower level like Boards of Studies. Decisions taken at the
Boared of Studies level are to be ratified at the Academic Council and Governing Body.

What is the role of Examination committee?

The Examinations Committee is responsible for the smooth conduct of internal, End Semester and make
up Examinations. All matters involving the conduct of examinations spot valuations, tabulations
preparation of Grade Sheet etc fall within the duties of the Examination Committee.

Is there any mechanism for Grievance Redressal?
The institute has grievance redressal committee, headed by Dean - Student affairs and Dean - IQAC.

How many attempts are permitted for obtaining a Degree?
All such matters are defined in Rules & Regulation

Who declares the result?

The result declaration process is also defined. After tabulation work wherein the SGPA, CGPA and final
Grades are ready, the entire result is reviewed by the Moderation Committee. Any unusual deviations or
gross level discrepancies are deliberated and removed. The entire result is discussed in the Examinations
and Result Committee for its approval. The result is then declared on the institute notice boards as well put
on the web site and Students Corner. It is eventually sent to the University.

Who will keep the Student Academic Records, University or IARE?

25|Page

30

31

32

It is the responsibility of the Dean, Academics of the Autonomous College to keep and preserve all the
records.

What is our relationship with the INT University?
We remain an affiliated college of the JNT University. The University has the right to nominate its
members on the academic bodies of the college.

Shall we require University approval if we want to start any New Courses?
Yes, It is expected that approvals or such other matters from an autonomous college will receive priority.

Shall we get autonomy for PG and Doctoral Programs also?
Yes, presently our PG programs also enjoying autonomous status.

26|Page

MALPRACTICE RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

S. No

Nature of Malpractices/Improper conduct

If the candidate:

Punishment

1. (a)

Possesses or keeps accessible in examination hall,
any paper, note book, programmable calculator,
cell phone, pager, palm computer or any other
form of material concerned with or related to the
subject of the examination (theory or practical) in
which he is appearing but has not made use of
(material shall include any marks on the body of
the candidate which can be used as an aid in the
subject of the examination)

Expulsion from the examination hall and
cancellation of the performance in that subject
only.

(b)

Gives assistance or guidance or receives it from
any other candidate orally or by any other body
language methods or communicates through cell
phones with any candidate or persons in or
outside the exam hall in respect of any matter.

Expulsion from the examination hall and
cancellation of the performance in that subject
only of all the candidates involved. In case of an
outsider, he will be handed over to the police and
a case is registered against him.

Has copied in the examination hall from any
paper, book, programmable calculators, palm
computers or any other form of material relevant
to the subject of the examination (theory or
practical) in which the candidate is appearing.

Expulsion from the examination hall and
cancellation of the performance in that subject
and all other subjects the candidate has already
appeared including practical examinations and
project work and shall not be permitted to appear
for the remaining examinations of the subjects of
that Semester/year.

The Hall Ticket of the candidate is to be
cancelled and sent to the Controller of
Examinations.

Impersonates any other candidate in connection
with the examination.

The candidate who has impersonated shall be
expelled from examination hall. The candidate
is also debarred and forfeits the seat. The
performance of the original candidate, who has
been impersonated, shall be cancelled in all the
subjects of the examination (including practicals
and project work) already appeared and shall not
be allowed to appear for examinations of the
remaining subjects of that semester/year. The
candidate is also debarred for two consecutive
semesters from class work and all semester end
examinations. The continuation of the course by
the candidate is subject to the academic
regulations in connection with forfeiture of seat.
If the imposter is an outsider, he will be handed
over to the police and a case is registered against
him.

Smuggles in the Answer book or additional sheet
or takes out or arranges to send out the question
paper during the examination or answer book or

Expulsion from the examination hall and
cancellation of performance in that subject and
all the other subjects the candidate has already

27|Page

additional sheet, during or after the examination.

appeared including practical examinations and
project work and shall not be permitted for the
remaining examinations of the subjects of that
semester/year. The candidate is also debarred for
two consecutive semesters from class work and
all semester end examinations. The continuation
of the course by the candidate is subject to the
academic regulations in connection with
forfeiture of seat.

Uses objectionable, abusive or offensive language
in the answer paper or in letters to the examiners
or writes to the examiner requesting him to award
pass marks.

Cancellation of the performance in that subject.

Refuses to obey the orders of the Controller of
Examinations ~ /Additional ~ Controller of
Examinations/any officer on duty or mishehaves
or creates disturbance of any kind in and around
the examination hall or organizes a walk out or
instigates others to walk out, or threatens the COE
or any person on duty in or outside the
examination hall of any injury to his person or to
any of his relations whether by words, either
spoken or written or by signs or by visible
representation, assaults the COE or any person on
duty in or outside the examination hall or any of
his relations, or indulges in any other act of
misconduct or mischief which result in damage to
or destruction of property in the examination hall
or any part of the Institute premises or engages in
any other act which in the opinion of the officer
on duty amounts to use of unfair means or
misconduct or has the tendency to disrupt the
orderly conduct of the examination.

In case of students of the college, they shall be
expelled from examination halls and cancellation
of their performance in that subject and all other
subjects the candidate(s) has (have) already
appeared and shall not be permitted to appear for
the remaining examinations of the subjects of
that semester/year. The candidates also are
debarred and forfeit their seats. In case of
outsiders, they will be handed over to the police
and a police case is registered against them.

Leaves the exam hall taking away answer script or
intentionally tears off the script or any part thereof
inside or outside the examination hall.

Expulsion from the examination hall and
cancellation of performance in that subject and
all the other subjects the candidate has already
appeared including practical examinations and
project work and shall not be permitted for the
remaining examinations of the subjects of that
semester/year. The candidate is also debarred
for two consecutive semesters from class work
and all semester end examinations. The
continuation of the course by the candidate is
subject to the academic regulations in connection
with forfeiture of seat.

Possess any lethal weapon or firearm in the
examination hall.

Expulsion from the examination hall and
cancellation of the performance in that subject
and all other subjects the candidate has already
appeared including practical examinations and
project work and shall not be permitted for the
remaining examinations of the subjects of that
semester/year. The candidate is also debarred
and forfeits the seat.

28|Page

If student of the college, who is not a candidate
for the particular examination or any person not
connected with the college indulges in any
malpractice or improper conduct mentioned in
clause 6 to 8.

Student of the colleges expulsion from the
examination hall and cancellation of the
performance in that subject and all other subjects
the candidate has already appeared including
practical examinations and project work and
shall not be permitted for the remaining
examinations of the subjects of that
semester/year. The candidate is also debarred
and forfeits the seat.

Person(s) who do not belong to the College will
be handed over to police and, a police case will
be registered against them.

10.

Comes in a drunken condition to the examination
hall.

Expulsion from the examination hall and
cancellation of the performance in that subject
and all other subjects the candidate has already
appeared including practical examinations and
project work and shall not be permitted for the
remaining examinations of the subjects of that
semester/year.

11.

Copying detected on the basis of internal
evidence, such as, during valuation or during
special scrutiny.

Cancellation of the performance in that subject
and all other subjects the candidate has appeared
including practical examinations and project
work of that semester/year examinations.

12.

If any malpractice is detected which is not
covered in the above clauses 1 to 11 shall be
reported to the University for further action to
award suitable punishment.

FAILURE TO READ AND UNDERSTAND
THE REGULATIONS IS NOT AN EXCUSE

29|Page

7 INSTITUTE OF AERONAUTICAL ENGINEERING

) S

% e

% w
&

e, o
¥ roR WY

(Autonomous)
Dundigal, Hyderabad — 500043

COURSE CATALOG
(INFORMATION TECHNOLOGY)
| SEMESTER
. Scheme of
= Periods per 2 L
Course o3 5 | Examination
Code Course Name g5 Category week 8 Max. Marks
@ LT[P CIA[SEE[Total
THEORY
AHSCO02 | Linear Algebra and Calculus BSC Foundation 3 1 0 4 |30 70 | 100
AHSCO06 | Chemistry BSC | Foundation | 2 | O 0 2 |30] 70 | 100
AEECO1 | Basic Electrical Engineering ESC | Foundation [3 | O 0 3 [30 | 70 | 100
ACSCO01 | Python Programming ESC Foundation 3 0 0 3 |30 70] 100
Experiential Engineering Education .
ACSC06 (EXEEd) — Academic Sucess ESC | Foundation | 2 [O 0 1 |30 70 (100
PRACTICAL
AEEC04 | Basic Electrical Engineering ESC | Foundation | 0 | 0 | 3 [15|30 |70 |100
Laboratory
ACSCO02 | Python Programming Laboratory ESC Foundation 3 151 30| 70 | 100
AMECO04 | Engineering Workshop Practice ESC Foundation 1 |30 | 70 |100
TOTAL 13 (01| 08 | 17 | 240(560(800
Il SEMESTER
. Scheme of
S Periods per 2 L
Course 3 3 5 | Examination
Code Course Name g% Category week S Max. Marks
@ LITTP CIAJSEE] Total
THEORY
AHSCO1 | English HSMC| Foundation 3 0 0 3 130 (70| 100
AHSCO08 | Probability and Statistics BSC | Foundation 3 1 0 4 |30 70| 100
AHSC09 | Applied Physics BSC | Foundation 3 0 0 3 [30]) 70| 100
ACSC04 Esrﬁ]%racmming for Problem Solving ESC | Foundation | 3 | 0 | o | 3 |30 70| 100
PRACTICAL
English Language and Communication .
AHSCO04 Skills Laboratory HSMC | Foundation 0 2 1 [(30] 70| 100
AHSCO5 | Physics Laboratory BSC | Foundation 0 0 3 (15|30 70| 100
ACscos | Programming for Problem Solving ESC | Foundation | 0 | 0 | 3 |15]30] 70| 100
using C Laboratory
TOTAL 12 |01 | 08 | 17 [210|490]| 700

0|Page

111 SEMESTER

B o Periods per | 2 Scheme of
Course C N 28| cat week = | Examination
Code ourse Name 3 :: ategory 5 Max. Marks
@ L|(T]|P CIA | SEE [Total
THEORY
AITCO1 Discrete Mathematical Structures PCC Core 3 110 4 30 70 | 100
Acscoy | Gomputer Organization and pcc | core 3 {oflo| 3| 30] 70|10
Architecture
ACSCO08 Data Structures PCC Core 3 00 3 30 70 | 100
AITC02 Programming with Objects PCC Core 310101 3 30 70 | 100
AECC08 [Analog and Digital Electronics ESC Core 3]1]0]0] 3 30 70 | 100
ACSC09 | EXEEd - Prototype / Design Building ESC | Foundation [2 | 0 | O 1 30 70 | 100
PRACTICALS
ACSC10 Data Structures Laboratory PCC Core 0 |03]15](30 70 | 100
AITCO3 Programming with Objects Laboratory [PCC Core 0 |0]3(|215] 3 | 70 | 100
Acsciy | Advanced Python Programming pcc | coe |0 |1|2]21]30]| 70|10
Laboratory
MANDATORY / VALUE ADDED COURSES
AHSC10 Essence of Indian Traditional MC MC-1 Ref: 8.4 Academic Regulations, UG.20
Knowledge
TOTAL 17 |02] 08| 22 | 270 | 630 | 900
IV SEMESTER
- : Scheme of
S Periods per z Lo
Course C Nam 2 2| cateqor week 5 | Examination
Code ourse Name £g gory 5 Max. Marks
@ L|{T]|P CIA | SEE [Total
THEORY
AITC04 | Theory of Computation PCC Core 3 1 0 4 30 70 | 100
ACSC12 | Operating Systems PCC Core 3 0 0 3 30 70 | 100
AITCO05 | Database Management Systems PCC Core 3 0 0 3 30 70 | 100
ACSC13 | Design and Analysis of Algorithms PCC Core 3 0 0 3 30 70 | 100
AITC06 | Computer Networks PCC Core 3 1 0 4 30 70 | 100

EXEEd - Fabrication / Model

ACSC14 Development ESC | Foundation| 2 0 0 1 30 [70 | 100
PRACTICALS
Database Management Systems
AITCO7 Laboratory PCC Core 0 0 3 15| 30 | 70 | 100
Design and Analysis of Algorithms
ACSC15 Laboratory PCC Core 0 0 3 15| 30 | 70 | 100
AITCO08 | Linux Internals Laboratory PCC Core 0 0 2 1 30 70 | 100
MANDATORY / VALUE ADDED COURSES
AHSC14 | Indian Constitution MC-II MC Ref: 8.4 Academic Regulations, UG.20
TOTAL 17 | 02 | 08 22 | 270 | 630 | 900

31|Page

V SEMESTER

- . - Scheme of
Course g Periods 5 | Examination
Code Course Name % Category | per week S Max. Marks
@ L[T| P CIA[SEE |Total
THEORY
ACSC40 |Compiler Design PCC Core 31| 0 4 30 70 | 100
AITC09 |Web Application Development PCC Core 3/0| 0 3 30 70 | 100
AITC11 |Cryptography and Network Security PCC Core 31| 0 4 30 70 | 100
ACSC19 |Object Oriented Software Engineering PCC Core 3110 4 30 | 70 | 100
Professional Elective — | PEC Elective 310 O 3 30 70 | 100
ACSC20 |EXEEd — Project Based Learning ESC | Foundation | 2 | 0| O 1 30 70 | 100
PRACTICALS
Object Oriented Software Design
ACSC21 Laboratory PCC Core 0|0| 3 |15]| 30 | 70 | 100
Web Application Development
AITC10 Laboratory PCC Core 0|0| 3 |15]| 30 | 70 | 100
MANDATORY / VALUE ADDED COURSES
ACSC22 Compgtitive Programming using Graph VAC Skill Ref: 8.6, Academic Regulations-UG.20
Algorithms
TOTAL 17 |03 | 06 | 22 | 240 | 560 | 800
VI SEMESTER
Course 83 Periods per | £ Eiglrlrfil:::t(i):n
—_— D =
Code Course Name 3 :: Category week 5 Max. Marks
@ LT[P CIA[SEE[Total
THEORY
AITC17 |Data Warehousing and Data Mining PCC Core 3 1 0 30 | 70 | 100
AITC18 |Software Testing Methodologies PCC Core 3 0 4 | 30 | 70 | 100
AHscig | Business Economics and Financial HSMC | Foundation | 3 | 0 | 0 | 3 | 30 | 70 | 100
Analysis
Professional Elective — 11 PEC Elective 3 0 0 3 30 | 70 | 100
Open Elective — | OEC Elective 3 0 0 3 30 | 70 | 100
ACSC27 |EXEEd - Research Based Learning ESC | Foundation | 2 0 0 1 30 | 70 | 100
Data Warehousing and Data Mining
AITC22 Laboratory PCC Core 110 2 2 | 30 | 70 | 100
Software Testing Methodologies
AITC23 Laboratory PCC Core 110 2 2 | 30 | 70 | 100
MANDATORY / VALUE ADDED COURSES
ACSC28 |Go Programming VAC Skill Ref: 8.6, Academic Regulations-UG.20
TOTAL 19 | 02 | 04 | 22 | 240 | 560 | 800

32|Page

VIl SEMESTER

= : Scheme of
Course a8 Periods é Examination
Code Course Name g = Category | per week o Max. Marks
? L[T[P | “[CIA[SEE] Total
THEORY
AITC24 |Big Data and Business Analytics PCC Core 3110 4 30 70 100
AITC25 |Cloud Computing PCC Core 30| 0 3 30 70 100
Professional Elective - 111 PEC Elective 3]10]0 3 30 70 100
Professional Elective - IV PEC Elective 30| 0 3 30 | 70 100
Open Elective - 11 OEC Elective 3100 3 30 70 100
PRACTICALS
AITC29 E;%O'Dr::gr@”d Business Analytics PCC Coe | 0|0| 3 |15]|3 | 70| 100
AITC30 |Cloud Computing Laboratory PCC Core 0|0 3 |15 30 70 100
AITC31 |Project Work (Phase — 1) PROJ Project 0 (0] 4 2 30 70 100
TOTAL 15|01 10 | 21 | 240 | 560 | 800
VIl SEMESTER
Course g s Periods é Ei;llllfil::t(i)(fn
Code Course Name g' 5 | Category | per week | 8 Max. Marks
@ LT [P | “ [CIA[SEE] Total
THEORY
Professional Elective -V PEC Elective |3 | 0 | O 30 70 100
Professional Elective -VI PEC Elective |3 | 0 | O 3 30 70 100
Open Elective - 111 OEC Elective |3 | 0 | O 3 30 70 100
PRACTICALS
AITC32 |Project Work (Phase — I1) PROJ Project 0|0 |16 8 30 70 100
TOTAL 09|00 |16 | 17 120 | 280 | 400

33|Page

PROFESSIONAL ELECTIVES

PE - I PE - 11 PE - 111
Course code Digital Media Course code Course code | Applied Machine
. . Software Development .
Engineering Learning
. Principles of
AITC13 ';/lel‘gf"med'?tals of ACICO4 gg\'/':l gor':‘éﬁr; oaches | AITC26 | Artificial
ultimedia P PP Intelligence
AITc14 | Digital Video Acicos | Software Project AITC27 |Machine Learning
Communication Management
Video and Audio Software Architecture and Data Handling and
AITCLS Technology ACICO6 Design Patterns AITC28 | y/isualization
Advanced Social,
AITC16 Media Engineering ACICO07 Software Reliability ACAC09 |Textand Media
Analytics
PE - IV PE -V PE - VI
Course code : Course code Course code
Sfeer - P Enterprise Networking _ Data
Systems Visualization
ACIC10 Principles of 10T ACIC14 Network Automation ACIC15 Pattern Recognition
. Human Computer Information
ACIC11 Computer Forensics ACDC12 Interaction (Ul & UX) ACDC18 Retrieval System
. Internet Systems
ACIC12 Cyber Security ACSC37 Programming ACIC16 E-Commerce
Cyber Physical . Visualizations and
ACCC16 Systems ACSC38 RUST Programming ACIC17 Animations

34|Page

OPEN ELECTIVE -1

Course Code

Course Title

AHSC15 Soft Skills and Interpersonal Communication
AHSC16 Cyber Law and Ethics

AHSC17 Economic Policies in India

AHSC18 Global Warming and Climate Change
AHSC19 Intellectual Property Rights

AHSC20 Entrepreneurship

OPEN ELECTIVES — 11

Course Code

Course Title

AEEC29 Industrial Automation and Control
AEEC30 Artificial Neural Networks
AEEC31 Renewable Energy Sources
AECC38 Basic Electronic Engineering
AECC39 Principles of Communications
AECC40 Embedded Systems

OPEN ELECTIVE - 111

Course Code

Course Title

AAEC30 Flight Control Theory

AAEC31 Airframe Structural Design
AMEC34 Industrial Management

AMEC35 Elements of Mechanical Engineering
ACEC30 Modern Construction Materials
ACEC31 Disaster Management

VALUE ADDED COURSES / MANDATORY COURSES

Course Code

Course Title

AHSC10 Essence of Indian Traditional Knowledge (MC)

AHSC14 Indian Constitution (MC)

ACSC22 Competitive Programming using Graph Algorithms (VAC)
ACSC28 Go Programming (VAC)

3B|Page

SYLLABUS
(I - VIII SEMESTERS)

333333

LINEAR ALGEBRA AND CALCULUS

| Semester: Common for All Branches

Course Code Category Hours / Week Credits Maximum Marks
) L T P C CIA SEE Total
AHSCO02 Foundation
3 1 - 4 30 70 100
Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

Prerequisite: Basic principles of algebra and calculus

I. COURSE OVERVIEW:

Linear algebra is a sub-field of mathematics concerned with vectors, matrices, and linear transforms. Calculus is the
branch of mathematics which majorly deals with derivatives and integrals. Linear algebra is a key foundation to the
field of machine learning. Matrices are used in computer animations, color image processing. Eigenvalues are used by
engineers to discover new and better designs for the future. Differential equations have wide applications in various
engineering and science disciplines as the laws of physics are generally written down as differential equations.The
Fourier series has many applications in electrical engineering, image processing etc.The course includes types of
Matrices, Rank, methods of finding rank, eigen values and eigen vectors, maxima and minima of functions of several
variables, solutions of higher order ordinary differential equations and Fourier series.

I1. COURSE OBJECTIVES:
The students will try to learn:
I. The principles of Eigen value analysis and linear transformations, Matrix rank finding methods
Il. The calculus of functions of several variables and the concept of maxima-minima for a three-dimensional
surface.
I1l. The analytical methods for solving higher order differential equations with constant coefficients.
IV. Fourier series expansions in standard intervals as well as arbitrary intervals.

1. COURSE SYLLABUS:

MODULE-I: THEORY OF MATRICES (09)

Real matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew- Hermitian
and unitary matrices; Elementary row and column transformations, finding rank of a matrix by reducing to Echelon
form and Normal form; Finding the inverse of a matrix using Gauss-Jordan method,;

MODULE -11: LINEAR TRANSFORMATIONS (09)

Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and
independence of vectors; Linear transformation; Eigen values and Eigen vectors of a matrix; Diagonalization of
matrix by linear transformation.

MODULE -I111: FUNCTIONS OF SINGLE AND SEVERAL VARIABLES (09)
Mean value theorems: Rolle’s theorem, Lagrange’s theorem, Cauchy’s theorem-without proof.

Functions of several variables: Partial differentiation, Jacobian, functional dependence, maxima and minima of
functions with two variables and three variables. Method of Lagrange multipliers.

MODULE -IV: HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS (09)
Linear differential equations of second and higher order with constant coefficients.

Non-homogeneous term of the type f(x)=e™,sinax,cosaxand f(x)=x",e*v(x), Method of variation of
parameters.

MODULE -V: FOURIER SERIES (09)
Fourier expansion of periodic function in a given interval of length 27t; Fourier series of even and odd functions;
Fourier series in an arbitrary interval, Half- range Fourier sine and cosine expansions.

37|Page

IV. TEXT BOOKS

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36™ Edition, 2010.

2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
3. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11™ Reprint 2010.

V. REFERENCE BOOKS:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9™ Edition, John Wiley & Sons, 2006.
2. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
3. D. Poole, Linear Algebra: A Modern Introduction, 2" Edition, Brooks/Cole, 2005.

V1. WEB REFERENCES:

1. http://www.efunda.com/math/math_home/math.cfm
2. http://www.ocw.mit.edu/resourcs/#Mathematics

3. http://www.sosmath.com

4. http://mww.mathworld.wolfram.com

VII. E-TEXT BOOKS:
1. http://www.e-booksdirectory.com/details.php?ebook=10166
2. http://www.e-booksdirectory.com/details.php?ebook=7400re

38|Page

http://www.efunda.com/math/math_home/math.cfm
http://www.ocw.mit.edu/resourcs/#Mathematics
http://www.sosmath.com/
http://www.mathworld.wolfram.com/

CHEMISTRY

I Semester: CSE / CSE (AI&ML) / CSE (DS)/ CSE (CS)//CSIT/ IT
Il Semester: AE/ ME / CE / ECE/ EEE

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE Total
AHSCO06 Foundation
2 - - 2 30 70 100
Contact Classes: 45 Tutorial Classes: 0 Practical Classes: Nil Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The concepts developed in this course involve elements and compounds and their applied industrial applications. It
deals with topics such as batteries, corrosion and control of metallic materials, water and its treatment for different
purposes, engineering materials such as plastics, elastomers and biodegradable polymers, their preparation, properties
and applications, energy sources and environmental science. Sustainable chemistry that focuses on the design of the
products and processes that minimize or eliminate the use and generation of hazardous substances is also included.

Il. COURSE OBJECTIVES:
The students will try to learn:
I. The concepts of electrochemical principles and causes of corrosion in the new developments and breakthroughs
efficiently in engineering and technology.
Il. The different parameters to remove causes of hardness of water and their reactions towards complexometric
method.
I11. The polymerization reactions with respect to mechanisms and its significance in industrial applications.
IV. The Significance of Green chemistry to reduce pollution in environment by using natural resources.

I11. COURSE SYLLABUS

MODULE-I: ELECTROCHEMISTRY AND CORROSION (09)

Electro chemical cells: Electrode potential, standard electrode potential, Calomel electrode and Nernst equation;
Electrochemical series and its applications; Numerical problems; Batteries: Primary (Dry cell) and secondary batteries
(Lead-acid storage battery, Li-ion battery). Corrosion: Causes and effects of corrosion: Theories of chemical and
electrochemical corrosion, mechanism of electrochemical corrosion; Corrosion control methods: Cathodic protection,
sacrificial anode and impressed current Cathodic protection; Surface coatings: Metallic coatings- Methods of coating-
Hot dipping- galvanization and tinning, electroplating.

MODULE -11: WATER TECHNOLOGY (09)

Introduction: Hardness of water, causes of hardness; types of hardness: temporary and permanent hardness, expression
and units of hardness; estimation of hardness of water by complexometric method; potable water and its specifications,
Steps involved in the treatment of water, disinfection of water by chlorination and ozonization; External treatment of
water; lon-exchange process; Desalination of water: Reverse osmosis, numerical problems.

MODULE-II1: ENGINEERING MATERIALS (09)

Polymers-classification with examples, polymerization-addition, condensation and co-polymerization;

Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; Preparation, properties and applications
of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Elastomers: Natural rubber, processing of natural rubber,
vulcanization; Buna-s and Thiokol rubber; Biodegradable polymers.

Lubricants: characteristics of lubricants, mechanism of lubrication — thick film, thin film, extreme pressure lubrication
properties — flash and fire point, cloud and pour point, viscosity and oiliness of lubricants.

MODULE -1V: GREEN CHEMISTRY AND FUELS (09)

Introduction: Definition of green chemistry, methods of green synthesis: aqueous phase, microwave method, phase
transfer catalyst and ultra sound method. Fuels: definition, classification of fuels ; Solid fuels: coal; analysis of coal:
proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Gaseous fuels: Composition, characteristics
and applications of LPG and CNG; Calorific value: Gross Calorific value(GCV) and Net Calorific value(NCV),
numerical problems.

MODULE -V: NATURAL RESOURCES AND ENVIRONMENTAL POLLUTION (09)

Natural resources: Classification of resources, living and nonliving resources; Water resources: Use and over utilization

39|Page

of surface and ground water, floods and droughts, dams, benefits and problems; Land resources; Energy resources:
renewable and non-renewable energy sources, use of alternate energy source. Environmental pollution: Causes, effects
and control measures of air pollution, water pollution, soil pollution and noise pollution.

IV. TEXT BOOKS:
1. P. C. Jain and Monica Jain, “Engineering Chemistry”, DhanpatRai Publishing Company, 16" Edition, 2017.
2. ShashiChawla, “Text Book of Engineering Chemistry” DhanatRai and Company, 2017.

3. Prashanthrath, B.Rama Devi, Ch.VenkataRamana Reddy, Subhendu Chakroborty, Cengage Learning
Publishers, 1% Edition, 2018.

V. REFERENCE BOOKS:

1. Bharathi Kumari, “Engineering Chemistry”, VGS Book Links, 10" Edition, 2018.

2. B. Siva Shankar, “Engineering Chemistry”, Tata McGraw Hill Publishing Limited, 3" Edition, 2015.

3. S.S. Dara, Mukkanti, “Text of Engineering Chemistry”, S. Chand & Co, New Delhi, 121" Edition, 2006.

VI. WEB REFERENCES:
1. Engineering chemistry (NPTEL Web-book), by B.L.Tembe, Kamaluddin and M.S.Krishnan.

http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/About-
Faculty.html

2. Polymer Science (NPTEL Web-book), by Prof. Dibakar Dhara
https://onlinecourses.nptel.ac.in/noc20_cy21/preview

3. Environmental Chemistry and Analysis(NPTEL Web-book), by Prof. M.S.Subramanian
https://nptel.ac.in/courses/122/106/122106030/

40|Page

http://www.tndte.com/
https://onlinecourses.nptel.ac.in/noc20_cy21/preview

BASIC ELECTRICAL ENGINEERING

| Semester : CSE / CSE (Al & ML)/ CSE (DS)/ CSE (CS)/CSIT/IT
Il Semester : AE/ ME / CE

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA | SEE | Total
AEECO01 Foundation
3 - - 3 30 70 100
Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: Linear Algebra and Calculus

I. COURSE OVERVIEW:

The Basic Electrical Engineering enables knowledge on electrical quantities such as current, voltage, power, energy to
know the impact of technology in global and societal context, provides knowledge on basic DC and AC circuits used in
electrical and electronic devices, highlights the importance of transformers, electrical machines in generation,
transmission and distribution of electric power, identify the types of electrical machines suitable for particular
applications.

Il. COURSE OBJECTIVES:

The students will try to learn:

Understand the basic electrical circuits and circuit laws to study the behavior AC and DC circuits.
Analyze electrical circuits with the help of network theorems.

Outline the concepts of network topology to reduce complexity of network and study its behavior.
Demonstrate the working principle of AC and DC machines.

Analyse single phase transformers circuits.

I11.COURSE SYLLABUS:

MODULE - I: INTRODUCTION TO ELECTRICAL CIRCUITS (09)

Circuit concept: Ohm’s law, Kirchhoff’s laws, equivalent resistance of networks, Source transformation, Star to delta
transformation, mesh and nodal analysis; Single phase AC circuits: Representation of alternating quantities, RMS,
average, form and peak factor, concept of impedance and admittance.

MODULE - II: NETWORK THEOREMS AND NETWORK TOPOLOGY (09)

Network Theorems: Superposition, Reciprocity, Thevenin’s, Norton’s, Maximum power transfer for DC excitations
circuits. Network Topology: Definitions, Graph, Tree, Incidence matrix, Basic Cut Set and Basic Tie Set Matrices for
planar networks.

MODULE - I1l: DC MACHINES (09)
DC generators: Principle of operation, construction, EMF equation, types of DC generators. Losses and efficiency.

DC motors: Principle of operation, back EMF, torque equation, types of DC motors, Losses and efficiency, numerical
problems.

MODULE -1V: SINGLE PHASE TRANSFORMERS (08)

Single Phase Transformers: Principle of operation, construction, types of transformers, EMF equation, operation of
transformer under no load and on load, Phasor diagrams, equivalent circuit, efficiency, regulation and numerical
problems.

MODULE - V: AC MACHINES (09)

Three Phase Induction motor: Principle of operation, slip, slip -torque characteristics, efficiency and applications;
Alternators: Introduction, principle of operation, constructional features, calculation of regulation by synchronous
impedance method and numerical problems.

IV. TEXT BOOKS:

1. A Chakrabarthy, “Electric Circuits”, DhanipatRai& Sons, 6" Edition, 2010.

2. A Sudhakar, Shyammohan S Palli, “Circuits and Networks”, Tata McGraw-Hill, 4" Edition, 2010.
3. A E Fitzgerald and C Kingsley, "Electric Machinery”, McGraw Hill Education, 2013.

41|Page

rwn e <

Vv
1
2
3
4

rwn e S

| JNagrath, DP Kothari, “Electrical Machines”, Tata McGraw-Hill publication, 3" Edition, 2010.

REFERENCE BOOKS:

John Bird, “Electrical Circuit Theory and Technology”, Newnes, 2™ Edition, 2003.

C L Wadhwa, “Electrical Circuit Analysis including Passive Network Synthesis”, International, 2" Edition, 2009.
David A Bell, “Electric circuits”, Oxford University Press, 7™ Edition, 2009.

PS Bimbra, “Electrical Machines”, Khanna Publishers, 2" Edition, 2008.

. WEB REFERENCES:

https://www.igniteengineers.com
https://www.ocw.nthu.edu.tw
https://www.uotechnology.edu.iq
https://www.iare.ac.in

I. E-TEXT BOOKS
https://www.bookboon.com/en/concepts-in-electric-circuits-ebook
https://www.www.jntubook.com
https://www.allaboutcircuits.com
https://www.freeengineeringbooks.com

42 |Page

https://www.uotechnology.edu.iq/
https://www.iare.ac.in/

PYTHON PROGRAMMING

| Semester: Common for all branches

Course Code Category Hours / Week Credits Maximum Marks
ACSCO1 Foundation L, TP C_|CIA| SEE | Toul
3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured
programming using the Python language, one of the most increasingly preferred languages for programming today.
Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh
platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java.
The course uses iPython Notebook to afford a more interactive experience. Topics include fundamentals of computer
programming in Python, object-oriented programming and graphical user interfaces.

Il. COURSE OBJECTIVES:

The students will try to learn:

I. Acquire programming skills in core Python.

[1. Acquire Object-oriented programming skills in Python.

I11. Develop the skill of designing graphical-user interfaces (GUI) in Python.

IV. Develop the ability to write database applications in Python.

V. Acquire Python programming skills to move into specific branches - Internet of Things (10T), Data Science,

Machine Learning (ML), Artificial Intelligence (Al) etc.

1. SYLLABUS:

MODULE - I: INTRODUCTION TO PYTHON (09)

Introduction to Python: Features of Python, History and Future of Python, Working with Python — interactive and script
mode, Identifiers and Keywords, Comments, Indentation and Multi-lining, Data types — built-in data types, Operators
and Expressions, Console Input/Output, Formatted printing, Built-in Functions, Library Functions.

MODULE - II: DECISION CONTROL STATEMENTS (09)

Selection/Conditional Branching Statements: if, if-else, nested if, if-elif-else statement(s), Basic Loop Structures/
Iterative Statements — while and for loop, Nested loops, break and continue statement, pass Statement, else Statement
used with loops.

MODULE - I1l: CONTAINER DATA TYPES (09)

Lists: Accessing List elements, List operations, List methods, List comprehension; Tuples: Accessing Tuple elements,
Tuple operations, Tuple methods, Tuple comprehension, Conversion of List comprehension to Tuple, Iterators and
Iterables, zip() function.

Sets: Accessing Set elements, Set operations, Set functions, Set comprehension; Dictionaries: Accessing Dictionary
elements, Dictionary operations, Dictionary Functions, Nested Dictionary, Dictionary comprehension.

MODULE - IV STRINGS AND FUNCTIONS (09)

Strings: Accessing String elements, String properties, String operations.

Functions: Communicating with functions, Variable Scope and lifetime, return statement, Types of arguments, Lambda
functions, Recursive functions.

MODULE - V CLASSES AND OBJECTS (09)

Classes and Objects — Defining Classes, Creating Objects, Data Abstraction and Hiding through Classes, Class Method
and self Argument, Class variables and Object variables, __init()__ and __del__() method, Public and private data
members, Built-in Class Attributes, Garbage Collection. OOPs Features: Abstraction, Encapsulation, Inheritance, and
Polymorphism.

43|Page

IV. TEXT BOOKS:
1. Reema Thareja, “Python Programming - Using Problem Solving Approach”, Oxford Press, 1% Edition, 2017.
2. Dusty Philips, “Python 3 Object Oriented Programming”, PACKT Publishing, 2" Edition, 2015.

V. REFERENCE BOOKS:
1. Yashavant Kanetkar, Aditya Kanetkar, “Let Us Python”, BPB Publications, 2™ Edition, 2019.
2. Martin C. Brown, “Python: The Complete Reference”, McGraw Hill, Indian Edition, 2018.
3. Michael H.Goldwasser, David Letscher, “Object Oriented Programming in Python”, Prentice Hall, 1% Edition,
2007.
4. Taneja Sheetal, Kumar Naveen, “Python Programming — A Modular Approach”, Pearson, 1% Edition, 2017.
R Nageswar Rao, “Core Python Programming”, Dreamtech Press, 2018.

V1. WEB REFERENCES:

1. https://realPython.com/Python3-object-oriented-programming/

2. https://Python.swaroopch.com/oop.html

3. https://Python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
4. https://www.programiz.com/Python-programming/

44|Page

EXPERIENTIAL ENGINEERING EDUCATION (EXEEd) - ACADEMIC SUCCESS

I Semester: CSE / CSE (AI&ML) / CSE (DS)/ CSE(CS) / IT/CSIT
Il Semester: AE/ ME/CE/ECE/EEE

Course Code Category Hours / Week Credits Maximum Marks
) L T P C CIA SEE Total
ACSCO06 Foundation
2 - - 1 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

Prerequisite: There are no prerequisites to take this course

I.COURSE OVERVIEW:
The course aims to provide students with an understating of the different learning —coding platforms, role of the
entrepreneur, innovation and technology in customer centric engineering.

Il. COURSE OBJECTIVES:

The students will try to learn:
I. The different ways in engaging continuous learning process through the interaction with peers in related topics.
Il. The skills and potential opportunities using well know frameworks and analytical tools.
I11. The attitudes, values, characteristics, behavior and processes with processing an entrepreneurial mindset.

I11. COURSE OBJECTIVES:

WEEK -1
Introduction to EXEED - Dr. Ch. Srinivasulu

WEEK - 11:
Skill Development - Dr. G Ramu

WEEK - 1II:
Skill Development - Dr. G Ramu

WEEK - IV:
Open Source platforms for Learning , Practice and Excel in their field - Dr. M MadhuBala

WEEK - V:
Opportunities and challenges - Respective Department HOD’s

WEEK - VI:
Skill Development - Dr. G Ramu

WEEK - VII:
Skill Development - Dr. G Ramu

WEEK -VIII:
Entrepreneurial Mindset - Dr. J Sirisha Devi

WEEK - IX:
Entrepreneurial Mindset - Dr. J Sirisha Devi

WEEK - X:
Innovation Culture - Dr. M Pala Prasad Reddy

WEEK - XI:
Support & Funding from various organizations - Dr. M Pala Prasad Reddy

WEEK - XIlI:
Rapid Prototyping - Prof. V V S H Prasad

45|Page

WEEK - XI11:
Intellectual Property Rights - Mr. K Aditya Nag

WEEK - XIV:
Story Telling by Students - Dr. Ch. Srinivasulu

46 |Page

BASIC ELECTRICAL ENGINEERING LABORATORY

I Semester : CSE /CSE (Al & ML)/ CSE (DS) / CSE (CS) / CSIT/IT

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE Total
AEEC04 Foundation
- - 3 1.5 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 42 Total Classes: 42

Prerequisites: Linear Algebra and Calculus

I. COURSE OVERVIEW:
The basic electrical simulation lab enable the measurement of voltage, current, resistance in complex AC and DC circuits
using digital simulation.

Il. COURSE OBJECTIVES:

The students will try to learn:

I. Implement different circuits and verify circuit concepts using digital Simulation.
Il. Measure impedance of series RL, RC and RLC circuits.

I11. Prove the various theorems used to reduce the complexity of electrical network.

1. COURSE SYLLABUS:

Expt. 1 : OHM’S LAW, KVL AND KCL
Verification of Ohm’s, Verification of Kirchhoff’s current law and Voltage law using hardware and digital simulation.

Expt. 2: MESH ANALYSIS
Determination of mesh currents using hardware and digital simulation.

Expt. 3: NODAL ANALYSIS
Measurement of nodal voltages using hardware and digital simulation.

Expt. 4: IMPEDANCE OF SERIES RL AND RC CIRCUIT
Examine the impedance of series RL and RC circuit using digital simulation.

Expt. 5: IMPEDANCE OF SERIES RLC CIRCUIT
Measure the impedance of series RLC Circuit using hardware and digital simulation.

Expt. 6: SINGLE PHASE AC CIRCUITS

Determination of average value, RMS value, form factor, peak factor of sinusoidal wave using digital simulation.
Expt. 7: SUPERPOSITION AND MAXIMUM POWER TRANSFER THEOREM

Verification of superposition and maximum power transfer theorem using hardware and digital simulation.

Expt. 8: THEVENINS AND NORTON’S THEOREM
Verification of Thevenin’s and Norton’s theorem using hardware and digital simulation.

Expt. 9: SWINBURNE®“S TEST
Predetermination of efficiency of DC shunt machine.

Expt. 10: MAGNITETIZATION CHARACTERISTICS
Determine the critical field resistance from magnitetization characteristics of DC shunt generator.

Expt. 11: BRAKE TEST ON DC SHUNT MOTOR
Study the performance characteristics of DC shunt motor by brake test.

Expt. 12: SPEED CONTROL OF DC SHUNT MOTOR
Verify the armature and field control techniques of DC shunt motor.

47 |Page

Expt. 13: OPEN CIRCUIT AND SHORT CIRCUIT TEST ON SINGLE PHASE TRANSFORMER
Determination of losses and efficiency of single phase transformer.

Expt. 14: SYNCHRONOUS IMPEDENCE METHOD
Determine the regulation of alternator using synchronous impedance method.

REFERENCE BOOKS:

1. A Chakrabarti, “Circuit Theory”, Dhanpat Rai Publications, 61 Edition, 2006.

2. William Hayt, Jack E Kemmerly S.M. Durbin, “Engineering Circuit Analysis”, Tata McGraw Hill, 7" Edition, 2010.
3. K S Suresh Kumar, “Electric Circuit Analysis”, Pearson Education, 1%t Edition, 2013.

4, Etter, “Introduction to MATLAB 7”, Pearson Education, 1% Edition, 2008.

WEB REFERENCES:

1. https://www.ee.iitkgp.ac.in
2. https://lwww.citchennai.edu.in
3. https://lwww.iare.ac.in

48 |Page

https://www.citchennai.edu.in/

PYTHON PROGRAMMING LABORATORY

I Semester: Common from all branches

Course Code Category Hours / Week Credits Maximum Marks
. T P C CIA SEE | Total
ACSCO02 Foundation
0 0 3 1.5 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes:36

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured
programming using the Python language, one of the most increasingly preferred languages for programming today.
Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh
platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java.
The course uses iPython Notebook to afford a more interactive experience. Topics include fundamentals of

computer programming in Python, object-oriented programming and graphical user interfaces.

The students will try to learn:

VI. Acquire programming skills in core Python.

VII.Acquire Object-oriented programming skills in Python.

VIII. Develop the skill of designing graphical-user interfaces (GUI) in Python.

IX. Develop the ability to write database applications in Python.

X. Acquire Python programming skills to move into specific branches - Internet of Things (loT), Data Science,

1.
Week — 1: OPERATORS

a.

b.
c.
d.

Week —2: CONTROL STRUCTURES

a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it
using if...elif...else statement.

b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a
particular word given by the user from the dictionary using while loop.

C. Write a Program to find the sum of a Series 1/1! + 2/2! + 3/3! + 4/4! +....... + n/n!. (Input :n = 5, Output :
2.70833)

d. In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors

Week —3: LIST

a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x =4 and y = 5).

b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63],
odd numbers sum = 101, even numbers sum = 24)

C. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The
numbers in odd index position: 25 47 84).

d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20

COURSE OBJECTIVES:

Machine Learning (ML), Artificial Intelligence (Al) etc.

COURSE SYLLABUS:

Read a list of numbers and write a program to check whether a particular element is present or not using
membership operators.

Read your name and age and write a program to display the year in which you will turn 100 years old.

Read radius and height of a cone and write a program to find the volume of a cone.

Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean
theorem)

is greater than the number itself. Write a program to find out, if the given number is abundant. (Input: 12, Sum of
divisorsof 12=1+2 + 3 + 4 + 6 = 16, sum of divisors 16 > original number 12)

401050 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

49|Page

a.

b.

\Week —4: TUPLE

a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples.
test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)]

b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input:
test_list = [(“GFG”, “IS”, “BEST”), (“GFg”, “AVERAGE”), (“GfG”,), (“Gfg”, “CS”)], Output : [(‘GFG’, ‘IS,
‘BEST))).

€. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple.
(Input : tuple = (a, 'a', 'c, b, 'd"), list = ['a', 'b"], Output : 3)

\Week —5: SET

a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x,
X*X).

b. Write a program to perform union, intersection and difference using Set A and Set B.

C. Write a program to count number of vowels using sets in given string (Input : “Hello World”, Output: No. of
vowels : 3)

d. Write a program to form concatenated string by taking uncommon characters from two strings using set concept

Week — 6: DICTIONARY
a.

b.

C.
d.

Week — 7: STRINGS
d.

b.
C.

d.

\Week — 8: USER DEFINED FUNCTIONS
d.

b.
€. Write a fact() function to compute the factorial of a given positive number.
d.

Week —9: BUILT-IN FUNCTIONS

(Input : S1 = "aacdb", S2 = "gafd", Output : "cbgf").

Write a program to do the following operations:

i. Create a empty dictionary with dict() method

ii. Add elements one at a time

iii. Update existing key’s value

iv. Access an element using a key and also get() method

V. Deleting a key value using del() method

Write a program to create a dictionary and apply the following methods:
i. pop() method

ii. popitem() method

iii. clear() method

Given a dictionary, write a program to find the sum of all items in the dictionary.
Write a program to merge two dictionaries using update() method.

Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to
be symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one
half of the string is the reverse of the other half or if a string appears same when read forward or backward.
Write a program to read a string and count the number of vowel letters and print all letters except 'e"and 's".
Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method,
Input : India is my country. Output : is my country)

Write a program to read a string and count how many times each letter appears. (Histogram).

A generator is a function that produces a sequence of results instead of a single value. Write a generator
function for Fibonacci numbers up to n.
Write a function merge_dict(dictl, dict2) to merge two Python dictionaries.

Given a list of n elements, write a linear_search() function to search a given element x in a list.

Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by
importing statistics library.

Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(),
degrees(), radians() by importing math module.

Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(),
log10(), pow() by importing math module.

Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd()
by importing math module.

50|Page

a.

d.

a.

1.

w N

o ks

o wn e

\Week — 10: CLASS AND OBJECTS

Week — 11: MISCELLANEOUS PROGRAMS

. Write a program to find the length of a string using various methods:

\Week — 12: ADDITIONAL PROGRAMS - FILE HANDLING

. REFERENCE BOOKS:

Write a program to create a BankAccount class. Your class should support the following methods for

i) Deposit

i) Withdraw

iii) GetBalanace

iv) PinChange

Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method
that increases the balance by the appropriate amount of interest (Hint:use Inheritance).

Write a program to create an employee class and store the employee name, id, age, and salary using the
constructor. Display the employee details by invoking employee_info() method and also using dictionary
(__dict_).

Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate
the 3 types of access modifiers: public, private and protected.

Write a program to find the maximum and minimum K elements in Tuple using slicing and sorted() method
(Input: test_tup=(3,7, 1, 18, 9), k=2, Output: (3,1, 9, 18))

Write a program to find the size of a tuple using getsizeof() method from sys module and built-in __sizeof_ ()
method.

Write a program to check if a substring is present in a given string or not.

i. Using len() method
ii. Using for loop and in operator
iii. Using while loop and slicing

Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform

the following operations:

i. Count the sentences in the file.

ii. Count the words in the file.

iii. Count the characters in the file.

Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only
lower case alphabets and display the number of lines copied.

Write a Python program to store N student’s records containing name, roll number and branch. Print the given
branch student’s details only.

Michael H Goldwasser, David Letscher, “Object Oriented Programming in Python”, Prentice Hall, 1% Edition,
2007.

Yashavant Kanetkar, Aditya Kanetkar, “Let us Python”, BPB publication, 1%t Edition, 2019.

Ashok Kamthane, Amit Kamthane, “Programming and Problem Solving with Python”, McGraw Hill Education
(India) Private Limited, 2018.

Taneja Sheetal, Kumar Naveen, “Python Programming — A modular approach”, Pearson, 2017.

R Nageswara Rao, “Core Python Programming”, Dreamtech press, 2017 Edition.

WEB REFERENCES:
https://realpython.com/python3-object-oriented-programming/
https://python.swaroopch.com/oop.html
https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
https://www.programiz.com/python-programming/
https://www.geeksforgeeks.org/python-programming-language/

51|Page

http://www.programiz.com/python-programming/

ENGINEERING WORKSHOP PRACTICE

I Semester: CSE / CSE (AI&ML) / CSE (DS) / CSE (CS)/CSIT/IT
Il Semester: ECE / EEE

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE Total
AMEC04 Foundation
- - 2 1 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 28 Total Classes: 28

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The course is intended to provide the basic concepts about Engineering tools for cutting and measuring used in a
workshop. The students will be benefited from hands on training process as well as knowledge to carry out a particular
process for making a product. This course provides wider perspective of manufacturing, processes to learn and
introduces major trades as well as digital manufacturing facilities.

11.COURSE OBJECTIVES:

The students will try to learn:

I. The application of jigs and fixtures, measuring, marking and cutting tools in various types of manufacturing
processes.

Il. The preparation of different joints in carpentry and fitting and also familiarizes wood working machinery.

Ill. The concepts of forming processes by forging, black-smithy and tin-smithy with an application extracts of
Engineering Drawing.

IV. The standard electrical wiring practices for domestic and industrial appliances.

V. The current advancements in developing the prototype models through digital manufacturing facilities.

I1l. COURSE SYLLABUS:

Week-1: CARPENTRY-I
Batch I: Preparation of Tenon joint as per given dimensions.
Batch Il: Preparation of Mortise joint as per given taperangle.

Week -2: CARPENTRY-II
Batch I: Preparation of dove tail joint as per given taper angle.
Batch Il: Preparation of lap joint as per given dimensions.

Week-3: FITTING - |
Batch I: Make a straight fit for given dimensions.
Batch 11: Make a square fit for given dimensions.

Week-4: FITTING - 11
Batch | : Make a V fit for given dimensions
Batch Il: Make a semicircular fit for given dimensions.

Week-5: BLACKSMITHY- |
Batch I: Prepare S-bend for given MS rod using open hearth furnace.
Batch 1I: Prepare J-bend for given MS rod using open hearth furnace.

Week-6: BLACKSMITHY- 11
Batch I: Prepare Fan hook for given dimensions.
Batch Il: Prepare Round to Square for given dimensions

Week-7: MOULD PREPARATION
Batch I: Prepare a wheel flange mould using a given wooden pattern.
Batch II: Prepare a bearing housing using an aluminum pattern.

52|Page

Week-8: MOULD PREPARATION
Batch I: Prepare a bearing housing using an aluminum pattern.
Batch Il: Prepare a wheel flange mould using a given wooden pattern.

Week-9: TINSMITHY- |
Batch I: Prepare the development of a surface and make a rectangular tray for given dimensions.
Batch I1: Prepare the development of a surface and make a round tin for given dimensions.

Week-10: TINSMITHY- 11
Batch I: Prepare the development of a surface and make a Square Tin, for given dimensions.
Batch II: Prepare the development of a surface and make a Conical Funnel for given dimensions.

Week-11: ELECTRICAL WIRING-I
Batch I: Make an electrical connection of two bulbs connected in series.
Batch 11:Make an electrical connection of two bulbs connected in parallel

Week-12: ELECTRICAL WIRING-II
Batch I: Make an electrical connection of one bulb controlled by two switches connected.
Batch Il: Make an electrical connection of tube light.

IV. REFERENCE BOOKS:

1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., “Elements of Workshop Technology”,
Media promoters and publishers private limited, Mumbai, Vol. | 2008 and Vol. Il 2010.

2. Kalpakjian S, Steven S. Schmid, “Manufacturing Engineering and Technology”, Pearson Education India Edition,
4™ Edition, 2002.

3. Gowri P. Hariharan, A. Suresh Babu, “Manufacturing Technology — I”’, Pearson Education, 2008.
4. Roy A. Lindberg, “Processes and Materials of Manufacture”, Prentice Hall India, 4" Edition, 1998.
5. Rao P.N., “Manufacturing Technology”, Vol. I and Vol. I, Tata McGraw-Hill House, 2017.

V. WEB REFERENCES:
http://www.iare.ac.in

53|Page

http://www.iare.ac.in/

ENGLISH

| Semester: AE/ECE/EEE/ME/CE
Il Semester : CSE / CSE (Al & ML)/ CSE (DS)/ CSE (CS) /CSIT /1T

Course Code Category Hours / Week | Credits Maximum Marks
) L T P C CIA SEE Total
AHSCO01 Foundation
2 - - 2 30 70 100
Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisite: Standard applicability of vocabulary and grammer

I. COURSE OVERVIEW:

The sole aim of the course is to enhance the communication skills of upcoming engineering graduates to meet the
requirements and challenges in a competitive global world. This course is designed to provide a well-rounded
introduction to English language learning. Moreover, the course pays special attention to the typical problems and
challenges confronted by the Indian learners of English like mispronunciation, spellings, and structures of English
due to their mother tongue influence. This course includes General Introduction to Listening Skills, Speaking Skills,
Vocabulary and Grammar, Reading Skills, and Writing Skills.

Il. COURSE OBJECTIVES:

The Students will try to learn:

I. The theoretical and fundamental inputs to communicate intelligibly in English through standard
Pronunciation.

Il. The four language skills i.e., Listening, Speaking, Reading and Writing effectively and their application in real-
life situations.

I1l. The Writing strategies of English using correct spelling, grammar, punctuation and appropriate vocabulary.

IV. Different mechanics of writing styles forms of writing emails, reports, formal and informal letters.

I11.COURSE SYLLABUS:

MODULE-I: GENERAL INTRODUCTION AND LISTENING SKILLS (09)

Introduction to communication skills; Communication process; Elements of communication; Soft skills vs hard
skills; Listening skills; Significance; Stages of listening; Barriers to listening and effectiveness of listening;
Listening comprehension.

MODULE -I11: SPEAKING SKILLS (09)

Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication; Generating
talks based on visual prompts; Public speaking; Exposure to structured talks; Addressing a small group or a large
formal gathering; Oral presentation.

MODULE -I111: VOCABULARY & GRAMMAR (09)

Vocabulary: The concept of Word Formation; Root words from foreign languages and their use in English;
Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives;

Idioms and phrases; One-word substitutes.

Grammar: Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers;
Avrticles; Prepositions.

MODULE -1V: READING SKILLS (09)

Significance; Techniques of reading; Skimming-Reading for the gist of a text; Scanning - Reading for specific
information; Intensive; Extensive reading; Reading comprehension; Reading for information transfer; Text to
diagram; Diagram to text.

MODULE -V: WRITING SKILLS (09)
Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Techniques for writing
precisely; Letter writing; Formal and Informal letter writing; E-mail writing, Report Writing.

54|Page

IV. TEXT BOOKS:
1. Handbook of English for Communication (Prepared by Faculty of English, IARE).

V. REFERENCE BOOKS:

1. Sanjay Kumar and Pushp Lata. “Communications Skills”. Oxford University Press. 2011.

2. Michael Swan. “Practical English Usage”, Oxford University Press, 1995.

3. F.T. Wood. “Remedial English Grammar”. Macmillan. 2007.

4. William Zinsser. “On Writing Well”. Harper Resource Book, 2001.

5. Raymond Murphy, “Essential English Grammar with Answers”, Cambridge University Press 2" Edition, 2011.

VI. WEB REFERENCES:

1. www.edufind.com

2. www.myenglishpages.com

3. http:grammar.ccc.comment.edu
4. http:owl.english.prudue.edu

VII. E-TEXT BOOKS:

1. http://bookboon.com/en/communication-ebooks-zip

2. http://lwww.bloomsbury-international.com/images/ezone/ebook/writing-skills-pdf.pdf

3. https://americanenglish.state.gov/files/ae/resource_files/developing_writing.pdf

4. http://learningenglishvocabularygrammar.com/files/idiomsandphraseswithmeaningsandexamplespdf
5. http://www.robinwood.com/Democracy/GeneralEssays/Critical Thinking.pdf

55|Page

http://www.edufind.com/
http://www.myenglishpages.com/
http://bookboon.com/en/communication-ebooks-zip
http://www.bloomsbury-international.com/images/ezone/ebook/writing-skills-pdf.pdf
http://learningenglishvocabularygrammar.com/files/idiomsandphraseswithmeaningsandexamplespdf
http://www.robinwood.com/Democracy/GeneralEssays/CriticalThinking.pdf

PROBABILITY AND STATISTICS

Il Semester: CSE / CSE (Al & ML)/ CSE (DS) / CSE (CS)/ CSIT/IT

Course Code Category Hours / Week Credits Maximum Marks
) L T P C CIA | SEE Total
AHSCO08 Foundation
3 1 - 4 30 70 100
Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

Prerequisite: Fundamentals of statistics

I. COURSE OVERVIEW:

Probability theory is the branch of mathematics that deals with modelling uncertainty. Inferential Statistics and
regression analysis together with random variate distributions are playing an exceptional role in designing data driven
technology which is familiarly known as data centric engineering. They also have wide variety applications in
telecommunications and other engineering disciplines. The course covers advanced topics of probability and statistics
with applications. The course includes: random variables, probability distributions, hypothesis testing, confidence
intervals, and linear regression. There is an emphasis placed on real-world applications to engineering problems.

1. COURSE OBJECTIVES:
The students will try to learn:
I. The theory of random variables, basic random variate distributions and their applications.

Il. The Methods and techniques for quantifying the degree of closeness among two or more variables and linear
regression analysis.

Ill. The Estimation statistics and Hypothesis testing which play a vital role in the assessment of the quality of the
materials, products and ensuring the standards of the engineering process.

IV. The statistical tools which are essential for translating an engineering problem into probability model.

I11. COURSE SYLLABUS:

MODULE-I: RANDOM VARIABLES (09)
Random variables: Basic definitions, discrete and continuous random variables; Probability distribution: Probability
mass function and probability density functions.

MODULE -I11: PROBABILITY DISTRIBUTION (09)

Binomial distribution; Mean and variances of Binomial distribution, Poisson distribution: Poisson distribution as a
limiting case of Binomial distribution, mean and variance of Poisson distribution, Normal distribution; Mean, Variance,
Mode, Median of Normal distribution.

MODULE -111: CORRELATIONS AND REGRESSION (09)
Correlation: Karl Pearson’s Coefficient of correlation, Rank correlation, Repeated Ranks.

Regression: Lines of regression, Regression coefficient, Angle between two lines of regression.

MODULE -1V: TEST OF HYPOTHESIS - 1 (09)
Sampling: Population, Sampling, standard error; Test of significance: Null hypothesis, alternate hypothesis; Large
sample tests: Test of hypothesis for single mean, difference between means, single proportion and difference between
proportions.

MODULE -V: TEST OF HYPOTHESIS - 11 (09)
Small sample tests: Student t-distribution, F-distribution and Chi-square distribution.

TEXT BOOKS:
1. Erwin Kreyszig, “Advanced Engineering Mathematics™, John Wiley & Sons Publishers, 9" Edition, 2014.
2. B. S. Grewal, “Higher Engineering Mathematics”, Khanna Publishers, 42" Edition, 2012.

V. REFERENCE BOOKS:
1. S.C. Gupta, V. K. Kapoor, ‘Fundamentals of Mathematical Statistics”, S. Chand & Co., 10" Edition, 2000.
2. N.P. Bali, “Engineering Mathematics”, Laxmi Publications, 9" Edition, 2016.

56|Page

3. Richard Arnold Johnson, Irwin Miller and John E. Freund, “Probability and Statistics for Engineers™, Prentice
Hall, 8" Edition, 2013.

I. WEB REFERENCES:
http://www.efunda.com/math/math_home/math.cfm
http://www.ocw.mit.edu/resourcs/#Mathematics
http://www.sosmath.com
http://www.mathworld.wolfram.com

Ea A

VIl. E-TEXT BOOKS:

1. http://www.keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering- mathematics-
ktu-ebook-download.html

2. http://www.faadooengineers.com/threads/13449-Engineering-Maths-11-eBooks

57|Page

http://www.efunda.com/math/math_home/math.cfm
http://www.ocw.mit.edu/resourcs/#Mathematics
http://www.sosmath.com/
http://www.mathworld.wolfram.com/
http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks

APPLIED PHYSICS

Il Semester: CSE / CSE (Al & ML) / CSE (DS) / CSE (CS) / CSIT / IT)

Course Code Category Hours / Week | Credits Maximum Marks
. T P C CIA | SEE Total
AHSCO09 Foundation
3 - - 3 30 70 100
Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes:45

Prerequisite: Basic principles of semiconductors

I. COURSE OVERVIEW:

This course is structured specifically to make the students understand some of the core topics in physics essential for
further studies in engineering. It focuses on illustrating and developing an understanding of the interplay between
problem solving and their practical applications which include experimental techniques and modern equipment. The
topics include quantum mechanics, semiconductors, opto-electronic devices, magnetism, dielectrics, lasers and fiber
optics. At the end, this course helps students to appreciate the diverse real-time applications in technological fields in
respective branches.

Il. COURSE OBJECTIVES:
The students will try to learn:

I. Basic formulations in wave mechanics for the evolution of energy levels and quantization of energies for a particle
in a potential box with the help of mathematical description.

Il. Fundamental properties of semiconductors including the band gap, charge carrier concentration, doping and
transport mechanisms.

I1l. The metrics of optoelectronic components, lasers, optical fiber communication and be able to incorporate them into
systems for optimal performance.

IV. The appropriate magnetic and dielectric materials required for various engineering applications.

111.COURSE SYLLABUS:

MODULE-I: QUANTUM MECHANICS (09)

Introduction to quantum physics, de-broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment,
Time-independent Schrodinger equation for wave function, Physical significance of the wave function, Schrodinger
equation for one dimensional problems—particle in a box.

MODULE —I11: INTRODUCTION TO SOLIDS AND SEMICONDUCTOTS (09)

Introduction to classical free electron theory and quantum theory, Bloch’s theorem for particles in a periodic potential
(Qualitative treatment), Kronig-Penney model (Qualitative treatment), classification: metals, semiconductors, and
insulators. Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-
concentration and temperature, Hall effect.

MODULE -111: SEMICONDUCTOR DEVICES (09)
Direct and indirect band gaps, p-n junction, V-l characteristics, Energy Band diagram, Biasing of a junction, Zener
diode.

Construction and working of LED, Photo detectors, PIN, Avalanche photodiode, Solar cell.

MODULE -1V: ENGINEERED ELECTRIC AND MAGNETIC MATERIALS (09)

Polarisation, Permittivity, Dielectric constant, Internal field in solids, Clausius Mosotti equation, Electronic, lonic and
Orientational polarization (Qualitative), Ferroelectricity; Magnetisation, Permeability, Susceptibility, Classification and
properties of dia, para and ferro magnetic materials on the basis of magnetic moment, Hysteresis curve.

MODULE -V: LASERS AND FIBER OPTICS (09)

Characteristics of lasers, Spontaneous and stimulated emission of radiation, Metastable state, Population inversion,
Lasing action, Ruby laser, He-Ne laser and Applications of lasers. Principle and construction of an optical fiber,
Acceptance angle, Numerical aperture, Types of optical fibers (Single mode, multimode, step index, graded index),
Optical fiber communication system with block diagram and Applications of optical fibers.

58|Page

IV.TEXT BOOKS:

1. Dr. K Vijay Kumar and Dr. S Chandralingam, “Modern Engineering Physics” Volume-1&2, S Chand.Co, 2018.

2.Dr. M. N. Avadhanulu, Dr. P. G. Kshirsagar, “A Text Book of Engineering Physics”, S. Chand.
3. B. K Pandey and S. Chaturvedi, “Engineering Physics”, Cengage learning.

V. REFERENCE BOOKS:

1. J. Singh, “Semiconductor Optoelectronics: Physics and Technology”, McGraw-Hill Inc. (1995).

2. P. Bhattacharya, “Semiconductor Optoelectronic Devices”, Prentice Hall of India (1997).

3. Monica Katiyar and Deepak Gupta, "Optoelectronic Materials and Devices", NPTEL Online course.

V1. WEB REFERENCES:

1. http://link.springer.com/book

2. http://lwww.thphys.physics.ox.ac.uk
3. http://www.sciencedirect.com/science
4. http://www.e-booksdirectory.com

VI1I. E-TEXT BOOKS:

. http://www.peaceone.net/basic/Feynman/

. http://physicsdatabase.com/free-physics-books/

. http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf
._http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

A WNPE

59|Page

http://www.thphys.physics.ox.ac.uk/
http://www.sciencedirect.com/science
http://www.e-booksdirectory.com/
http://physicsdatabase.com/free-physics-books/
http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf
http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

PROGRAMMING FOR PROBLEM SOLVING USING C

Il Semester: CSE / CSE (Al & ML) / CSE (DS) / CSE (CS) / CSIT/ 1T/ ECE / EEE

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE | Total
ACSC04 Foundation
3 - - 3 30 70 100
Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The main emphasis of the course will be on problem solving aspects in through C programming. The students will
understand programming language, programming, concepts of loops, reading a set of data, step wise refinements,
functions, control structures, arrays, dynamic memory allocations, enumerated data types, structures, unions, and file
handling. This course provides adequate knowledge to solve problems in their respective domains.

Il. COURSE OBJECTIVES:

The students will try to learn:

. Problem-solving through programming

Il. Programming language, programming, reading a set of Data, stepwise refinement, concepts of Loops, Functions,
Control structure, Arrays, Structure, Pointer and File concept.

1. To build efficient programs in ‘C’ language essential for future programming and software engineering courses.

I11. COURSE SYLLABUS:

MODULE-I: INTRODUCTION (10)

Introduction to components of a computer: Memory, processor, 1/0 Devices, storage, operating system; Concept of
assembler, compiler, interpreter, loader and linker.

Idea of Algorithms: Algorithms, Flowcharts, Pseudo code with examples, From algorithm to Programs and Source Code

Introduction to C Programming Language: History of C, Basic structure of a C program, Process of compiling and
running a C program; C Tokens: Keywords, Identifiers, Constants, Strings, Special symbols, Variables, Data types;
Operators, Precedence of Operators, Expression evaluation, Formatted Input/Output functions, Type Conversion and type
casting.

MODULE-II: CONTROL STRUCTURES (08)

Decision Making Statements: Simple if, if-else, else if ladder, Nested if, switch case statement;
Loop control statements: for, while and do while loops, nested loops;

Unconditional Control Structures: break, continue and goto statements.

MODULE-III: ARRAYS AND FUNCTIONS (10)

Arrays: Introduction, Single dimensional array and multi-dimensional array: declaration, initialization, accessing
elements of an array; Operations on arrays: traversal, reverse, insertion, deletion, merge, search; Strings: Arrays of
characters, Reading and writing strings, String handling functions, Operations on strings; array of strings.

Functions: Concept of user defined functions, Function declaration, return statement, Function prototype, Types of
functions, Inter function communication, Function calls, Parameter passing mechanisms; Recursion; Passing arrays to
functions, passing strings to functions; Storage classes.

MODULE-IV: POINTER AND STRUCTURES (10)

Pointers: Basics of pointers, Pointer arithmetic, pointer to pointers, array of pointers, Generic pointers, Null pointers,
Pointers as functions arguments, Functions returning pointers; Dynamic memory allocation.

Structures: Structure definition, initialization, structure members, nested structures, arrays of structures, structures and
functions, structures and pointers, self-referential structures; Unions: Union definition, initialization, accessing union
members; bit fields, typedef, enumerations, Preprocessor directives.

60|Page

MODULE-V: FILE HANDLING AND APPLICATIONS IN C (07)
File Handling: Concept of a file, text files and binary files, streams, standard 1/O, formatted 1/O, file 1/O operations, error
handling, Line 1/0, miscellaneous functions; Applications in C.

IV.TEXT BOOKS:
1. Byron Gottfried, “Programming with C”, Schaum's Outlines Series, McGraw Hill Education, 3" Edition, 2017.
2. Reema Thareja, “Programming in C”, Oxford university press, 2" Edition, 2016.

V. REFERENCE BOOKS:

I. W. Kernighan Brian, Dennis M. Ritchie, “The C Programming Language”, PHI Learning, 2" Edition, 1988.

Il. Yashavant Kanetkar, “Exploring C”, BPB Publishers, 2" Edition, 2003.

I11. Schildt Herbert, “C: The Complete Reference”, Tata McGraw Hill Education, 4™ Edition, 2014.

IV.R. S. Bichkar, “Programming with C”, Universities Press, 2" Edition, 2012,

V. Dey Pradeep, Manas Ghosh, “Computer Fundamentals and Programming in C”, Oxford University Press, 2™
Edition, 2006.

VI. Stephen G. Kochan, “Programming in C”, Addison-Wesley Professional, 4™ Edition, 2014.

VI.WEB REFERENCES:

1. https://www.calvin.edu/~pribeiro/courses/engr315/EMFT_Book.pdf

2. https://www.web.mit.edu/viz/EM/visualizations/coursenotes/modules/guide02.pdf
3. https://www.nptel.ac.in/courses/108106073/

4. https://www.iare.ac.in

VII.E-TEXT BOOKS:

1. http://www.freebookcentre.net/Language/Free-C-Programming-Books-Download.htm
2. http://www.imada.sdu.dk/~svalle/courses/dm14-2005/mirror/c/

3. http://lwww.enggnotebook.weebly.com/uploads/2/2/7/1/22718186/ge6151-notes.pdf

61|Page

http://www.calvin.edu/~pribeiro/courses/engr315/EMFT_Book.pdf
http://www.web.mit.edu/viz/EM/visualizations/coursenotes/modules/guide02.pdf
http://www.nptel.ac.in/courses/108106073/
http://www.iare.ac.in/
http://www.freebookcentre.net/Language/Free-C-Programming-Books-Download.htm
http://www.imada.sdu.dk/~svalle/courses/dm14-2005/mirror/c/
http://www.enggnotebook.weebly.com/uploads/2/2/7/1/22718186/ge6151-notes.pdf

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

| SEMESTER: AE / ECE / EEE / ME / CE
Il SEMESTER: CSE / CSE (Al & ML) / CSE (DS) / CSE (CS) / CSIT /IT

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE Total
AHSC04 Foundation
- - 2 1 30 70 100
Contact Classes: 45 Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW

The sole aim of the course is to enhance the communication skills of upcoming engineering graduates to meet the
requirements and challenges in a competitive global world. This course includes General Introduction to Listening Skills,
Speaking Skills, Vocabulary and Grammar, Reading Skills, and Writing Skills.

I1. COURSE OBJECTIVES:

The students will try to:

I. Improve their ability to listen and comprehend a given text.

I. Upgrade the fluency and acquire a functional knowledge of English Language.
I11. Enrich thought process by viewing a problem through multiple angles.

I11. COURSE SYLLABUS:

Week-I: LISTENING SKILL

a. Listening to conversations and interviews of famous personalities in various fields; Listening practice related to the TV
talk shows and news.

b. Listening for specific information; Listening for summarizing information — Testing..

Week-2: LISTENING SKILL

a. Listening to films of short duration and monologues for taking notes; Listening to answer multiple choice questions.

b. Listening to telephonic conversations; Listening to native Indian: Abdul Kalam, British: Helen Keller and American:
Barrack Obama speakers to analyze intercultural differences — Testing.

Week-3: SPEAKING SKILL

a. Functions of English Language; Introduction to pronunciation; Vowels and Consonants

b. Tips on how to develop fluency, body language and communication; Introducing oneself: Talking about yourself,
others, leave taking.

Week-4: SPEAKING SKILL

a. Sounds - Speaking exercises involving the use of Vowels and Consonant sounds in different contexts;Exercises on
Homophones and Homographs

b. Justa minute (JAM) session.

Week-5: SPEAKING SKILL

a. Stress patterns.

b. Situational Conversations: common everyday situations; Acting as a compere and newsreader; Greetings for
differentoccasionswithfeedbackpreferablythroughvideorecording.

Week-6: READING SKILL
a. Intonation.
b. Reading newspaper and magazine articles; Reading selective autobiographies for critical commentary.

Week-7: READING SKILL

a. Improving pronunciation through tongue twisters.

b. Reading advertisements, pamphlets; Reading comprehension exercises with critical and analytical questions based on
context.

Week-8: WRITING SKILL

a. Listening to inspirational short stories and Writing messages

62|Page

b. Writing leaflets, Notice; Writing tasks; Flashcards — Exercises

Week-9: WRITING SKILL
a. Write the review on a video clipping of short duration (5 to 10minutes).
b. Write a slogan related to the image; Write a short story of 6-10 lines based on the hints given.

Week-10: WRITING SKILL
a. Minimising Mother Tongue interference to improve fluency through watching educational videos.
b. Writing practices — précis writing; Essay writing

Week-11: THINKING SKILL

a. Correcting common errors in day to day conversations.

Practice in preparing thinking blocks to decode diagrammatical representations into English words,expressions, idioms,
proverbs.

IV. TEXT BOOK:
1. “English Language and Communication Skills” Lab Manual - Prepared by the faculty of English, IARE.

V. REFERENCE BOOKS:

1. Meenakshi Raman, Sangeetha Sharma, “Technical Communication Principles and Practices”, Oxford University Press,
New Delhi, 3" Edition, 2015.

2. Rhirdion, Daniel, “Technical Communication”, Cengage Learning, New Delhi, 1 Edition, 2009.

63|Page

PHYSICS LABORATORY

| Semester: AE/ ME / CE/ ECE/ EEE
Il Semester: CSE /CSE (Al & ML)/ CSE (DS)/ CSE (CS)/CSIT /1T

Course Code Category Hours / Week Credits Maximum Marks
. L T P C CIA SEE Total
AHSCO05 Foundation
- - 3 15 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

Pre-Requisites: Basic principles of Physics

I. COURSE OVERVIEW:

This course is designed to lay a strong foundation in Engineering Physics that forms a basis to various branches of
Engineering. It helps the students to perform experiments, to correlate theory with experimental data, analyse using
graphical representations and present them as part of a clear, well-organized lab report. At the end of the course,
students will be able to demonstrate a working knowledge of fundamentals of Physics and communicate their ideas
effectively, both orally and in writing.

Il. COURSE OBJECTIVES:

The students will try to learn:
1. Experimental skills in using optical instruments to determine physical constants.
2. The real time applications of electromagnetic theory.
3. The working principles of various electronic devices.

I11. COURSE SYLLABUS:
Week-1: HALL EFFECT (LORENTZ FORCE)

Determination of charge carrier density.

Week-2: MELDE’E EXPERIMENT
Determination of frequency of a given tuning fork.

Week-3: STEWART GEE’S APPARATUS
Magnetic field along the axis of current carrying coil-Stewart and Gee‘s method.

Week-4: B-H CURVE WITH CRO
To determine the energy loss per unit volume of a given magnetic material per cycle by tracing the Hysteresis loop (B-
H curve).

Week-5: ENERGY GAP OF A SEMICONDUCTOR DIODE
Determination of energy gap of a semiconductor diode.

Week-6: PHOTO DIODE
Studying V-1 characteristics of photo diode.

Week-7: OPTICAL FIBER
Evaluation of numerical aperture of a given optical fiber.

Week-8: WAVE LENGTH OF LASER LIGHT
Determination of wavelength of a given laser light using diffraction grating.

Week-9: PLANCK’S CONSTANT
Determination of Planck*s constant using LED.

Week-10: LIGHT EMITTING DIODE
Studying V-1 characteristics of LED

Week-11: NEWTONS RINGS
Determination of radius of curvature of a given plano-convex lens.

64|Page

Week-12: SINGLE SLIT DIFFRACTION
Determination of width of a given single slit.

IV. MANUALS:
1. C.L. Arora, “Practical Physics”, S. Chand & Co., New Delhi, 3™ Edition, 2012.

2. VijayKumar, Dr.T.Radhakrishna, “Practical Physics for Engineering Students”, SM Enterprises, 2" Edition, 2014.

V. WEB REFERENCE:
http://www.iare.ac.in

65|Page

http://www.iare.ac.in/

PROGRAMMING FOR PROBLEM SOLVING USING C LABORATORY

Il Semester: CSE / CSE (Al & ML)/ CSE (DS) / CSE (CS) / CSIT / IT / ECE /EEE

Course Code Category Hours / Week Credits Maximum Marks
. T P C CIA | SEE | Total
ACSCO05 Foundation
0 0 3 15 30 70 100
Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes:36

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW

This course introduces students to writing computer programs. This course presents the principles of structured
programming using the Python language, one of the most increasingly preferred languages for programming today.
Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh
platforms. However, the knowledge gained in the course can be applied later to other languages such as C and
Java. The course uses iPython Notebook to afford a more interactive experience.

Il. COURSE OBJECTIVES:
The students will try to learn:
I. Acquire logical thinking and identify efficient ways of solving problems using C programming language.
Il. Develop programs by using decision making, branching and looping constructs.
I1. Implement real time applications using the concept of array, pointers, functions and structures.

111.COURSE SYLLABUS:

Week — 1: OPERATORS AND EVALUATION OF EXPRESSIONS
e. Design and develop a flowchart and algorithm to read a number and implement using a C program to check
whether the given number is even or odd using ternary operator.
f. Design and develop a flowchart and algorithm to read two integers and implement using a C program to
perform the addition of two numbers without using +operator.
g. Develop a C program to evaluate the following arithmetic expressions by reading appropriate input from the
standard input device. Understand the priority of operators while evaluating expressions.
i. 6*2/(2+1*2/3 +6) +8 * (8/4)
ii. 17-8/4*2+3-++2
iii. 1(x>10)&&(y==2)
h. Develop a C program to display the size of various built-in data types in C language.

Week — 2: CONTROL STRUCTURES

a. Design and develop a flowchart and algorithm to read a year as an input and find whether it is leap year or not.
Implement a C program for the same and execute for all possible inputs with appropriate messages. Also
consider end of the centuries.

b. Design and develop a flowchart and algorithm to find the square root of a given number N. Implement a C
program for the same and execute for all possible inputs with appropriate messages. (Note: Don’t use library
function sqrt(n), Hint: Use Newton-Raphson method to find the square root).

c. Design and develop a flowchart and algorithm to generate a Fibonacci sequence up to a given number N. A
Fibonacci sequence is defined as follows: The first and second terms in the sequence are 0 and 1. Subsequent
terms are found by adding the preceding two terms in the sequence. Implement a C program for the developed
flowchart/algorithm and execute the same to generate the first N terms of the sequence.

d. Design and develop a flowchart and algorithm that takes three coefficients (a, b, and c) of a Quadratic equation
(ax?+bx+c=0) as input and compute all possible roots. Implement a C program for the developed
flowchart/algorithm and execute the same to output the possible roots for a given set of coefficients with
appropriate messages.

Week — 3: CONTROL STRUCTURES
a. Design and develop an algorithm to find the reverse of an integer number N and check whether it is
PALINDROME or NOT. Implement a C program for the developed algorithm that takes an integer number as
input and output the reverse of the same with suitable messages. Ex: N: 2020, Reverse: 0202, Not a
Palindrome.

66|Page

b. Draw the flowchart and write C Program to compute sin(x) using Taylor series approximation given by
sin(x) = x - (x3/31) + (x3/51) - (X"/7) +

Compare the result with the built- in Library function and print both the results with appropriate messages.

c. Design and develop an algorithm and flowchart to read a three digit number and check whether the given number
is Armstrong number or not. Write a C program to implement the same and also display the Armstrong numbers
between the ranges 1 to 1000.

d. Design and develop an algorithm for evaluating the polynomial f(x) = asx* + asx® + axx? + a;x* + ay, for a given
value of x and its coefficients using Horner’s method. Implement a C program for the same and execute the
program for different sets of values of coefficients and x.

Week — 4: ARRAYS

e. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional
array. Write a C program to print the second largest integer in a list of integers.

f. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional
array. Write a C program to count and display positive, negative, odd and even numbers in an array.

g. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional
array. Write a C program to find the frequency of a particular number in a list of integers.

h. Develop, implement and execute a C program that reads two matrices A (m x n) and B (p x q) and Compute
the product A and B. Read matrix A and matrix B in row major order respectively. Print both the input
matrices and resultant matrix with suitable headings and output should be in matrix format only. Program must
check the compatibility of orders of the matrices for multiplication. Report appropriate message in case of
incompatibility.

Week —5: STRINGS

a. Develop a user-defined function STRCOPY (strl, str2) to simulate the built-in library function strcpy (strl,
str2) that copies a string str2 to another string strl. Write a C program that invokes this function to perform
string copying. Also perform the same operation using built-in function.

b. Develop a user-defined function STRCONCT (stril, str2) to simulate the built-in library function strcat (stri,
str2) that takes two arguments strl and str2, concatenates str2 and strl and stores the result in strl. Write a C
program that invokes this function to perform string concatenation. Also perform the same operation using
built-in function.

C. Develop a C program that returns a pointer to the first occurrence of the string in a given string using built-in
library function strstr(). Example: strstr() function is used to locate first occurrence of the string “test” in the
string “This is a test string for testing”. Pointer is returned at first occurrence of the string “test”.

d. Develop a C program using the library function strcmp (strl, str2) that compares the string pointed to by strl
to the string pointed to by str2 and returns an integer. Display appropriate messages based on the return values
of this function as follows —

if return value < 0 then it indicates strl is less than str2.
if return value > 0 then it indicates str2 is less than strl.
if return value = 0 then it indicates strl is equal to str2.

Week — 6: FUNCTIONS

a. Design and develop a recursive and non-recursive function FACT(num) to find the factorial of a number, n!,
defined by FACT(n) = 1, if n = 0. Otherwise FACT(n) = n * FACT(n-1). Using this function, write a C
program to compute the binomial coefficient. Tabulate the results for different values of n and r with suitable
messages

b. Design and develop a recursive function GCD (numl, num2) that accepts two integer arguments. Write a C
program that invokes this function to find the greatest common divisor of two given integers.

c. Design and develop a recursive function FIBO (num) that accepts an integer argument. Write a C program that
invokes this function to generate the Fibonacci sequence up to num.

d. Design and develop a C function ISPRIME (num) that accepts an integer argument and returns 1 if the
argument is prime, a 0 otherwise. Write a C program that invokes this function to generate prime numbers
between the given ranges.

e. Design and develop a function REVERSE (str) that accepts a string arguments. Write a C program that
invokes this function to find the reverse of a given string.

Week — 7: POINTERS
a. Develop a C program using pointers to compute the sum, mean and standard deviation of all elements stored in

67|Page

an array of n real numbers.

b. Develop a C program to read a list of integers and store it in an array. Then read the array elements using a
pointer and print the value along with the memory addresses.

C. Design and develop non-recursive functions input_matrix(matrix, rows, cols) and print_matrix(matrix,
rows, cols) that stores integers into a two-dimensional array and displays the integers in matrix form. Write a C
program to input and print elements of a two dimensional array using pointers and functions.

d. Develop a C program to a store a list of integers in a single dimensional array using dynamic memory
allocation (limit will be at run time) using malloc() function. Write a C program to read the elements and print
the sum of all elements along with the entered elements. Also use free() function to release the memory.

Week — 8: STRUCTURES AND UNIONS
e. Write a C program that uses functions to perform the following operations:
i. Reading a complex number
ii. Writing a complex number
iii. Addition and subtraction of two complex numbers
Note: represent complex number using a structure.

f. Write a C program to compute the monthly pay of 100 employees using each employee_s name, basic pay. The
DA is computed as 52% of the basic pay. Gross-salary (basic pay + DA). Print the employees name and gross
salary.

g. Create a Book structure containing book_id, title, author name and price. Write a C program to pass a structure
as a function argument and print the book details.

h. Create a union containing 6 strings: name, home_address, hostel_address, city, state and zip. Write a C program
to display your present address.

Week — 9: ADDITIONAL PROGRAMS

a. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:
LXK e +x". For example: if n is 3 and x is 5, then the program computes
1+5+25+125. Print X, n, the sum. Perform error checking. For example, the formula does not make sense for
negative exponents — if n is less than 0. Have your program print an error message if n<0, then go back and read
in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them
too.

b. Develop a C program to find the 2’s complement of a given binary number. 2’s complement is obtained by
scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s
complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary humber.

C. Develop a C program to convert a Roman numeral to its decimal equivalent. E.g. check for the inputs - Roman
number IX is equivalent to 9 and Roman number XI is equivalent to 11.

Week — 10: PREPROCESSOR DIRECTIVES

a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to
compute the volume for spheres of radius 5, 10 and 15meters.

b. Define a macro that receives an array and the number of elements in the array as arguments. Write a C program
for using this macro to print the elements of the array.

C. Write symbolic constants for the binary arithmetic operators +, -, *, and /. Write a C program to illustrate the
use of these symbolic constants.

Week — 11: FILES
a. Create an employee file employee.txt and write 5 records having employee name, designation, salary, branch
and city. Develop a C program to display the contents of employee.txt file.
b. Create a studentolddata.txt file containing student name, roll no, branch, section, address. Develop a C
program to copy the contents of studentolddata.txt file toanother file studentnewdata.txt.
c. Develop a C program to create a text file info.txt to store the information given below. Implement using a C
program to count the number of words and characters in the file info.txt.
Test Data:
Input the file name to be opened : info.txt
Expected Output:
The content of the file info.txt are :
Welcome to IARE
Welcome to Computer Programming

68|Page

The number of words in the file info.txtare : 7
The number of characters in the file info.txt are : 46
d. Given two university information files “studentname.txt” and “roll_number.txt” that contains students Name
and Roll numbers respectively. Write a C program to create a new file called “output.txt” and copy the content
of files “studentname.txt” and “roll_number.txt” into output file. Display the contents of output file
“output.txt” on to the screen.

studname.txt roll_number.txt
Asha 20951A1201
Bharath 20951A0502
Uma 20951A0456
Shilpa 20951A0305

Week — 12: COMMAND LINE ARGUMENTS

Develop a C program to read a set of arguments and display all arguments given through command line.
Develop a C program to read a file at command line argument and display the contents of the file.

Develop a C program to read N integers and find the sum of N integer numbers using command line arguments.
Develop a C program to read three integers and find the largest integer among three using command line
argument.

oo o

V. REFERENCE BOOKS:

1. Yashavant Kanetkar, “Let Us C”, BPB Publications, New Delhi, 13" Edition, 2012.

2. Oualline Steve, “Practical C Programming”, O’Reilly Media, 3™ Edition, 1997.

3. King KN, “C Programming: A Modern Approach”, Atlantic Publishers, 2™ Edition, 2015.

4. Kochan Stephen G, “Programming in C: A Complete Introduction to the C Programming Language”, Sam’s
Publishers, 3 Edition, 2004.

5. Linden Peter V, “Expert C Programming: Deep C Secrets”, Pearson India, 1% Edition, 1994.

V. WEB REFERENCES:

1. http://www.sanfoundry.com/c-programming-examples
2. http://lwww.geeksforgeeks.org/c

3. http://www.cprogramming.com/tutorial/c

4. http://www.cs.princeton.edu

69|Page

http://www.sanfoundry.com/c-programming-examples
http://www.geeksforgeeks.org/c
http://www.cprogramming.com/tutorial/c
http://www.cs.princeton.edu/

DISCRETE MATHEMATICAL STRUCTURES

111 Semester: CSE/IT/CSIT

Course Code Category Hours / Week Credits Maximum Marks
L T P C CIA SEE Total
AITCO1 Core
3 1 0 4 30 70 100
Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

The purpose of this course is to provide a clear understanding of the concepts that underlying fundamentals with
emphasis on their applications to computer science. It highlights mathematical definitions and proofs as well as
applicable methods. The contents include formal logic notation, proof methods; induction, well- ordering; sets,
relations; growth of functions; permutations and combinations, counting principles, recurrence equations, trees and
more general graphs.

I1. COURSE OBJECTIVES:
The students will try to learn:
I The fundamental knowledge of statement notations and logical connectives which are used to convert English
sentences into logical expressions.
Il The effective use of combinatory principles for calculating probabilities and solving counting problems
111 The characteristics of generating functions for finding the solution of linear homogeneous recurrence relations.
IV The effective use of graph theory in subsequent fields of study such as computer networks, and algorithms for
solving real world engineering problems.

I1l. SYLLABUS:

MODULE - I: MATHEMATICAL LOGIC AND PREDICATES (10)

Mathematical logic: Statements and notations, connectives, well-formed formulas, truth tables, tautology, equivalence
implication; Normal forms: Disjunctive normal forms, conjunctive normal forms, principle disjunctive normal forms,
principle conjunctive normal forms; Predicate calculus: Predicative logic, statement functions, variables and quantifiers,
free and bound variables, rules of inference, consistency, proof of contradiction.

MODULE - I1: RELATIONS, FUNCTIONS AND LATTICES (09)

Relations: Properties of binary relations, equivalence, compatibility and partial ordering relations, lattices, Hasse
diagram; Functions: Inverse function, composition of functions, recursive functions; Lattices: Lattices as partially
ordered sets; Definition and examples, properties of lattices, sub lattices, some special lattices.

MODULE - I11: ALGEBRAIC STRUCTURES AND COMBINATORICS (09)
Algebraic structures: Algebraic systems, examples and general properties, semi groups and monoids, groups, sub
groups, homomorphism, isomorphism, rings.

Combinatory: The fundamental counting principles, permutations, disarrangements, combinations, permutations and
combinations with repetitions, the binomial theorem, multinomial theorem, generalized inclusion exclusion principle.

MODULE - IV: RECURRENCE RELATION (09)

Recurrence relation: Generating functions, function of sequences calculating coefficient of generating function,
recurrence relations, solving recurrence relation by substitution and generating functions, Characteristics roots
solution of homogeneous recurrence relation.

MODULE - V: GRAPHS AND TREES (08)

Graphs: Basic concepts of graphs, isomorphic graphs, Euler graphs, Hamiltonian graphs, planar graphs, graph

coloring, digraphs, directed acyclic graphs, weighted digraphs, region graph, chromatic numbers; Trees: Trees,

spanning trees, minimal spanning trees.

IV. TEXT BOOKS:

1. J.P. Tremblay, R. Manohar, “Discrete Mathematical Structures with Applications to Computer Science”, Tata
McGraw Hill, India, 1% Edition, 1997.

2. JoeL. Mott, Abraham Kandel, Theodore P. Baker, “Discrete Mathematics for Computer Scientists and
Mathematicians”, Prentice Hall of India Learning Private Limited, New Delhi, India, 2" Edition, 2010.

70|Page

V. REFERENCE BOOKS:

1. Kenneth H. Rosen, “Discrete Mathematics and Its Applications”, Tata Mcgraw-Hill, New Delhi, India, 6™
Edition,2012.

2. C. L. Liu, D. P. Mohapatra, “Elements of Discrete Mathematics™, Tata Mcgraw-Hill, India, 3" Edition,2008.

3. Ralph P. Grimaldi, B. V. Ramana, “Discrete and Combinatorial Mathematics - An Applied Introduction”, Pearson

Education, India, 5 Edition, 2011.
4. D. S. Malik, M. K. Sen, “Discrete Mathematical Structures: Theory and Applications”, Thomson Course
Technology, India, 1% Edition, 2004.

VI.WEB REFERENCES:

. http://mww.web.stanford.edu/class/cs103x

. http://www.cs.odu.edu/~cs381/cs381content/web_course.html
. http://www.cse.iitd.ernet.in/~bagchi/courses/discrete-book

. http://www.saylor.org/course/cs202/

. http://www.nptel.ac.in/courses/106106094/

. http://www.tutorialspoint.com/discrete_mathematics
._http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs

~NOoO Ok, WN B

71|Page

COMPUTER ORGANIZATION AND ARCHITECTURE

111 Semester: CSE /1T / CSIT / CSE (AI&ML) / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks
ACSCO7 Core L T P C CIA SEE Total
3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: Programming For Problem Solving

I. COURSE OVERVIEW:

This course introduces the principles of basic computer organization, CPU organization, and the basic architecture
concepts. The course emphasizes performance and cost analysis, instruction set design, register transfer languages,
arithmetic, logic and shift micro operations, pipelining, memory technology, memory hierarchy, virtual memory
management, and 1/O organization of computer, parallel processing and inter process communication and
synchronization.

I1. COURSE OBJECTIVES:
The students will try to learn:
I. Understand the organization and architecture of computer systems and electronic computers.
Il. Study the assembly language program execution, instruction format and instruction cycle.
I1l. Design a simple computer using hardwired and micro-programmed control methods.
IV. Study the basic components of computer systems besides the computer arithmetic.
V. Understand input-output organization, memory organization and management, and pipelining.

1. SYLLABUS:

MODULE - I: INTRODUCTION TO COMPUTER ORGANIZATION

Basic computer organization, CPU organization, memory subsystem organization and interfacing, input or output
subsystem organization and interfacing, a simple computer levels of programming languages, assembly language
instructions, instruction set architecture design, a simple instruction set architecture.

MODULE - 11: ORGANIZATION OF A COMPUTER

Register transfer: Register transfer language, register transfer, bus and memory transfers, arithmetic micro operations,
logic micro operations, shift micro operations; Control unit: Control memory, address

sequencing, micro program example, and design of control unit.

MODULE - I11: CPU AND COMPUTER ARITHMETIC

CPU design: Instruction cycle, data representation, memory reference instructions, input-output, and interrupt,
addressing modes, data transfer and manipulation, program control.

Computer arithmetic: Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit.

MODULE - IV: INPUT-OUTPUT ORGANIZATION AND MEMORY ORGANIZATION

Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory,
virtual memory; Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer,
priority interrupt, direct memory access.

MODULE - V: MULTIPROCESSORS

Pipeline: Parallel processing, pipelining-arithmetic pipeline, instruction pipeline; Multiprocessors: Characteristics of
multiprocessors, inter connection structures, inter processor arbitration, inter processor communication and
synchronization.

72|Page

IV. TEXT BOOKS:
1. M. Morris Mano, “Computer Systems Architecture”, Pearson, 3™ Edition, 2015.
2. John D. Carpinelli, “Computer Systems Organization and Architecture”, Pearson, 1°t Edition, 2001.

3. Patterson, Hennessy, “Computer Organization and Design: The Hardware/Software Interface”, Morgan Kaufmann,
5t Edition, 2013.

V. REFERENCE BOOKS:

1. John. P. Hayes, “Computer System Architecture”, McGraw-Hill, 3" Edition, 1998.

2. Carl Hamacher, Zvonko G Vranesic, Safwat G Zaky, “Computer Organization”, McGraw-Hill,
5t Edition, 2002.

3. William Stallings, “Computer Organization and Architecture”, Pearson Edition, 8™ Edition, 2010.

VI. WEB REFERENCES:

1. https://www.tutorialspoint.com/computer_logical_organization/
2. https://www.courseera.org/learn/comparch

3. https://www.cssimplified.com/.../computer-organization-and-assembly-language-programming

73|Page

http://www.tutorialspoint.com/computer_logical_organization/
http://www.courseera.org/learn/comparch
http://www.cssimplified.com/.../computer-organization-and-assembly-language-programming

ANALOG AND DIGITAL ELECTRONICS

111 Semester: CSE / 1T/ CSIT / CSE (AI&ML) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks
AECCO8 Core L T P C CIA SEE Total
3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: No Prerequisites

I. COURSE OVERVIEW:

This course provides the basic knowledge over the construction and functionality of the basic electronic devices such as
diodes and transistors. It also provides the information about the uncontrollable and controllable electronic switches and
the flow of current through these switches in different biasing conditions and also will make them to learn the basic
theory of switching circuits and their applications in specified relationship between signals at the input and output
terminals. They will be able to design combinational and sequential circuitsdetail. Starting from a problem statement
they will learn to design circuits of logic gates that have a.They will learn to design counters, adders, sequence
detectors.

Il. COURSE OBJECTIVES:
The students will try to learn:
I. The Fundamental knowledge of the operational principles and characteristics of semiconductor devices and their

applications.

Il. The basic concept of number systems, boolean algebra and optimized implementation of combinational and
sequential circuits.

IIl. The perceive subsequent studies in the area of microprocessors, microcontrollers, VLSI design and embedded
systems effectively use of fundamentals of digital electronics.

I11. SYLLABUS:

MODULE - I: DIODE AND APPLICATIONS

Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances,
Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier,
Rectifiers with Capacitive Filter.

MODULE - II: BIPOLAR JUNCTION TRANSISTOR (BJT)

Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations,
Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of h-parameters from
transistor characteristics, Conversion of h-parameters.

MODULE - I11: NUMBER SYSTEMS
Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check
code and Hamming code.

Boolean Algebra: Basic Theorems and Properties, Switching Functions- Canonical and Standard Form, Algebraic
Simplification, Digital Logic Gates, EX-OR gates, Universal Gates, Multilevel NAND/NOR realizations.

MODULE - IV: MINIMIZATION OF BOOLEAN FUNCTIONS

Karnaugh Map Method - Up to five Variables, Don’t Care Map Entries, Tabular Method,

Combinational Logic Circuits: Adders, Subtractors, comparators, Multiplexers, Demultiplexers, Encoders, Decoders
and Code converters, Hazards and Hazard Free Relations.

MODULE - V: SEQUENTIAL CIRCUITS FUNDAMENTALS

Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK
Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration,
Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers — Left, Right and Bidirectional Shift Registers, Applications of Shift Registers -
Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and

Synchronous Counters.

IV. TEXT BOOKS:

74|Page

Jacob Millman , “Electronic Devices and Circuits”, McGraw Hill Education, 2017

Robert L. Boylestead, Louis Nashelsky, “Electronic Devices and Circuits Theory”, Pearson, 11" Edition, 2009.
ZviKohavi&Niraj K. Jha, “Switching and Finite Automata Theory”, Cambridge, 3 Edition, 2010.

R. P. Jain, “Modern Digital Electronics” Tata McGraw-Hill, 3" Edition, 2007.

Eall A

V. REFERENCE BOOKS:

1. J. Millman, H. Taub and Mothiki S. Prakash Rao, “Pulse, Digital and Switching Waveforms”, McGraw Hill 2™

Edition, 2008.

S. Salivahanan, N.Suresh Kumar, AVallvaraj , “Electronic Devices and Circuits”, TMH. 2" Edition, 2008.

Morris Mano, “Digital Design, PHI, 4™ Edition, 2006.

4. Fredriac J. Hill, Gerald R. Peterson, “Introduction to Switching Theory and Logic Design”, John Wiley & Sonslnc.
3" Edition, 2006.

wmn

V1. WEB REFERENCES:

1. http://www-mdp.eng.cam.ac.uk/web/library/enginfo/electrical/hongl.pdf
2. https://archive.org/details/ElectronicDevicesCircuits
3. http://nptel.ac.in/courses/Webcourse-contents/l T-ROORKEE/BASICELECTRONICS/home_page.htm
4. mcshzu.blogspot.com
5. http://books.askvenkat.com
6. http://worldclassprogramme.com
VII. WEB REFERENCES:
1. http://services.eng.uts.edu.au/pmcl/ec/Downloads/LectureNotes.pdf
2. http://nptel.ac.in/courses/122106025/
3. http://www.freebookcentre.net/electronics-ebooks-download/Electronic-Devices-and-Circuits-(PDF-313p).html
4. https://books.google.co.in/books/about/Switching_Theory _and_Logic_Design
5. https://www.smartzworld.com/notes/switching-theory-and-logic-design-stld
6. https://www.researchgate.net/.../295616521 Switching_Theory and_Logic_Design

75|Page

http://www-mdp.eng.cam.ac.uk/web/library/enginfo/electrical/hong1.pdf
http://nptel.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC
http://books.askvenkat.com/
http://worldclassprogramme.com/

DATA STRUCTURES

111 Semester: Common for all branches

Course Code Category Hours / Week Credits Maximum Marks
ACSCO8 Core L T P C CIA SEE Total
3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: Python Programming

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics
covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms.
The main objective of the course is to teach the students how to select and design data structures and algorithms that are
appropriate for problems that they might encounter in real life. This course reaches to student by power point
presentations, lecture notes, and lab which involve the problem solving in mathematical and engineering areas.

I1. COURSE OBJECTIVES:
The students will try to learn:
. To provide students with skills needed to understand and analyze performance trade-offs of different algorithms /

implementations and asymptotic analysis of their running time and memory usage.

Il. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree,
graphs, hashing and sorting, selection and searching.

I1l. The fundamentals of how to store, retrieve, and process data efficiently.

IV. To provide practice by specifying and implementing these data structures and algorithms in Python.

V. Understand essential for future programming and software engineering courses.

I11. SYLLABUS:

MODULE - I: INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING (09)

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Algorithm
Specification, Recursive algorithms, Data Abstraction, Performance analysis- time complexity and space complexity,
Asymptotic Notation-Big O, Omega, and Theta notations. Introduction to Linear and Non Linear data structures,
Searching techniques: Linear and Binary search; Sorting techniques: Bubble, Selection, Insertion, Quick and Merge Sort
and comparison of sorting algorithms.

MODULE - II: LINEAR DATA STRUCTURES (09)

Stacks: Stack ADT, definition and operations, Implementations of stacks using array, applications of stacks, Arithmetic
expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays,
applications of linear queue, circular queue and double ended queue (deque).

MODULE - I11: LINKED LISTS (09)
Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list;
Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked
list representation and operations of queue.

MODULE - IV NON LINEAR DATA STRUCTURES (09)

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal,
binary tree variants, threaded binary trees, application of trees, Graphs: Basic concept, graph terminology, Graph
Representations - Adjacency matrix, Adjacency lists, graph implementation, Graph traversals — BFS, DFS, Application
of graphs, Minimum spanning trees — Prims and Kruskal algorithms.

MODULE - V BINARY TREES AND HASHING (09)

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-
Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of
hashing.

76|Page

IV. TEXT BOOKS:
1. Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.

2. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.
V. REFERENCE BOOKS:

1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1% Edition, 2008.

2. D. Samanta, “Classic Data Structures”, PHI Learning, 2™ Edition, 2004.

\Y

. WEB REFERENCES:

. https://lwww.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
. https://www.codechef.com/certification/data-structures-and-algorithms/prepare

. https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html
._https://online-learning.harvard.edu/course/data-structures-and-algorithms

A WN P

77|Page

PROGRAMMING WITH OBJECTS

111 Semester: CSE /1T / CSIT / CSE(DS)

Course Code Category Hours / Week Credits Maximum Marks
AITCO? Core L T P C CIA SEE Total
3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

Prerequisites: Programming for Problem Solving

I. COURSE OVERVIEW:

Java's unique architecture enables programmers to develop a single application that can run across multiple platforms
seamlessly and reliably. This course, enable the students to gain extensive experience with Java and its object-
oriented features to create robust console and GUI applications and store and retrieve data from relational databases.

I1.OBJECTIVES:

The students will try to learn:
. The concepts of Object Oriented programming.
Il. The programs to implement event handling, user interfaces and graphical interfaces with the help of Java.
I11. The web applications to connect with the databases.

I1l. SYLLABUS:

MODULE-I: OOP CONCEPTS AND JAVA PROGRAMMING(08)

OOP concepts: Classes and objects, data abstraction, encapsulation, inheritance, benefits of inheritance,
polymorphism, procedural and object oriented programming paradigm; Java programming: History of java,
comments data types, variables, constants, scope and life time of variables, operators, operator hierarchy,
expressions, type conversion and casting, enumerated types, control flow statements, jump statements, simple java
standalone programs, arrays, console input and output, formatting output, constructors, methods, parameter
passing, static fields and methods, access control, this reference, overloading methods and constructors, recursion,
garbage collection, exploring string class.

MODULE -I11: INHERITANCE, INTERFACES AND PACKAGES(10)

Inheritance: Inheritance hierarchies, super and subclasses, member access rules, super keyword, preventing
inheritance: final classes and methods, the object class and its methods; Polymorphism: Dynamic binding, method
overriding, abstract classes and methods; Interface: Interfaces vs Abstract classes, defining an interface,
implement interfaces, accessing implementations through interface references, extending interface; Packages:
Defining, creating and accessing a package, understanding CLASSPATH, importing packages.

MODULE —I111: EXCEPTION HANDLING AND MULTI THREADING(08)

Exception Handling: Benefits of exception handling, the classification of exceptions, exception hierarchy,
checked and unchecked exceptions, usage of try, catch, throw, throws and finally, re-throwing exceptions,
exception specification, built in exceptions, creating own exception sub classes.

Multithreading: Differences between multiple processes and multiple threads, thread states, creating threads,
interrupting threads, thread priorities, synchronizing threads, inter thread communication.

MODULE -IV: FILES, AND CONNECTING TO DATABASE(10)

Files: Streams, byte streams, character stream, text input/output, binary input/output, random access file
operations, file management using file class; Connecting to Database: Connecting to a database, querying a
database and processing the results, updating data with JDBC.

MODULE -V: GUI PROGRAMMING AND APPLETS(09)

GUI programming with Java: The AWT class hierarchy, introduction to swing, swing Vs AWT, hierarchy for
swing components, containers, JFrame, JApplet, JDialog, JPanel; Overview of some swing components: JButton,
JLabel, JTextField, JTextArea, simple applications; Layout management: Layout manager types: Border, grid and
flow; Applets: Inheritance hierarchy for applets, differences between applets and applications, life cycle of an
applet, passing parameters to applets.

78|Page

IVV. Text Books:
1. Herbert Schildt, Dale Skrien,“Java Fundamentals — A Comprehensive Introduction”, McGraw-Hill, 1% Edition,
2013.
2. Herbert Schildt, “Java the Complete Reference”, McGraw Hill, Osborne, 8" Edition, 2011.
3. T.Budd, “Understanding Object-Oriented Programming with Java”, Pearson Education, Updated Edition (New
Java 2 Coverage), 1999.

V. Reference Books:

1. P.J. Deitel, H. M. Deitel, “Java: How to Program”, Prentice Hall,6'" Edition, 2005.

2. P. RadhaKrishna, “Object Oriented Programming through Java”, Universities Press, CRC Press, 2007.

3. Bruce Eckel, “Thinking in Java”, Prentice Hall, 4" Edition, 2006.

4. Sachin Malhotra, Saurabh Chaudhary, “Programming in Java”, Oxford University Press, 2™ Edition, 2014.

VI. Web References:
1. http://www.javatpoint.com/java-tutorial
2. http://www.javatutorialpoint.com/introduction-to-java/

79|Page

http://www.javatpoint.com/java-tutorial
http://www.javatutorialpoint.com/introduction-to-java/

EXPERIENTIAL ENGINEERING EDUCATION (EXEED) -

PROTOTYPE /DESIGN BUILDING

I11 Semester: Common for all branches

Course Code Category Hours / Week Credits Maximum Marks
) L T P C CIA SEE Total
ACSC09 Foundation
2 0 0 1 30 70 100
Contact Classes: 28 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 28

Prerequisite: There are no prerequisites to take this course

I. COURSE OVERVIEW:

This course provides an overall exposure to the various methods and tools of prototyping. This course discusses
Low- Fidelity, paper, wireframing and tool based prototyping techniques along with design principles and patterns.

I1. COURSE OBJECTIVES:
The students will try to learn:
I. The basic principles and design aspect of prototyping.
Il. The various techniques, design guidelines and patterns.
I1l. The applications of prototyping using various tools and platforms.

WEEK NO TOPIC
WEEK -1 An introduction to Prototyping
WEEK - 11 Low - Fidelity Prototyping and Paper Prototyping
WEEK - 111 Wireframing and Tool based Prototyping
WEEK - IV Physical Low- Fidelity Prototyping
WEEK -V Tool based prototyping
WEEK - VI Design Principles and Patterns- Graphic Design
WEEK - VII Design Principles and Patterns- Interaction Design
WEEK -VIII | Commercial design guidelines and standards.
WEEK - IX Universal design: Sensory and cognitive impairments
WEEK - X Universal design: Tools, Limitations and standards
WEEK - XI Introduction platforms and context : Mobile Ul design, Wearable
WEEK - XIlI Introduction platforms and context : Automotive user interface
WEEK - X111 | Introduction platforms and context : 10T and Physical Computing
WEEK - X1V | Assessment

80|Page

DATA STRUCTURES LABORATORY

111 Semester: Common for all branches

Course Code Category Hours / Week Credits Maximum Marks
L T P C CIA | SEE Total
ACSC10 Core
0 0 3 15 30 70 100

Contact Classes: Nil

Tutorial Classes: Nil

Practical Classes: 45

Total Classes: 45

Prerequisite: Programming for Problem Solving using C and Python Programming

I. COURSE OVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered
include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main
objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate
for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture
notes, and lab which involve the problem solving in mathematical and engineering areas.

Il. COURSES OBJECTIVES:
The students will try to learn
I. The skills needed to understand and analyze performance trade-offs of different algorithms / implementations

and asymptotic analysis of their running time and memory usage.

Il. The basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and
sorting, selection and searching.

I1l. The fundamentals of how to store, retrieve, and process data efficiently.

I11. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Interpret the complexity of algorithm using the asymptotic notations.

CO 2 Select appropriate searching and sorting technique for a given problem.

CO 3 Construct programs on performing operations on linear and nonlinear data structures for
organization of a data
CO 4 Make use of linear data structures and nonlinear data structures solving real time applications.

CO5 Describe hashing techniques and collision resolution methods for efficiently accessing data
with respect to performance.
CO6 Compare various types of data structures; in terms of implementation, operations and
performance.

8l|Page

IV. COURSE CONTENT

EXERCISES FOR DATA STRUCTURES LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory
practice sessions.

1. Getting Started Exercises

1.1 Implicit Recursion

A specific type of recursion called implicit recursion occurs when a function calls itself without making an
explicit recursive call. This can occur when a function calls another function, which then calls the original code
once again and starts a recursive execution of the original function.

Using implicit recursion find the second-largest elements from the array.

In this case, the find_second_largest method calls the find_largest() function via implicit recursion to locate
the second-largest number in a provided list of numbers. Implicit recursion can be used in this way to get the
second-largest integer without having to write any more code

Input: nums = [1, 2, 3, 4, 5]
Output: 4

def find_largest(numbers):
Write code here

def find_second_largest(numbers):
Write code here

Driver code
numbers = [1, 2, 3, 4, 5]
Function call

second_largest = find_second_largest(numbers)
print(second_largest)

1.2 Towers of Hanoi

Tower of Hanoi is a mathematical puzzle where we have three rods (A, B, and C) and N disks. Initially, all the
disks are stacked in decreasing value of diameter i.e., the smallest disk is placed on the top and they are on rod
A. The objective of the puzzle is to move the entire stack to another rod (here considered C), obeying the
following simple rules:

e Only one disk can be moved at a time

e Each move consists of taking the upper disk from one of the stacks and placing it on top of another

stack i.e. a disk can only be moved if it is the uppermost disk on a stack.
e No disk may be placed on top of a smaller disk.

Input: 2

82|Page

Output: Disk 1 moved from A to B

Disk 2 moved from A to C
Disk 1 moved from B to C

Input: 3
Output: Disk 1 moved from A to C

Disk 2 moved from A to B
Disk 1 moved from Cto B

Disk 3 moved from A to C
Disk 1 moved from B to A
Disk 2 moved from B to C
Disk 1 moved from A to C

Tower of Hanoi using Recursion:

The idea is to use the helper node to reach the destination using recursion. Below is the pattern for this
problem:

e Shift ‘N-1" disks from ‘A" to B, using C.
e Shift last disk from ‘A’ to 'C'.
e Shift ‘N-1" disks from ‘B’ to 'C’, using A.
Follow the steps below to solve the problem:
e Create a function towerOfHanoi where pass the N (current number of disk), from_rod, to_rod, aux_rod.
e Make a function call for N - 1 th disk.

e Then print the current the disk along with from_rod and to_rod
e Again make a function call for N — 1 th disk.

3 Digk 1
] C Ay B s
2 3
A o [+ A B G
[§
n B '] B C A B [

Recursive Python function to solve Tower of Hanoi
def TowerOfHanoi(n, from_rod, to_rod, aux_rod):
if n ==
return
Write code here

83|Page

Driver code

N =

3

A, C, B are the name of rods
TowerOfHanoi(N, 'A', 'C', 'B')

1.3 Recursively Remove all Adjacent Duplicates

Given a string, recursively remove adjacent duplicate characters from the string. The output string should not
have any adjacent duplicates.

Input: s = "azxxzy”

Output: “ay”

Explanation:

e First "azxxzy” is reduced to "azzy".

e The string "azzy"” contains duplicates

e Soitis further reduced to “ay”

Input: “caaabbbaacdddd”
Output: Empty String

Input: “acaaabbbacdddd”

Output: “acac”

Procedure to remove duplicates:

Start from the leftmost character and remove duplicates at left corner if there are any.

The first character must be different from its adjacent now. Recur for string of length n-1 (string

without first character).

Let the string obtained after reducing right substring of length n-1 be rem_str. There are three possible

cases

» If first character of rem_str matches with the first character of original string, remove the first
character from rem_str.

» If remaining string becomes empty and last removed character is same as first character of original
string. Return empty string.

> Else, append the first character of the original string at the beginning of rem_str.

Return rem_str.

Claaa| [bbb|[aa|c|[dddd|

l remove

l

Empty String

84|Page

Program to remove all adjacent duplicates from a string

Recursively removes adjacent duplicates from str and returns
new string. last_removed is a pointer to last_removed character

def removeUtil(string, last_removed):
Write code here

def remove(string):
Write code here

Utility functions
def tolList(string):
x =[]
for i in string:
X .append(i)
return X

def toString(x):
return ''.join(x)

Driver program
stringl = "azxxxzy"
print remove(stringl)

string2 = "caaabbbaac"
print remove(string2)

string3 = "gghhg"
print remove(string3)

string4 = "aaaacddddcappp"
print remove(string4)

string5 = "aaaaaaaaaa"
print remove(string5)

1.4 Product of Two Numbers using Recursion

Given two numbers x and y find the product using recursion.
Input: x =5,y=2
Output: 10

Input: x = 100,y =5
Output: 500
Procedure

If x is less than y, swap the two variables value
Recursively find y times the sum of x

1

2

3. If any of them become zero, return 0

Find Product of two Numbers using Recursion

85|Page

recursive function to calculate multiplication of two numbers
def product(x , y):
Write code here

Driver code

X =5

y = 2

print(product(x, y))

1.5 Binary to Gray Code using Recursion

Given the Binary code of a number as a decimal number, we need to convert this into its equivalent Gray Code.
Assume that the binary number is in the range of integers. For the larger value, we can take a binary number as
string.

In gray code, only one bit is changed in 2 consecutive numbers.

Input: 1001

Output: 1101

Explanation: 1001 -> 1101 -> 1101 -> 1101

Input: 11
Output: 10

Explanation: 11 -> 10

Procedure:

The idea is to check whether the last bit and second last bit are same or not, if it is same then move ahead
otherwise add 1.

Follow the steps to solve the given problem:
binary_to_grey(n)
ifn==0
grey =0,
else if last two bits are opposite to each other
grey = 1 + 10 * binary_to_gray(n/10))
else if last two bits are same
grey = 10 * binary_to_gray(n/10))

Convert Binary to Gray code using recursion
Function to change Binary to Gray using recursion
def binary to _gray(n):

write code here
Driver Code

binary_number = 1011101

print(binary_to_gray(binary_number), end='")

86|Page

1.6 Count Set-bits of a number using Recursion

Given a number N. The task is to find the number of set bits in its binary representation using recursion.
Input: 21
Output: 3

Explanation: 21 represented as 10101 in binary representation

Input: 16

Output: 1

Explanation: 16 represented as 10000 in binary representation

Procedure:

1. First, check the LSB of the number.

2. If the LSB is 1, then we add 1 to our answer and divide the number by 2.
3. If the LSB is O, we add 0 to our answer and divide the number by 2.

4. Then we recursively follow step 1 until the number is greater than 0.

Find number of set bits in a number

Recursive function to find number of set bits in a number

def CountSetBits(n):

write code here

Driver code

n = 21;

Function call
print(CountSetBits(n));

1.7 Fibonacci Series in Reverse Order using Recursion

Given an integer N, the task is to print the first N terms of the Fibonacci series in reverse order using Recursion.
Input: N =5
Output:3 2 110

Explanation: First five termsare-0 1 1 2 3

Input: N = 10
Output:34 21 138532 110

The idea is to use recursion in a way that keeps calling the same function again till N is greater than 0 and
keeps on adding the terms and after that starts printing the terms.

Follow the steps below to solve the problem:
1. Define a function fibo (int N, int a, int b) where
i. N is the number of terms and
ii.a and b are the initial terms with values 0 and 1.
2. If Nis greater than 0, then call the function again with values N-1, b, a+b.
3. After the function call, print a as the answer.

87|Page

Function to print the Fibonacci series in reverse order.
def fibo(n, a, b):

write code here
Driver Code
N = 10

fibo(N, @, 1)

1.8 Length of Longest Palindromic Sub-string using Recursion

Given a string S, the task is to find the length longest sub-string which is a palindrome.
Input: S = "aaaabbaa”
Output: 6

Explanation: Sub-string "aabbaa” is the longest palindromic sub-string

Input: S = "banana”
Output: 5
Explanation: Sub-string “anana” is the longest palindromic sub-string

The idea is to use recursion to break the problem into smaller sub-problems. In order to break the problem
into two smaller sub-problems, compare the start and end characters of the string and recursively call the
function for the middle substring.

Find the length of longest palindromic sub-string using Recursion
Function to find maximum of the two variables
def maxi(x, y):
if x > y:
return x
else:
return y
Function to find the longest palindromic substring: Recursion
def longestPalindromic(strn, i, j, count):

write code here

Function to find the longest palindromic sub-string
def longest palindromic_substr(strn):

write code here
strn = "aaaabbaa"

Function Call

print(longest_palindromic_substr(strn))

88|Page

1.9 Find the Value of a Number Raised to its Reverse

Given a number N and its reverse R. The task is to find the number obtained when the number is raised to the
power of its own reverse

Input:N=2,R=2

Output: 4

Explanation: Number 2 raised to the power of its reverse 2 gives 4 which gives 4 as a result after performing
modulo 10%+7

Input: N = 57, R =75

Output: 262042770

Explanation: 577> modulo 10°+7 gives us the result as 262042770
Function to return ans with modulo
def PowerOfNum(N, R):

write code here

Driver code

Function call
print(int(PowerOfNum(N, R)))

1.10 Mean of Array using Recursion

Find the mean of the elements of the array.

Mean = (Sum of elements of the Array) / (Total no of elements in Array)

Input: 12345

Output: 3

Input: 123

Output: 2

To find the mean using recursion assume that the problem is already solved for N-1 i.e. you have to find for n
Sum of first N-1 elements = (Mean of N-1 elements) * (N-1)

Mean of N elements = (Sum of first N-1 elements + N-th elements) / (N)

Program to find mean of array
Function definition of findMean function
def findMean(A, N):

write code here

89|Page

Driver Code

Mean = ©
A= [1: 2: 3: 4, 5]
N = len(A)

print(findMean(A, N))

Try:
1. Given two numbers N and r, find the value of NC, using recursion.
C(n,r) = C(n-1,r-1) + C(n-1,r)

Input: N =5r=2
Output: 10
Explanation: The value of 5C2 is 10

2. Predict the output of the following program. What does the following fun() do in general?

fp = 15
def fun(n):
global fp
if (n <= 2):
fp =1
return 1

t = fun(n - 1)

f =1t + fp
fp = t
return f

Driver code
print(fun(5))

3. Tail recursion: Calculate factorial of a number using a Tail-Recursive function.

2. Searching

2.1 Linear / Sequential Search

Linear search is defined as the searching algorithm where the list or data set is traversed from one end to find
the desired value. Given an array arr[] of n elements, write a recursive function to search a given element x in
arr[].

Find ‘6’

123456789 10

I0123456789|

Index

Note : We find ‘6’ at index ‘5° through linear search

Linear search procedure:
1. Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

|Page

http://www.geeksforgeeks.org/recursion/

2. If x matches with an element, return the index.

3. If x doesn't match with any of the elements, return -1.

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x = 110;

Output: 6

Element x is present at index 6

Input: arr[] = {10, 20, 80, 30, 60, 50, 110, 100, 130, 170}
x = 175;

Output: -1

Element x is not present in arr[].

Recursive linear search
def linear_search(arr, curr_index, key):
write code here

Driver code

arr = [10, 20, 80, 30, 60, 50, 110, 100, 130, 170]
x = 110

linear_search(arr, 0, x)

2.2 Binary Search

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing the search
interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time
complexity to O(log N).

e

0 1 2 .3 4 S5 6 7 8 9
search46 [4]10[16[2432([46|76[112[144[182]

L=0 1 2 3 M=4 5 6 7 8 H=9
ke s half |41 10] 16|24 (32) 46| 76| 112|144 | 182

0 1 2 3 4 =5 6 M=7 8 H=9
feciiz 14| 10]16]24(32] 46|76 (112) 144|182

take lower half

0 1 2 3 4 I.'=M=5H=6 7 8 9
indocs 4] 10] 16]2432((@6) 76| 112 [144 [182]

Conditions for Binary Search algorithm:
1. The data structure must be sorted.
2. Access to any element of the data structure takes constant time.

91|Page

https://www.geeksforgeeks.org/searching-algorithms/

low ——— «— high

mid = low + (high - low)/2

Binary Search Procedure:

1. Divide the search space into two halves by finding the middle index “mid".

2. Compare the middle element of the search space with the key.

3. If the key is found at middle element, the process is terminated.

4. If the key is not found at middle element, choose which half will be used as the next search space.
a. If the key is smaller than the middle element, then the left side is used for next search.
b. If the key is larger than the middle element, then the right side is used for next search.

5. This process is continued until the key is found or the total search space is exhausted.

Input: arr = [2, 5, 8, 12, 16, 23, 38, 56, 72, 91]
Output: target = 23
Element 23 is present at index 5

Program for recursive binary search.

Returns index of x in arr if present, else -1
def binarySearch(arr, 1, r, x):
write code here

Driver Code

arr = [2, 3, 4, 10, 40]

X = 10

result = binarySearch(arr, 0, len(arr)-1, Xx)

if result != -1:
print("Element is present at index", result)
else:

print("Element is not present in array")

2.3 Uniform Binary Search

Uniform Binary Search is an optimization of Binary Search algorithm when many searches are made on same
array or many arrays of same size. In normal binary search, we do arithmetic operations to find the mid points.
Here we precompute mid points and fills them in lookup table. The array look-up generally works faster than
arithmetic done (addition and shift) to find the mid-point.

Input: array = {1, 3,5, 6,7, 8, 9}, v=3
Output: Position of 3 in array = 2

Input: array = {1, 3,5, 6,7, 8, 9}, v=7
Output: Position of 7 in array = 5

The algorithm is very similar to Binary Search algorithm, the only difference is a lookup table is created for an
array and the lookup table is used to modify the index of the pointer in the array which makes the search

92|Page

faster. Instead of maintaining lower and upper bound the algorithm maintains an index and the index is
modified using the lookup table.

Implementation of above approach
MAX_SIZE = 1000

lookup table
lookup_table = [@] * MAX_SIZE

create the lookup table for an array of length n
def create_table(n):
write code here

binary search

def binary(arr, v):
write code here

Driver code
arr = [1, 3, 5, 6, 7, 8, 9]
n = len(arr)

create the lookup table
create_table(n)

print the position of the array

print("Position of 3 in array = ", binary(arr, 3))

2.4 Interpolation Search

Interpolation search works better than Binary Search for a Sorted and Uniformly Distributed array. Binary
search goes to the middle element to check irrespective of search-key. On the other hand, Interpolation search
may go to different locations according to search-key. If the value of the search-key is close to the last
element, Interpolation Search is likely to start search toward the end side. Interpolation search is more efficient
than binary search when the elements in the list are uniformly distributed, while binary search is more efficient
when the elements in the list are not uniformly distributed.

Interpolation search can take longer to implement than binary search, as it requires the use of additional
calculations to estimate the position of the target element.

Input: arr = [1,2,3,4,5,6,7,8,9]
Output: target = 5

Interpolation search

def interpolation_search(arr, target):
write code here

Driver code
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
target = 5

index = interpolation_search(arr, target)

93|Page

if index == -1:

print(f"{target} not found in the 1list")
else:

print(f"{target} found at index {index}")

2.5 Fibonacci Search

Given a sorted array arr[] of size n and an element x to be searched in it. Return index of x if it is present in
array else return -1.

Input: arr[] = {2, 3,4, 10,40}, x =10
Output: 3
Element x is present at index 3.

Input: arr[] = {2, 3,4, 10,40}, x = 11

Output: -1

Element x is not present.

Fibonacci Search is a comparison-based technique that uses Fibonacci numbers to search an element in a
sorted array.

Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, F(1) = 1. First few Fibonacci
Numbersare 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Fibonacci Search Procedure:

Let the searched element be x. The idea is to first find the smallest Fibonacci number that is greater than or
equal to the length of the given array. Let the found Fibonacci number be fib (m'th Fibonacci number). We use
(m-2)'th Fibonacci number as the index (If it is a valid index). Let (m-2)'th Fibonacci Number be i, we compare
arr[i] with x, if x is same, we return i. Else if x is greater, we recur for subarray after i, else we recur for subarray
before i.

Let arr[0..n-1] be the input array and the element to be searched be x.

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be fibM [m'th Fibonacci
number]. Let the two Fibonacci numbers preceding it be fibMm1 [(m-1)'th Fibonacci Number] and fibMm2
[(m-2)th Fibonacci Number].

2. While the array has elements to be inspected:
i. Compare x with the last element of the range covered by fibMm2
ii. If x matches, return index

iii. Else If x is less than the element, move the three Fibonacci variables two Fibonacci down, indicating
elimination of approximately rear two-third of the remaining array.

iv. Else x is greater than the element, move the three Fibonacci variables one Fibonacci down. Reset
offset to index. Together these indicate the elimination of approximately front one-third of the
remaining array.

3. Since there might be a single element remaining for comparison, check if fibMm1 is 1. If Yes, compare x
with that remaining element. If match, return index.

94|Page

Fibonacci search
from bisect import bisect_left

Returns index of x if present, else returns -1

def fibMonaccianSearch(arr, x, n):
write code here

Driver Code
arr = [10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100,235]
n = len(arr)
X = 235
ind = fibMonaccianSearch(arr, x, n)
if ind>=0:
print("Found at index:",ind)
else:
print(x,"isn't present in the array");

3. Sorting

3.1 Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they
are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time
complexity is quite high.

Bubble Sort Procedure:

1. Traverse from left and compare adjacent elements and the higher one is placed at right side.

2. In this way, the largest element is moved to the rightmost end at first.

3. This process is then continued to find the second largest and place it and so on until the data is sorted.

Input: arr = [6, 3, 0, 5]
Output:
First Pass:

i=o [6 |] 0] 3| 5 |

T
=t [0] 6] 3] 5 |
; (S
i=2 [0] 3] 6 [5 |

t_____j : Sorted
o] 3]| 5 [WeN

95|Page

Second Pass:

y A
i=1 | O NSNS 6 |
t ¢
[0 3516]
Sorted
Third Pass:
i=o [0] 3| 5] 6 |
£ 2

Lo [3[5]6|]

Sorted array

Implementation of Bubble Sort
def bubbleSort(arr):

write code here
Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print("Sorted array:")

for i in range(len(arr)):
print("%d" % arr[i], end=" ")

3.2 Selection Sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the smallest (or
largest) element from the unsorted portion of the list and moving it to the sorted portion of the list. The
algorithm repeatedly selects the smallest (or largest) element from the unsorted portion of the list and swaps it
with the first element of the unsorted part. This process is repeated for the remaining unsorted portion until
the entire list is sorted

Input: arr = [64, 25, 12, 22, 11]

Output: arr = [11, 12, 22, 25, 64]

First Pass: For the first position in the sorted array, the whole array is traversed from index 0 to 4 sequentially.
The first position where 64 is stored presently, after traversing whole array it is clear that 11 is the lowest value.

Thus, replace 64 with 11. After one iteration 11, which happens to be the least value in the array, tends to
appear in the first position of the sorted list.

9% |Page

Swapping Elements

v v
64(25(12 (22| 11

Min element

Second Pass: For the second position, where 25 is present, again traverse the rest of the array in a sequential
manner. After traversing, we found that 12 is the second lowest value in the array and it should appear at the
second place in the array, thus swap these values.

Swapping
¥ siie Min element
11 25|12 |22 |64
already sorted [Position to hold

next min element

Third Pass: Now, for third place, where 25 is present again traverse the rest of the array and find the third least
value present in the array. While traversing, 22 came out to be the third least value and it should appear at the
third place in the array, thus swap 22 with element present at third position.

Swapping
i - Min element
11|12 (25|22 |64
already sorted | Position to hold

next min element

Fourth Pass: Similarly, for fourth position traverse the rest of the array and find the fourth least element in the
array. As 25 is the 4th lowest value hence, it will place at the fourth position.

—— Min element
v

11 |12 {2225 |64 Hence no swap

already sorted | Positionto hold
next min element

Fifth Pass: At last the largest value present in the array automatically get placed at the last position in the
array. The resulted array is the sorted array.

11 {12 |22 25 |64

Sorted array

Implementation of selection sort
import sys
A = [64, 25, 12, 22, 11]

Traverse through all array elements
for i in range(len(A)):

97|Page

write code here

Driver code

print ("Sorted array")

for i in range(len(A)):
print("%d" %A[i],end=" , ")

3.3 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands.
The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and
placed at the correct position in the sorted part.

Insertion Sort Procedure:

1. To sort an array of size N in ascending order iterate over the array and compare the current element
(key) to its predecessor, if the key element is smaller than its predecessor, compare it to the elements
before.

2. Move the greater elements one position up to make space for the swapped element.

[0 [[[0 () [(5] (6]
8 B (7] (] (] (1] (5] (]
JE KB A (0] (2] (] (5] (]
] =] [0 K| (2 (0 5 [©
(2] (=] [() KA (] (5] (5]
<21 N KN K3 K3 B (5] (5]
(7 27 (=] (20 R (]
[(21 =] (=1 K
[@ @ [E 6 @

Input: arr = [4, 3, 2,10, 12, 1, 5, 6]
Output: arr = (1,2, 3,4, 5,6, 10, 12]

Implementation of Insertion Sort

Function to do insertion sort
def insertionSort(arr):

write code here

Driver code

arr = [12, 11, 13, 5, 6]

insertionSort(arr)

for i in range(len(arr)):
print ("% d" % arr[i])

98|Page

4. Divide and Conquer

4.1 Quick Sort

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that picks an element as a pivot
and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted
array. The key process in quickSort is a partition(). The target of partitions is to place the pivot (any element can
be chosen to be a pivot) at its correct position in the sorted array and put all smaller elements to the left of the
pivot, and all greater elements to the right of the pivot. Partition is done recursively on each side of the pivot

after the pivot is placed in its correct position and this finally sorts the array.

{10, 80, 30, 90, 40, 50,
Aion m
70 (Last element)

{10, 30, 40, {90, (30}

Partition arouly \ /
50

{10, 30, { {1} {}

Partition
around

40 {10, {3
{

e

Partition

(10} ?round 30

The quick sort method can be summarized in three steps:
1. Pick: Select a pivot element.

Partition around 80

{90}

2. Divide: Split the problem set, move smaller parts to the left of the pivot and larger items to the right.

3. Repeat and combine: Repeat the steps and combine the arrays that have previously been sorted.

Algorithm for Quick Sort Function:
//start —> Starting index, end --> Ending index
Quicksort(array, start, end)

{
if (start < end)
{
plndex = Partition(A, start, end)
Quicksort(A,start,pindex-1)
Quicksort(A,pIindex+1, end)
}
}

Algorithm for Partition Function:
partition (array, start, end)
{
// Setting rightmost Index as pivot
pivot = arr[end];

i = (start - 1) // Index of smaller element and indicates the
// right position of pivot found so far
for (j = start; j <=end- 1; j++)
{
// If current element is smaller than the pivot
if (arr[j] < pivot)
{

99|Page

i++; //increment index of smaller element
swap arr[i] and arr(j]

}
swap arr[i + 1] and arr[end])
return (i + 1)

Input: arr = [10, 80, 30, 90, 40, 50, 70]
Output: arr = [10, 30, 40, 50, 70, 80, 90]

Implementation of QuickSort

Function to find the partition position
def partition(array, low, high):
write code here

Function to perform quicksort
def quicksort(array, low, high):
write code here

Driver code
array = [10, 7, 8, 9, 1, 5]
N = len(array)

Function call
quicksort(array, @, N - 1)
print('Sorted array:"')
for x in array:

print(x, end=" ")

4.2 Merge Sort

Merge sort is defined as a sorting algorithm that works by dividing an array into smaller subarrays, sorting each
subarray, and then merging the sorted subarrays back together to form the final sorted array. In simple terms,
we can say that the process of merge sort is to divide the array into two halves, sort each half, and then merge
the sorted halves back together. This process is repeated until the entire array is sorted.

38(27/43|10

38 _2'7 -.
S 3] [elelnl
[27“_.5,__8\ ' 1‘9}’43'
16 '-27“35.'43
Input: arr = [12, 11, 13, 5, 6, 7]

100|Page

Output: arr =[5, 6,7, 11, 12, 13]

Implementation of MergeSort

def mergeSort(arr):
write code here

print the list
def printList(arr):
for i in range(len(arr)):
print(arr[i], end=" ")
print()

Driver Code

arr = [12, 11, 13, 5, 6, 7]
print("Given array is")
printList(arr)
mergeSort(arr)
print("\nSorted array is ")
printList(arr)

4.3 Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to the
selection sort where we first find the minimum element and place the minimum element at the beginning.
Repeat the same process for the remaining elements.

Heap Sort Procedure:

First convert the array into heap data structure using heapify, then one by one delete the root node of the
Max-heap and replace it with the last node in the heap and then heapify the root of the heap. Repeat this
process until size of heap is greater than 1.

o Build a heap from the given input array.

o Repeat the following steps until the heap contains only one element:

Swap the root element of the heap (which is the largest element) with the last element of the heap.

Remove the last element of the heap (which is now in the correct position).

Heapify the remaining elements of the heap.

The sorted array is obtained by reversing the order of the elements in the input array.

Input: arr = [12, 11,13, 5, 6, 7]
Output: Sorted array is5 6 7 11 12 13

Implementation of heap Sort
To heapify subtree rooted at index i.
n is size of heap

def heapify(arr, N, i):

101|Page

write code here

The main function to sort an array of given size
def heapSort(arr):
write code here

Driver code
arr = [12, 11, 13, 5, 6, 7]

Function call
heapSort(arr)
N = len(arr)
print("Sorted array is")
for i in range(N):
print("%d" % arr[i], end=" ")

4.4 Radix Sort

Radix Sort is a linear sorting algorithm that sorts elements by processing them digit by digit. It is an efficient
sorting algorithm for integers or strings with fixed-size keys. Rather than comparing elements directly, Radix
Sort distributes the elements into buckets based on each digit's value. By repeatedly sorting the elements by
their significant digits, from the least significant to the most significant, Radix Sort achieves the final sorted
order.

Radix Sort Procedure:

The key idea behind Radix Sort is to exploit the concept of place value.

1. It assumes that sorting numbers digit by digit will eventually result in a fully sorted list.

2. Radix Sort can be performed using different variations, such as Least Significant Digit (LSD) Radix Sort
or Most Significant Digit (MSD) Radix Sort.

To perform radix sort on the array [170, 45, 75, 90, 802, 24, 2, 66], we follow these steps:

170 45 75 20 802 24 2 66

Unsorted

Step 1: Find the largest element in the array, which is 802. It has three digits, so we will iterate three times,
once for each significant place.

Step 2: Sort the elements based on the unit place digits (X=0). We use a stable sorting technique, such as
counting sort, to sort the digits at each significant place.

Sorting based on the unit place:

Perform counting sort on the array based on the unit place digits.
The sorted array based on the unit place is [170, 90, 802, 2, 24, 45, 75, 66]

102|Page

170 45 75 90 802 24 2 66

| Unsorted

Sorting based
on unit digit
‘ > 170 90 802 ¢ 24 45 75 66

Sorted For Unit Digit
Step 3: Sort the elements based on the tens place digits.
Sorting based on the tens place:

Perform counting sort on the array based on the tens place digits.
The sorted array based on the tens place is [802, 2, 24, 45, 66, 170, 75, 90]

170 80 802 i 24 45 5 66
| Unsorted
Sorting based
on 10's digit

L» 802 2 24 45 66 170 75 90

Sorted Till 10'S Digit

Step 4: Sort the elements based on the hundreds place digits.

Sorting based on the hundreds place:
Perform counting sort on the array based on the hundreds place digits.
The sorted array based on the hundreds place is [2, 24, 45, 66, 75, 90, 170, 802]

802 2 24 45 66 170 75 [0
| Unsorted
Sorting based
on 100's digit
L» 2 24 45 66 75 90 170 802

Sorting Till 100'S Digit
Step 5: The array is now sorted in ascending order.

The final sorted array using radix sort is [2, 24, 45, 66, 75, 90, 170, 802]
Array after performing Radix Sort for all digits

2 24 45 66 75 [0 170 802

Implementation of Radix Sort

A function to do counting sort of arr[] according to the digit represented by exp.

def countingSort(arr, expl):
write code here

103|Page

Method to do Radix Sort
def radixSort(arr):
write code here

Driver code
arr = [170, 45, 75, 90, 802, 24, 2, 66]

Function Call
radixSort(arr)

for i in range(len(arr)):
print(arr[i],end=" ")

4.5 Shell Sort

Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position ahead.
When an element has to be moved far ahead, many movements are involved. The idea of ShellSort is to allow
the exchange of far items. In Shell sort, we make the array h-sorted for a large value of h. We keep reducing
the value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h'th element are sorted.

Shell Sort Procedure:

1. Initialize the value of gap size h

2. Divide the list into smaller sub-part. Each must have equal intervals to h
3. Sort these sub-lists using insertion sort

4. Repeat this step 1 until the list is sorted.

5. Print a sorted list.

Procedure Shell_Sort(Array, N)
While Gap < Length(Array) /3 :
Gap = (Interval *3) + 1
End While Loop
While Gap > 0:
For (Outer = Gap; Outer < Length(Array); Outer++):
Insertion_Value = Array[Outer]
Inner = Outer;

While Inner > Gap-1 And Array[Inner — Gap] >= Insertion_Value:
Array[Inner] = Array[Inner — Gap]
Inner = Inner — Gap

End While Loop
Array[Inner] = Insertion_Value
End For Loop
Gap = (Gap -1) /3;
End While Loop
End Shell_Sort

Implementation of Shell Sort

def shellSort(arr, n):
write code here

Driver code
arr = [12, 34, 54, 2, 3]

104|Page

print("input array:",arr)

shellSort(arr,len(arr))
print("sorted array",arr)

5. Stack

5.1 Stack implementation using List

A stack is a linear data structure that stores items in a Last-In/First-Out (LIFO) or First-In/Last-Out (FILO)
manner. In stack, a new element is added at one end and an element is removed from that end only. The insert
and delete operations are often called push and pop.

Push

4 first out
Stack '
Insertion and Deletion
happen on same end
'#‘ -

op Pop

The functions associated with stack are:

¢ empty() — Returns whether the stack is empty

e size() — Returns the size of the stack

e top() / peek() — Returns a reference to the topmost element of the stack
e push(a) - Inserts the element ‘a’ at the top of the stack

e pop() — Deletes the topmost element of the stack

Stack implementation using list
top=0
mymax=>5
def createStack():
stack=[]
return stack
def isEmpty(stack):

write code here

def Push(stack,item):

write code here

def Pop(stack):

write code here

create a stack object

stack = createStack()

while True:
print("1.Push™)
print("2.Pop")

105|Page

print("3.Display")
print("4.Quit")

write code here

5.2 Balanced Parenthesis Checking

Given an expression string, write a python program to find whether a given string has balanced parentheses or
not.

Input: {{{O}}
Output: Balanced

Input: [{H}(
Output: Unbalanced

Using stack One approach to check balanced parentheses is to use stack. Each time, when an open parentheses
is encountered push it in the stack, and when closed parenthesis is encountered, match it with the top of stack
and pop it. If stack is empty at the end, return Balanced otherwise, Unbalanced.

Check for balanced parentheses in an expression
Open_list = [ll[ll,ll II’II(II]
Close_list = [II IIJII II,II)II]

Function to check parentheses
def check(myStr):

write code here

5.3 Evaluation of Postfix Expression

Given a postfix expression, the task is to evaluate the postfix expression. Postfix expression: The expression of
the form “a b operator” (ab+) i.e., when a pair of operands is followed by an operator.

Input: str="231*+9-"

Output: -4

Explanation: If the expression is converted into an infix expression, it willbe2 + 3*1)-9=5-9 = -4,
Input: str = “100200 + 2 /5* 7 +"

Output: 757

Procedure for evaluation postfix expression using stack:

e (Create a stack to store operands (or values).
e Scan the given expression from left to right and do the following for every scanned element.
o If the element is a number, push it into the stack.
o Ifthe element is an operator, pop operands for the operator from the stack. Evaluate the operator and
push the result back to the stack.
e When the expression is ended, the number in the stack is the final answer.

106 |Page

Evaluate value of a postfix expression

Class to convert the expression
class Evaluate:

Constructor to initialize the class variables
def __init_ (self, capacity):

self.top = -1

self.capacity = capacity

This array is used a stack
self.array = []

Check if the stack is empty
def isEmpty(self):
write code here

def peek(self):
write code here

def pop(self):
write code here

def push(self, op):
write code here

def evaluatePostfix(self, exp):
write code here

Driver code
exp = "231*%+9-"
obj = Evaluate(len(exp))

Function call
print("postfix evaluation: %d" % (obj.evaluatePostfix(exp)))

5.4 Infix to Postfix Expression Conversion

For a given Infix expression, convert it into Postfix form.

Infix expression: The expression of the form “a operator b” (a + b) i.e.,, when an operator is in-between every
pair of operands.

Postfix expression: The expression of the form "a b operator” (ab+) i.e, When every pair of operands is
followed by an operator.

Infix to postfix expression conversion procedure:

1. Scan the infix expression from left to right.
2. If the scanned character is an operand, put it in the postfix expression.
3. Otherwise, do the following

107 |Page

e If the precedence and associativity of the scanned operator are greater than the precedence and
associativity of the operator in the stack [or the stack is empty or the stack contains a ‘('], then push it
T

in the stack. ['A' operator is right associative and other operators like ‘+','~","*" and /' are left-
associative].

e Check especially for a condition when the operator at the top of the stack and the scanned operator
both are ‘A", In this condition, the precedence of the scanned operator is higher due to its right
associativity. So it will be pushed into the operator stack.

e In all the other cases when the top of the operator stack is the same as the scanned operator, then pop
the operator from the stack because of left associativity due to which the scanned operator has less
precedence.

e Else, Pop all the operators from the stack which are greater than or equal to in precedence than that of
the scanned operator.

e After doing that Push the scanned operator to the stack. (If you encounter parenthesis while popping
then stop there and push the scanned operator in the stack.)

4. If the scanned character is a ’(’, push it to the stack.

5. If the scanned character is a ‘), pop the stack and output it until a ‘(' is encountered, and discard both
the parenthesis.

6. Repeat steps 2-5 until the infix expression is scanned.

7. Once the scanning is over, Pop the stack and add the operators in the postfix expression until it is not
empty.

8. Finally, print the postfix expression.

Input: A+B*C+D
Output: ABC*+ D +

Input: (A +B)-C*(D/E) +F
Output: AB+CDE/*-F+

Convert infix expression to postfix
Class to convert the expression

class Conversion:
Constructor to initialize the class variables
def __init__ (self, capacity):
self.top = -1
self.capacity = capacity
This array is used a stack
self.array = []

Precedence setting

108 |Page

109|Page

5.5 Reverse a Stack

The stack is a linear data structure which works on the LIFO concept. LIFO stands for last in first out. In the
stack, the insertion and deletion are possible at one end the end is called the top of the stack. Define two
recursive functions Bottomlnsertion() and Reverse() to reverse a stack using Python. Define some basic function
of the stack like push(), pop(), show(), empty(), for basic operation like respectively append an item in stack,

remove an item in stack, display the stack, check the given stack is empty or not.

Bottomlnsertion(): this method append element at the bottom of the stack and Bottominsertion accept two

values as an argument first is stack and the second is elements, this is a recursive method.

Reverse(): the method is reverse elements of the stack, this method accept stack as an argument Reverse() is
also a Recursive() function. Reverse() is invoked Bottominsertion() method for completing the reverse operation
on the stack.

Input: Elements = [1, 2, 3, 4, 5]
Output: Original Stack

5
4
3
2
1

Stack after Reversing

U N WN =

create class for stack
class Stack:

create empty list
def __init__ (self):
self.Elements = []

push() for insert an element
def push(self, value):
self.Elements.append(value)

pop() for remove an element
def pop(self):
return self.Elements.pop()

empty() check the stack is empty of not
def empty(self):
return self.Elements == []

show() display stack
def show(self):
for value in reversed(self.Elements):
print(value)

Insert_Bottom() insert value at bottom

def BottomInsert(s, value):

write code here

110|Page

Reverse() reverse the stack
def Reverse(s):

write code here

create object of stack class
stk = Stack()

stk.push(1)
stk.push(2)
stk.push(3)
stk.push(4)
stk.push(5)

print("Original Stack")
stk.show()

print("\nStack after Reversing")

Reverse(stk)
stk.show()

6. Queuve

6.1 Linear Queue

Linear queue is a linear data structure that stores items in First in First out (FIFO) manner. With a queue the
least recently added item is removed first. A good example of queue is any queue of consumers for a resource
where the consumer that came first is served first.

Queue

Insertion and Deletion
happen on different ends

7

Rear
Enqueue Front Dequeue

First in first out

Static implementation of linear queue
front=0
rear=0
mymax=>5
def createQueue():
queue=[] #empty list
return queue
def isEmpty(queue):

write code here

def enqueue(queue,item): # insert an element into the queue

111|Page

write code here

def dequeue(queue): #remove an element from the queue

write code here

Driver code

queue = createQueue()

while True:
print("1.Enqueue")
print("2.Dequeue")
print("3.Display")
print("4.Quit")

write code here

6.2 Stack using Queues

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the
functions of a normal stack (push, top, pop, and empty).

e void push(int x) Pushes element x to the top of the stack.
e int pop() Removes the element on the top of the stack and returns it.
e int top() Returns the element on the top of the stack.
e boolean empty() Returns true if the stack is empty, false otherwise.
Input:
["MyStack”, "push”, "push”, "top", "pop", "empty"]
(0, (11, 121, 0. 1. 1
Output:
[null, null, null, 2, 2, false]

class MyStack:

def __init__ (self):

write code here

def push(self, x: int) -> None:

write code here

def pop(self) -> int:

write code here

def top(self) -> int:

write code here

112|Page

def empty(self) -> bool:

write code here

Your MyStack object will be instantiated and called as such:
obj = MyStack()

obj.push(x)

param_2 = obj.pop()

param_3 = obj.top()

param_4 = obj.empty()

H OH O H OH OH ®

6.3 Queue using Stacks

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all
the functions of a normal queue (push, peek, pop, and empty).

void push(int x) Pushes element x to the back of the queue.

int pop() Removes the element from the front of the queue and returns it.

int peek() Returns the element at the front of the queue.
e boolean empty() Returns true if the queue is empty, false otherwise.
Input:

["MyQueue",

(m, 111, 121, 1. 00, 0
Output:

push”, "push"”, "peek

, "pop”, "empty"]

[null, null, null, 1, 1, false]

class MyQueue:
def __init_ (self):

write code here

def push(self, x: int) -> None:

write code here

def pop(self) -> int:

write code here

def peek(self) -> int:

write code here

def empty(self) -> bool:
write code here

Your MyQueue object will be instantiated and called as such:
obj = MyQueue()
obj.push(x)

113|Page

param_2 = obj.pop()
param_3 = obj.peek()
param_4 = obj.empty()

6.4 Circular Queue

A Circular Queue is an extended version of a normal queue where the last element of the queue is connected
to the first element of the queue forming a circle. The operations are performed based on FIFO (First In First
Out) principle. It is also called ‘Ring Buffer'.

Operations on Circular Queue:

o Front: Get the front item from the queue.
o Rear: Get the last item from the queue.
o enQueue(value) This function is used to insert an element into the circular queue. In a circular queue,

the new element is always inserted at the rear position.

e Check whether the queue is full - [i.e,, the rear end is in just before the front end in a circular
manner].

e Ifitis full then display Queue is full.
e If the queue is not full then, insert an element at the end of the queue.

. deQueue() This function is used to delete an element from the circular queue. In a circular queue, the
element is always deleted from the front position.

e Check whether the queue is Empty.
e Ifitis empty then display Queue is empty.

e If the queue is not empty, then get the last element and remove it from the queue.

Implement Circular Queue using Array:
1. Initialize an array queue of size n, where n is the maximum number of elements that the queue can hold.

2. Initialize two variables front and rear to -1.

3. Enqueue: To enqueue an element x into the queue, do the following:

114|Page

¢ Increment rear by 1.
e If rear is equal to n, set rear to 0.
o If frontis -1, set front to 0.
e Set queuelrear] to x.
4. Dequeue: To dequeue an element from the queue, do the following:
e Check if the queue is empty by checking if front is -1.
e Ifitis, return an error message indicating that the queue is empty.
e Set x to queue [front].

e If front is equal to rear, set front and rear to -1.

e Otherwise, increment front by 1 and if front is equal to n, set front to 0.

e Return x.

class CircularQueue():

constructor
def __init_ (self, size): # initializing the class
self.size = size

initializing queue with none
self.queue = [None for i in range(size)]
self.front = self.rear = -1

def enqueue(self, data):
Write code here

def dequeue(self):
Write code here

def display(self):
Write code here

Driver Code

ob = CircularQueue(5)
ob.enqueue(14)
ob.enqueue(22)
ob.enqueue(13)
ob.enqueue(-6)
ob.display()

print ("Deleted value
print ("Deleted value
ob.display()
ob.enqueue(9)
ob.enqueue(20)
ob.enqueue(5)

, ob.dequeue())
, ob.dequeue())

115|Page

ob.display()

6.

5 Deque (Doubly Ended Queue)

In
en

1.
2.

a Deque (Doubly Ended Queue), one can perform insert (append) and delete (pop) operations from both the
ds of the container. There are two types of Deque:

Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.
Output Restricted Deque: Output is limited at one end but insertion is permitted at both ends.

Operations on Deque:

vk wnN R

10.
11.
12.

13.

14.
15.

#

append(): This function is used to insert the value in its argument to the right end of the deque

appendleft(): This function is used to insert the value in its argument to the left end of the deque.

pop(): This function is used to delete an argument from the right end of the deque.

popleft(): This function is used to delete an argument from the left end of the deque.

index(ele, beg, end): This function returns the first index of the value mentioned in arguments, starting searching
from beg till end index.

insert(i, a): This function inserts the value mentioned in arguments(a) at index(i) specified in arguments.

remove(): This function removes the first occurrence of the value mentioned in arguments.
count(): This function counts the number of occurrences of value mentioned in arguments.

len(dequeue): Return the current size of the dequeue.

Deque[0]: We can access the front element of the deque using indexing with de[0].

Deque[-1]: We can access the back element of the deque using indexing with de[-1].

extend(iterable): This function is used to add multiple values at the right end of the deque. The argument passed is
iterable.

extendleft(iterable): This function is used to add multiple values at the left end of the deque. The argument passed
is iterable. Order is reversed as a result of left appends.

reverse(): This function is used to reverse the order of deque elements.

rotate(): This function rotates the deque by the number specified in arguments. If the number specified is negative,
rotation occurs to the left. Else rotation is to right.

importing "collections" for deque operations

import collections

#

initializing deque

de = collections.deque([1, 2, 3])
print("deque: ", de)

#
#

using append() to insert 4 at the end of deque
Write code here

Printing modified deque
Write code here

using appendleft() to insert 6 at the beginning of deque
Write code here

116 |Page

117|Page

Printing modified deque
Write code here

using extendleft() to add 7,8,9 to left end
Write code here

Printing modified deque
Write code here

using rotate() to rotate the deque rotates by 3 to left
Write code here

Printing modified deque
Write code here

using reverse() to reverse the deque
Write code here

Printing modified deque
Write code here

7. Linked List

7.1 Singly Linked List

A singly linked list is a linear data structure in which the elements are not stored in contiguous memory
locations and each element is connected only to its next element using a pointer.

Head

H
NEROESOEOE "

Data Next

Creating a linked list involves the following operations:

Creating a Node class:
Insertion at beginning:
Insertion at end
Insertion at middle
Update the node
Deletion at beginning
Deletion at end
Deletion at middle
Remove last node
Linked list traversal
Get length

- 20 0o Nk wWwh =

- O

118 |Page

Create a Node class to create a node
class Node:
def __init__ (self, data):
self.data = data

self.next None

Create a LinkedList class
class LinkedList:
def __init_ (self):

self.head = None

Method to add a node at begin of LL
def insertAtBegin(self, data):

Write code here

Method to add a node at any index, Indexing starts from @.
def insertAtIndex(self, data, index):

Write code here

Method to add a node at the end of LL
def insertAtEnd(self, data):

Write code here

Update node of a linked list at given position
def updateNode(self, val, index):

Write code here

Method to remove first node of linked list
def remove_first_node(self):

Write code here

Method to remove last node of linked list
def remove_last node(self):

Write code here

Method to remove at given index
def remove_at_index(self, index):
Write code here

Method to remove a node from linked list

119|Page

def remove_node(self, data):

Write code here

Print the size of linked list
def sizeOfLL(self):

Write code here

print method for the linked list
def printLL(self):

Write code here

create a new linked list

1list = LinkedList()

add nodes to the linked list
1list.insertAtEnd('a")
1list.insertAtEnd('b")
1list.insertAtBegin('c')
1list.insertAtEnd('d")
1list.insertAtIndex('g', 2)

print the linked list

print("Node Data")

1list.printLL()

remove a nodes from the linked list
print("\nRemove First Node")
1list.remove first_node()
print("Remove Last Node")
1list.remove_last_node()
print("Remove Node at Index 1")
1list.remove_at_index(1)

print the linked list again
print("\nLinked list after removing a node:")
1list.printLL()

print("\nUpdate node Value")
1list.updateNode('z', @)
1list.printLL()

print("\nSize of linked list :", end=" ")
print(llist.sizeOfLL())

120|Page

7.2 Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it. There is a cycle in a linked list if
there is some node in the list that can be reached again by continuously following the next pointer. Internally,
pos is used to denote the index of the node that tail's next pointer is connected to.

Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Input: head = [3, 2, 0, -4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

/ \ /

Input: head = [1, 2], pos =0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the Oth node.

/

(1)

Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
Definition for singly-linked list.
class ListNode:
def __init__ (self, x):
self.val = x
self.next = None

class Solution:

def hasCycle(self, head):
Write code here

121|Page

7.3 Remove Linked List Elements

Given the head of a linked list and an integer val, remove all the nodes of the linked list that has Node.val ==

val, and return the new head.

d

Input: head = [1,2, 6,3, 4,5,6],val =6
Output: [1, 2, 3,4, 5]

Input: head =[], val = 1

Output: []

Input: head = [7,7,7,7],val =7
Output: []

Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

class Solution:
def removeElements(self, head, val):

Write code here

7.4 Reverse Linked List

Given the head of a singly linked list, reverse the list, and return the reversed list.

Input: head = [1, 2, 3,4, 5]
Output: [5, 4, 3, 2, 1]

Input: head = [1, 2]
Output: [2, 1]

122 |Page

O—®
/

OO

Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

class Solution:
def reverselList(self, head):
Write code here

7.5 Palindrome Linked List

Given the head of a singly linked list, return true if it is a palindrome or false otherwise.

Input: head = [1, 2, 2, 1]
Output: true

O—)

Input: head = [1, 2]
Output: false

Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

class Solution:
def isPalindrome(self, head):
Write code here

7.6 Middle of the Linked List

Given the head of a singly linked list, return the middle node of the linked list. If there are two middle nodes,
return the second middle node.

(O—(—@—(D~

123|Page

Input: head = [1, 2, 3,4, 5]
Output: [3, 4, 5]
Explanation: The middle node of the list is node 3.

OnOnOn : OO

Input: head = [1, 2, 3,4, 5, 6]
Output: [4, 5, 6]
Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one

Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

class Solution:
def middleNode(self, head):
Write code here

7.7 Convert Binary Number in a Linked List to Integer

Given head which is a reference node to a singly-linked list. The value of each node in the linked list is either 0
or 1. The linked list holds the binary representation of a number.

Return the decimal value of the number in the linked list. The most significant bit is at the head of the linked
list.

(O—(0) »(1)

Input: head = [1, 0, 1]

Output: 5

Explanation: (101) in base 2 = (5) in base 10

Input: head = [0]

Output: 0

Definition for singly-linked list.

class ListNode:

def __init_ (self, val=0, next=None):

self.val = val
self.next = next

class Solution:
def getDecimalValue(self, head):
Write code here

124|Page

8. Circular Single Linked List and Doubly Linked List

8.1 Circular Linked List

The circular linked list is a linked list where all nodes are connected to form a circle. In a circular linked list, the
first node and the last node are connected to each other which forms a circle. There is no NULL at the end.

Head

Operations on the circular linked list:
Insertion at the beginning

Insertion at the end

Insertion in between the nodes
Deletion at the beginning
Deletion at the end
Deletion in between the nodes

No Vv AW =

Traversal

Circular linked list operations

class Node:
def __init_ (self, data):
self.data = data
self.next = None

class CircularLinkedList:
def __init__ (self):
self.last = None
def addToEmpty(self, data):
Write code here

add node to the front
def addFront(self, data):
Write code here

add node to the end
def addEnd(self, data):
Write code here

insert node after a specific node
def addAfter(self, data, item):
Write code here

delete a node
def deleteNode(self, last, key):
Write code here

def traverse(self):

125|Page

Write code here

Driver Code
cll = CircularLinkedList()

last = cll.addToEmpty(6)
last = cll.addEnd(8)

last = cll.addFront(2)
last = cll.addAfter(10, 2)

cll.traverse()

last = cll.deleteNode(last, 8)
print()

cll.traverse()

8.2 Doubly Linked List

The A doubly linked list is a type of linked list in which each node consists of 3 components:

1. *prev - address of the previous node
2. data - data item
3. *next - address of next node.

—
-

_
-—

prev data next

Double Linked List Node

MNext Next Next \ea:r‘ULL
e e le e e [
Prev Prev Prev

Next

Operations on the Double Linked List:
Insertion at the beginning

Insertion at the end

Insertion in between the nodes
Deletion at the beginning
Deletion at the end
Deletion in between the nodes

No VAW =

Traversal

126 |Page

Implementation of doubly linked list

class Node:

def

__init_ (self,data):

self.data=data
self.next=self.prev=None

class DLinkedList:

def

print ("RRkkkkkkk kR kxDouble linked 1istkkkkksskskskorkxn)

def

def

def

def

def

def

def

def

def

__init_ (self):

self.head=None
self.ctr=0
insert_beg(self,data):
Write code here

insert_end(self,data):
Write code here

delete beg(self):
Write code here

delete_end(self):
Write code here

insert_pos(self,pos,data):
Write code here

delete_pos(self,pos):
Write code here

traverse f(self):
Write code here

traverse_r(self):
Write code here

menu():

print("1.Insert at beginning")
print("2.Insert at position")
print("3.Insert at end")
print("4.Delete at beginning")
print("5.Delete at position")
print("6.Delete at end")
print("7.Count no of nodes")
print("8.Traverse forward")
print("9.Traverse reverse")
print("10.Quit")

ch=eval (input("Enter choice:"))

return ch

d=DLinkedList()
while True :
ch=menu()
if ch==1:

data=eval(input("Enter data:"))

d.insert_beg(data)

elif ch==2:

data=eval(input("Enter data:"))

127|Page

pos=int(input("Enter position:"))
d.insert_pos(pos,data)

elif ch==3:
data=eval(input("Enter data:"))
d.insert_end(data)

elif ch==4:
d.delete_beg()

elif ch==5:
pos=int(input("Enter position:"))
d.delete_pos(pos)

elif ch==6:
d.delete_end()

elif ch==7:
print("Number of nodes",d.ctr)

elif ch==8:
d.traverse_f()
elif ch==9:

d.traverse_r()
else:

print("Exit")
break

8.3 Sorted Merge of Two Sorted Doubly Circular Linked Lists

Given two sorted Doubly circular Linked List containing n1 and n2 nodes respectively. The problem is to merge
the two lists such that resultant list is also in sorted order.

Input: List 1 and List 2

headl

128 |Page

Output: Merged List

final

Procedure for Merging Doubly Linked List:
1. If head1 == NULL, return head?.

2. If head2 == NULL, return head1.

3. Let last1 and last2 be the last nodes of the two lists respectively. They can be obtained with the help of
the previous links of the first nodes.

4. Get pointer to the node which will be the last node of the final list. If last1.data < last2.data,
then last_node = last2, Else last_node = last1.

5. Update last1.next = last2.next = NULL.

6. Now merge the two lists as two sorted doubly linked list are being merged. Refer merge procedure
of this post. Let the first node of the final list be finalHead.

7. Update finalHead.prev = last_node and last_node.next = finalHead.

8. Return finalHead.

Implementation for Sorted merge of two sorted doubly circular linked list
import math

class Node:
def __init_ (self, data):
self.data = data
self.next = None
self.prev = None

A utility function to insert a new node at the beginning
of doubly circular linked list
def insert(head_ref, data):

Write code here

function for Sorted merge of two sorted doubly linked list
def merge(first, second):
Write code here

function for Sorted merge of two sorted doubly circular linked list
def mergeUtil(headl, head2):
Write code here

function to print the 1list
def printList(head):

129|Page

https://www.geeksforgeeks.org/merge-sort-for-doubly-linked-list/

Write code here

Driver Code

headl = None

head2 = None

list 1:

headl = insert(headl, 8)

headl = insert(headl, 5)
headl = insert(headl, 3)
headl = insert(headl, 1)
list 2:

head2 = insert(head2, 11)
head2 = insert(head2, 9)
head2 = insert(head2, 7)
head2 = insert(head2, 2)

newHead = mergeUtil(headl, head2)

print("Final Sorted List: ", end = "")
printList(newHead)

8.4 Delete all occurrences of a given key in a Doubly Linked List

Given a doubly linked list and a key x. The problem is to delete all occurrences of the given key x from the
doubly linked list.

Input: 2 <->2 <->10<->8<->4<->2<->5<->2
X=2
Output: 10 <-> 8 <->4 <-> 5

Algorithm:
delAllOccurOfGivenKey (head_ref, x)
if head_ref == NULL
return
Initialize current = head_ref
Declare next
while current '= NULL
if current->data == x
next = current->next
deleteNode(head_ref, current)
current = next
else
current = current->next
Implementation to delete all occurrences of a given key in a doubly linked list
import math

a node of the doubly linked list
class Node:
def init_ (self,data):
self.data = data
self.next = None
self.prev = None

Function to delete a node in a Doubly Linked List.
head_ref --> pointer to head node pointer.
del --> pointer to node to be deleted.

130|Page

def deleteNode(head, delete):
Write code here

function to delete all occurrences of the given key 'x'
def deleteAllOccurOfX(head, x):
Write code here

Function to insert a node at the beginning of the Doubly Linked List
def push(head,new_data):
Write code here

Function to print nodes in a given doubly linked list
def printList(head):
Write code here

Driver Code

Start with the empty list

head = None

Create the doubly linked list:

head = push(head, 2)

head = push(head, 5)

head = push(head, 2)

head = push(head, 4)

head = push(head, 8)

head = push(head, 10)

head = push(head, 2)

head = push(head, 2)

print("Original Doubly linked list:")
printList(head)

X = 2

delete all occurrences of 'x'

head = deleteAllOccurOfX(head, x)
print("\nDoubly linked list after deletion of ",x,":")
printList(head)

8.5 Delete a Doubly Linked List Node at a Given Position

Given a doubly linked list and a position n. The task is to delete the node at the given position n from the
beginning.

Input: Initial doubly linked list

10 1 8

A
|

Output: Doubly Linked List after deletion of node at position n = 2

10 [4 2 B 5

131|Page

Procedure:
1. Get the pointer to the node at position n by traversing the doubly linked list up to the nth node from the

beginning.
2. Delete the node using the pointer obtained in Step 1.

Python implementation to delete a doubly Linked List node
at the given position

A node of the doubly linked list
class Node:

Constructor to create a new node
def __init_ (self, data):
self.data = data
self.next = None
self.prev = None

Function to delete a node in a Doubly Linked List.
head_ref -. pointer to head node pointer.
del -. pointer to node to be deleted.
def deleteNode(head_ref, del):
Write code here

Function to delete the node at the given position
in the doubly linked list
def deleteNodeAtGivenPos(head_ref, n):

Write code here

Function to insert a node at the beginning of the Doubly Linked List
def push(head_ref, new_data):
Write code here

Function to print nodes in a given doubly linked list
def printList(head):
Write code here

Driver Code
Start with the empty list
head = None

head = push(head, 5)
head = push(head, 2)
head = push(head, 4)
head = push(head, 8)

head = push(head, 10)
print("Doubly linked list before deletion:")
printList(head)

n =2

delete node at the given position 'n'

head = deleteNodeAtGivenPos(head, n)
print("\nDoubly linked list after deletion:")
printList(head)

132|Page

9. Trees

9.1 Tree Creation and Basic Tree Terminologies

A tree data structure is a hierarchical structure that is used to represent and organize data in a way that is easy
to navigate and search. It is a collection of nodes that are connected by edges and has a hierarchical
relationship between the nodes.

| Tree Data Structure |

Root Key

Level 0

o Level 1
OSPONOSRO RN
oiings

o Level3

O foos , P Level 4

Height
of the
tree

I:e:af Nodes

Basic Terminologies in Tree:
1. Parent Node: The node which is a predecessor of a node is called the parent node of that node. {B} is the
parent node of {D, E}.

2. Child Node: The node which is the immediate successor of a node is called the child node of that node.
Examples: {D, E} are the child nodes of {B}.

3. Root Node: The topmost node of a tree or the node which does not have any parent node is called the root
node. {A} is the root node of the tree. A non-empty tree must contain exactly one root node and exactly one
path from the root to all other nodes of the tree.

4. Leaf Node or External Node: The nodes which do not have any child nodes are called leaf nodes. {K, L, M,
N, O, P} are the leaf nodes of the tree.

5. Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called Ancestors of
that node. {A, B} are the ancestor nodes of the node {E}

6. Descendant: Any successor node on the path from the leaf node to that node. {E, I} are the descendants of
the node {B}.

7. Sibling: Children of the same parent node are called siblings. {D, E} are called siblings.

8. Level of a node: The count of edges on the path from the root node to that node. The root node has level
0.

9. Internal node: A node with at least one child is called Internal Node.
10. Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.

11. Subtree: Any node of the tree along with its descendant.

Demonstration of Tree Basic Terminologies
Function to add an edge between vertices x and y

Function to print the parent of each node
def printParents(node, adj, parent):

133|Page

Write code here

Function to print the children of each node
def printChildren(Root, adj):
Write code here

Function to print the leaf nodes
def printLeafNodes(Root, adj):
Write code here

Function to print the degrees of each node
def printDegrees(Root, adj):
Write code here

Driver code

Number of nodes
N =7

Root = 1

Adjacency list to store the tree

adj = []

for i in range(@, N+1):
adj.append([])

Creating the tree
adj[1].append(2)
adj[2].append(1)

adj[1].append(3)
adj[3].append(1)

adj[1].append(4)
adj[4].append(1)

adj[2].append(5)
adj[5].append(2)

adj[2].append(6)
adj[6].append(2)

adj[4].append(7)
adj[7].append(4)

Printing the parents of each node
print("The parents of each node are:")
printParents(Root, adj, 0)

Printing the children of each node
print("The children of each node are:")
printChildren(Root, adj)

Printing the leaf nodes in the tree
print("The leaf nodes of the tree are:")
printLeafNodes(Root, adj)

Printing the degrees of each node

134|Page

print("The degrees of each node are:")
printDegrees(Root, adj)

9.2 Binary Tree Traversal Techniques

A binary tree data structure can be traversed in following ways:
1. Inorder Traversal

2. Preorder Traversal

3. Postorder Traversal

4. Level Order Traversal

Inorder Traversal

4 | 2 5‘1‘6‘3 7‘

Preorder Traversal
1 2 4 ‘ 5 ‘ 3 ‘ 6 7 ‘

Postorder Traversal

45 2‘6‘?

31‘

Algorithm Inorder (tree)

1. Traverse the left subtree, i.e., call Inorder(left->subtree)
2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right->subtree)

Algorithm Preorder (tree)

1. Visit the root.
2. Traverse the left subtree, i.e., call Preorder(left->subtree)
3. Traverse the right subtree, i.e., call Preorder(right->subtree)

Algorithm Postorder (tree)

1. Traverse the left subtree, i.e., call Postorder(left->subtree)
2. Traverse the right subtree, i.e., call Postorder(right->subtree)
3. Visit the root.

Program to create a binary tree and print traversal orders
class Node:
def __init_ (self,data):
self.data=data
self.l=None
self.r=None

class BT:
def init_ (self):
self.root=None

def insert(self,n):
Write code here

def postorder(self,root):

135|Page

Write code here

def preorder(self,root):
Write code here

def inorder(self,root):
Write code here

Driver code
b=BT()
while True:
print("1.Insert data to tree")
print("2.Post Order Traversal")
print(“3.Pre Order Traversal")
print("4.In Order Traversal")
print("5.Exit")
ch=int(input("Enter choice:"))
if ch==1:
n=int(input("Enter number of nodes:"))
b.insert(n)
elif ch==2:
b.postorder(b.root)
elif ch==3:
b.preorder(b.root)
elif ch==4:
b.inorder(b.root)
else:
print("Exit")
break

9.3 Insertion in a Binary Tree in Level Order

Given a binary tree and a key, insert the key into the binary tree at the first position available in level order.

Input: Consider the tree given below

(10)
DENO
O @& ®

136 |Page

Output:

(10)
OO
@ @0 &

After inserting 12

The idea is to do an iterative level order traversal of the given tree using queue. If we find a node whose left
child is empty, we make a new key as the left child of the node. Else if we find a node whose right child is
empty, we make the new key as the right child. We keep traversing the tree until we find a node whose either
left or right child is empty.

Insert element in binary tree
class newNode():
def __init_ (self, data):
self.key = data
self.left = None
self.right = None

Inorder traversal of a binary tree
def inorder(temp):
Write code here

function to insert element in binary tree
def insert(temp,key):
Write code here

Driver code

root = newNode(10)

root.left = newNode(11)

root.left.left = newNode(7)

root.right = newNode(9)

root.right.left = newNode(15)

root.right.right = newNode(8)

print("Inorder traversal before insertion:", end = " ")
inorder(root)

key = 12
insert(root, key)

print()

print("Inorder traversal after insertion:", end = " ")
inorder(root)

9.4 Finding the Maximum Height or Depth of a Binary Tree

Given a binary tree, the task is to find the height of the tree. The height of the tree is the number of edges in
the tree from the root to the deepest node.

Note: The height of an empty tree is 0.

137|Page

Input: Consider the tree below

Recursively calculate the height of the left and the right subtrees of a node and assign height to the node as
max of the heights of two children plus 1.

maxDepth('1’) = max(maxDepth('2'), maxDepth('3")) + 1 =2 + 1

because recursively

maxDepth('2) = max (maxDepth('4’), maxDepth('’5)) + 1 =1+ 1 and (as height of both ‘4" and '5' are 1)
maxDepth('3’) = 1

Procedure:
e Recursively do a Depth-first search.

e If the tree is empty then return 0

e Otherwise, do the following

Get the max depth of the left subtree recursively i.e. call maxDepth(tree->left-subtree)

Get the max depth of the right subtree recursively i.e. call maxDepth(tree->right-subtree)

Get the max of max depths of left and right subtrees and add 1 to it for the current node.

mazgepth = max(mazxdeptofle ftsubtree, maxdeptho frightsubtree) 4+ 1
Return max_depth.

Find the maximum depth of tree
A binary tree node
class Node:
Constructor to create a new node
def __init__ (self, data):
self.data = data
self.left = None
self.right = None

Compute the "maxDepth" of a tree -- the number of nodes
along the longest path from the root node down to the farthest leaf node

def maxDepth(node):
Write code here

Driver program to test above function
root = Node(1)

138|Page

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

print("Height of tree is %d" % (maxDepth(root)))

9.5 Deletion in a Binary Tree

Given a binary tree, delete a node from it by making sure that the tree shrinks from the bottom (i.e. the deleted
node is replaced by the bottom-most and rightmost node).

Input: Delete 10 in below tree

10

/\
20 30

Output:
30

/
20

Input: Delete 20 in below tree
10

/\
20 30

\
40

Output:
10

/N
40 30

Algorithm:
1. Starting at the root, find the deepest and rightmost node in the binary tree and the node which we want to

delete.
2. Replace the deepest rightmost node’s data with the node to be deleted.

3. Then delete the deepest rightmost node.

139|Page

Node to be deleted is 12 Replacing 12 with

deepest node
Deleting the o @

deepest node

Deletion in a Binary Tree
Create a node with data, left child and right child.

class Node:
def __init_ (self, data):
self.data = data
self.left = None
self.right = None

Inorder traversal of a binary tree
def inorder(temp):
Write code here

function to delete the given deepest node (d_node) in binary tree
def deleteDeepest(root, d_node):
Write code here

function to delete element in binary tree
def deletion(root, key):
Write code here

Driver code

root = Node(10)

root.left = Node(11)

root.left.left = Node(7)
root.left.right = Node(12)
root.right = Node(9)

root.right.left = Node(15)
root.right.right = Node(8)
print("The tree before the deletion:
inorder(root)

key =

root = deletion(root, key)

print();

print("The tree after the deletion: ", end = "")
inorder(root)

B end - llll)

140|Page

10. Binary Search Tree (BST)

10.1 Searching in Binary Search Tree

Given a BST, the task is to delete a node in this BST. For searching a value in BST, consider it as a sorted array.
Perform search operation in BST using Binary Search Algorithm.

Algorithm to search for a key in a given Binary Search Tree:

Let's say we want to search for the number X, We start at the root. Then:
e We compare the value to be searched with the value of the root.

e If it's equal we are done with the search if it's smaller we know that we need to go to the left subtree
because in a binary search tree all the elements in the left subtree are smaller and all the elements in the
right subtree are larger.

e Repeat the above step till no more traversal is possible

e If at any iteration, key is found, return True. Else False.

Consider The Following BST
Key =6

Compare Key With Root, i.e 8
as 6<8, search in left subtree
of 8

AsKey (6) Is Greater Than 3,
Search In The Right Subtree Of 3

141 |Page

As 6 Is Equal To Key (6), So We Have

o : 0 Found The Key
® 06

Search a given key in a given BST

class Node:
Constructor to create a new node
def init (self, key):
self.key = key
self.left = None
self.right = None

A utility function to insert
a new node with the given key in BST
def insert(node, key):

Write code here

Utility function to search a key in a BST
def search(root, key):

Write code here

Driver Code
root = None

root = insert(root, 50)
insert(root, 30)
insert(root, 20)
insert(root, 40)
insert(root, 70)
insert(root, 60)
insert(root, 80)
Key to be found
key = 6

Searching in a BST
if search(root, key) is None:
print(key, "not found")

else:
print(key, "found")

key = 60

Searching in a BST
if search(root, key) is None:
print(key, "not found")
else:
print(key, "found")

142 |Page

10.2 Find the node with Minimum Value in a BST

Write a function to find the node with minimum value in a Binary Search Tree.

Input: Consider the tree given below

22

12 30

Output: 8

Input: Consider the tree given below

40

15 55

Output: 10

from typing import List
class Node:
def __init__(self, data):
self.data = data
self.left None
self.right = None

Give a binary search tree and a number, inserts a new node with the given number
in the correct place in the tree. Returns the new root pointer
def insert(node: Node, data: int) -> Node:

Write code here

Given a non-empty binary search tree, inorder traversal for
the tree is stored in the list sorted_inorder. Inorder is LEFT, ROOT, RIGHT.

def inorder(node: Node, sorted inorder: List[int]) -> None:
Write code here

Driver Code

root = None

root = insert(root, 4)
insert(root, 2)
insert(root, 1)
insert(root, 3)
insert(root, 6)

143 |Page

insert(root, 4)

insert(root, 5)

sorted _inorder = []

inorder(root, sorted_inorder) # calling the recursive function

Values of all nodes will appear in sorted order in the list sorted_inorder
print(f"Minimum value in BST is {sorted_inorder[@]}")

10.3 Check if a Binary Tree is BST or not

A binary search tree (BST) is a node-based binary tree data structure that has the following properties.

1. The left subtree of a node contains only nodes with keys less than the node’s key.

2. The right subtree of a node contains only nodes with keys greater than the node’s key.
3. Both the left and right subtrees must also be binary search trees.

4. Each node (item in the tree) has a distinct key.

Input: Consider the tree given below

Output: Check if max value in left subtree is smaller than the node and min value in right subtree greater than
the node, then print it “Is BST" otherwise “Not a BST"

Procedure:

1. If the current node is null then return true

2. If the value of the left child of the node is greater than or equal to the current node then return false
3. If the value of the right child of the node is less than or equal to the current node then return false
4. If the left subtree or the right subtree is not a BST then return false

5. Else return true

Program to check if a binary tree is BST or not

A binary tree node has data, pointer to left child and a pointer to right child

class Node:
def __init__ (self, data):
self.data = data
self.left = None
self.right = None

def maxValue(node):
Write code here

def minValue(node):
Write code here

l44|Page

Returns true if a binary tree is a binary search tree
def isBST(node):
Write code here

Driver code

root = Node(4)

root.left = Node(2)
root.right = Node(5)

root.right.left = Node(7)
root.left.left = Node(1)
root.left.right = Node(3)

Function call
if isBST(root) is True:
print("Is BST")
else:
print("Not a BST")

10.4 Second Largest Element in BST

Given a Binary search tree (BST), find the second largest element.

Input: Root of below BST
10

/
5

Output: 5

Input: Root of below BST
10

/\

5 20

30

Output: 20

Procedure: The second largest element is second last element in inorder traversal and second element in
reverse inorder traversal. We traverse given Binary Search Tree in reverse inorder and keep track of counts of
nodes visited. Once the count becomes 2, we print the node.

Find the second largest element in
class Node:

Constructor to create a new node

def _init_ (self, data):
self.key = data

145|Page

self.left = None
self.right = None

A function to find 2nd largest element in a given tree.
def secondLargestUtil(root, c):
Write code here

Function to find 2nd largest element
def secondLargest(root):
Write code here

A utility function to insert a new node with given key in BST
def insert(node, key):

Driver Code
Let us create following BST

50
/ \

30 70

/\ /\

20 40 60 80

root = None

root = insert(root, 50)
insert(root, 30)
insert(root, 20)
insert(root, 490)
insert(root, 70)
insert(root, 60)
insert(root, 89)
secondLargest(root)

Try:
1. Kth largest element in BST when modification to BST is not allowed: Given a Binary Search Tree (BST)

and a positive integer k, find the k'th largest element in the Binary Search Tree. For a given BST, if k = 3, then
output should be 14, and if k = 5, then output should be 10.

146 |Page

10.5 Insertion in Binary Search Tree (BST)

Given a Binary search tree (BST), the task is to insert a new node in this BST.

Input: Consider a BST and insert the element 40 into it.

100 100

insert 40
20 500) 20 500

10 30 10 30

40

Procedure for inserting a value in a BST:

A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start
searching for a key from the root until we hit a leaf node. Once a leaf node is found, the new node is added as
a child of the leaf node. The below steps are followed while we try to insert a node into a binary search tree:

e Check the value to be inserted (say X) with the value of the current node (say val) we are in:
e [f X'is less than val move to the left subtree.
e Otherwise, move to the right subtree.

e Once the leaf node is reached, insert X to its right or left based on the relation between X and the leaf

node’s value.

insert operation in binary search tree
A utility class that represents an individual node in a BST
class Node:
def __init_ (self, key):
self.left = None
self.right = None
self.val = key

A utility function to insert a new node with the given key
def insert(root, key):
Write code here

A utility function to do inorder tree traversal
def inorder(root):
Write code here

Driver code
Let us create the following BST

147 |Page

50
/ \

30 70

/ \ / \
20 40 60 80
= Node(50)
= insert(r, 30)
= insert(r, 20)
= insert(r, 40)
= insert(r, 70)
= insert(r, 60)
= insert(r, 80)

SO3O3 T S S OH H OH HH

Print inorder traversal of the BST
inorder(r)

Try:

1. Check if two BSTs contain same set of elements: Given two Binary Search Trees consisting of unique
positive elements, we have to check whether the two BSTs contain the same set of elements or not.

Input: Consider two BSTs which contains same set of elements {5, 10, 12, 15, 20, 25}, but the structure of the
two given BSTs can be different.

148 |Page

11. AVL Tree

11.1 Insertion in an AVL Tree

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right
subtrees cannot be more than one for all nodes. To make sure that the given tree remains AVL after every
insertion, we must augment the standard BST insert operation to perform some re-balancing.
Following are two basic operations that can be performed to balance a BST without violating the BST property
(keys(left) < key(root) < keys(right)).

e Left Rotation

e Right Rotation

T1, T2 and T3 are subtrees of the tree, rooted with y (on the left side) or x (on the right side)

y X
/\ Right Rotation / \
X T3 - - - - - - = T1 vy
/ \ i= 2 === = = /\
T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.

Procedure for inserting a node into an AVL tree
Let the newly inserted node be w
e Perform standard BST insert for w.

e Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be
the child of z that comes on the path from w to z and x be the grandchild of z that comes on the path
from w to z.

e Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4
possible cases that need to be handled as x, y and z can be arranged in 4 ways.

e Following are the possible 4 arrangements:
e yisthe left child of z and x is the left child of y (Left Left Case)
e yisthe left child of z and x is the right child of y (Left Right Case)
e yis the right child of z and x is the right child of y (Right Right Case)

e yisthe right child of z and x is the left child of y (Right Left Case)

149|Page

Insert a node in AVL tree

Generic tree node class
class TreeNode(object):
def _init_ (self, val):
self.val = val
self.left = None
self.right = None
self.height = 1

AVL tree class which supports the insert operation
class AVL_Tree(object):

Recursive function to insert key in subtree rooted with node and returns
new root of subtree.
def insert(self, root, key):

Write code here

def leftRotate(self, z):
Write code here

def rightRotate(self, z):
Write code here

def getHeight(self, root):
Write code here

def getBalance(self, root):
Write code here

def preOrder(self, root):
Write code here

Driver code
myTree = AVL_Tree()
root = None

root = myTree.insert(root, 10)
root = myTree.insert(root, 20)
root = myTree.insert(root, 30)
root = myTree.insert(root, 40)
root = myTree.insert(root, 50)
root = myTree.insert(root, 25)

"""The constructed AVL Tree would be

30
/ 0\
20 40
/ 0\ \
10 25 50"""

Preorder Traversal

150|Page

print("Preorder traversal of the",
"constructed AVL tree is")

myTree.preOrder(root)

print()

11.2 Deletion in an AVL Tree

Given an AVL tree, make sure that the given tree remains AVL after every deletion, we must augment the
standard BST delete operation to perform some re-balancing. Following are two basic operations that can be
performed to re-balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).

1. Left Rotation
2. Right Rotation

T1, T2 and T3 are subtrees of the tree rooted with y (on left side)
or x (on right side)

y X
/\ Right Rotation !\
ROTE === === > 1L vy
/ \ < = === - - - 7\
T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.

Procedure to delete a node from AVL tree:

Let w be the node to be deleted
1. Perform standard BST delete for w.

2. Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the
larger height child of z, and x be the larger height child of y. Note that the definitions of x and y are

different from insertion here.

3. Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4
possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible

4 arrangements:
i. yis left child of z and x is left child of y (Left Left Case)
ii. yis left child of z and x is right child of y (Left Right Case)
iii. y is right child of z and x is right child of y (Right Right Case)

iv. y is right child of z and x is left child of y (Right Left Case)

151 |Page

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

delete a node in AVL tree

class TreeNode(object):
def __init_ (self, val):
self.val = val
self.left = None
self.right = None
self.height = 1

AVL tree class which supports insertion, deletion operations
class AVL_Tree(object):

def insert(self, root, key):
Write code here

Recursive function to delete a node with given key from subtree
with given root. It returns root of the modified subtree.
def delete(self, root, key):

Write code here

def leftRotate(self, z):
Write code here

def rightRotate(self, z):
Write code here

def getHeight(self, root):
Write code here

def getBalance(self, root):
Write code here

def getMinValueNode(self, root):
Write code here

def preOrder(self, root):
Write code here

myTree = AVL_Tree()
root = None
nums = [9, 5, 109, @, 6, 11, -1, 1, 2]

for num in nums:
root = myTree.insert(root, num)

Preorder Traversal

print("Preorder Traversal after insertion -")
myTree.preOrder(root)

print()

152 |Page

Delete
key = 10
root = myTree.delete(root, key)

Preorder Traversal

print("Preorder Traversal after deletion -")
myTree.preOrder(root)

print()

11.3 Count Greater Nodes in AVL Tree

Given an AVL tree, calculate number of elements which are greater than given value in AVL tree.

Input: x = 5
Root of below AVL tree
9

/\
1 10

/NN
0 5 11

//\
-1 2 6
Output: 4

Explanation: There are 4 values which are greater than 5 in AVL tree which are 6,9, 10 and 11.

Count greater nodes in an AVL tree

class Node:
def init_ (self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
self.desc = @

def height(N):
if N is None:
return 0
return N.height

A utility function to get maximum of two integers
def max(a, b):
if a > b:

return a
return b

def newNode(key):
Write code here

153|Page

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

A utility function to right rotate subtree rooted with y

def rightRotate(y):
Write code here

def leftRotate(x):
Write code here

def getBalance(N):
Write code here

def insert(root, key):
Write code here

def minValueNode(node):
Write code here

Recursive function to delete a node with given key # from subtree with given root. It
returns root of the modified subtree.

def deleteNode(root, key):
Write code here

def preOrder(root):
Write code here

def CountGreater(root, x):
Write code here

Driver program to test above function
root = None

root = insert(root, 9)
root = insert(root, 5)
root = insert(root, 10)
root = insert(root, 0)
root = insert(root, 6)
root = insert(root, 11)
root = insert(root, -1)
root = insert(root, 1)
root = insert(root, 2)

print("Preorder traversal of the constructed AVL tree is")
preOrder(root)

print("Number of elements greater than 9 are")
print(CountGreater(root, 9))

root = deleteNode(root, 10)

print("Preorder traversal after deletion of 10")
preOrder(root)

154|Page

print('Number of elements greater than 9 are')
print(CountGreater(root, 9))

11.4 Minimum Number of Nodes in an AVL Tree with given Height

Given the height of an AVL tree 'h’, the task is to find the minimum number of nodes the tree can have.

Input: H=0
Output: N = 1

Only '1' node is possible if the height
of the tree is '0' which is the root node.

Input: H = 3
Output: N =7

Recursive approach:
In an AVL tree, we have to maintain the height balance property, i.e. difference in the height of the left and the
right subtrees cannot be other than -1, 0 or 1 for each node.

We will try to create a recurrence relation to find minimum number of nodes for a given height, n(h).

e For height = 0, we can only have a single node in an AVL tree, i.e. n(0) = 1
e For height = 1, we can have a minimum of two nodes in an AVL tree, i.e. n(1) = 2

e Now for any height 'h’, root will have two subtrees (left and right). Out of which one has to be of height h-
1 and other of h-2. [root node excluded]

e So,n(h) =1 + n(h-1) + n(h-2) is the required recurrence relation for h>=2 [1 is added for the root node]

Function to find minimum number of nodes

def AVLnodes(height):
Write code here

Driver Code

H=3
print(AVLnodes(H))

12. Graph Traversal

12.1 Breadth First Search

The Breadth First Search (BFS) algorithm is used to search a graph data structure for a node that meets a set
of criteria. It starts at the root of the graph and visits all nodes at the current depth level before moving on to
the nodes at the next depth level.

For a given graph G, print BFS traversal from a given source vertex.

BFS traversal from a given source vertex.
from collections import defaultdict
This class represents a directed graph using adjacency list representation

class Graph:

155|Page

Constructor

def _init_ (self):
Default dictionary to store graph
self.graph = defaultdict(list)

Function to add an edge to graph
def addEdge(self, u, v):
self.graph[u].append(v)

Function to print a BFS of graph
def BFS(self, s):
Write code here

Create a graph given in the above diagram
= Graph()

.addEdge (@, 1)

.addEdge (0, 2)

.addEdge (1, 2)

.addEdge(2, @)

.addEdge(2, 3)

.addEdge (3, 3)

00 09 09 09 00 00 09 H

print("Following is Breadth First Traversal"” " (starting from vertex 2)")
g.BFS(2)

Output: Following is Breadth First Traversal (starting from vertex 2)
2031

12.2 Depth First Search

Depth First Traversal (or DFS) for a graph is similar to Depth First Traversal of a tree. The only catch here is,
that, unlike trees, graphs may contain cycles (a node may be visited twice). To avoid processing a node more
than once, use a boolean visited array. A graph can have more than one DFS traversal.

For a given graph G, print DFS traversal from a given source vertex.

Input:n=4,e=6
0->1,0->2,1->2,2->0,2->3,3->3

Output: DFS from vertex 1: 120 3

Explanation:

DFS Diagram:
1 — 2
0 — 3
A T

156 |Page

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

Input:n=4,e=6
2->0,0->2,1->2,0->1,3->3,1->3

Output: DFS from vertex 2: 2013

Explanation:
DFS Diagram:

157|Page

Driver's code
= Graph()
.addEdge (@, 1)
.addEdge (@, 2)
.addEdge (1, 2)
.addEdge(2, ©0)
.addEdge(2, 3)
.addEdge (3, 3)
print("Following is Depth First Traversal (starting from vertex 2)")
Function call
g.DFS(2)

0Q 00 09 09 0u 0O 0u H

12.3 Best First Search (Informed Search)

The idea of Best First Search is to use an evaluation function to decide which adjacent is most promising and
then explore. Best First Search falls under the category of Heuristic Search or Informed Search.

Implementation of Best First Search:
We use a priority queue or heap to store the costs of nodes that have the lowest evaluation function value. So
the implementation is a variation of BFS, we just need to change Queue to PriorityQueue.

Algorithm:
Best-First-Search(Graph g, Node start)
1) Create an empty PriorityQueue
PriorityQueue pq;
2) Insert "start" in pq.
pg.insert(start)
3) Until PriorityQueue is empty
u = PriorityQueue.DeleteMin
If uis the goa
Exit
Else
Foreach neighbor v of u
If v "Unvisited"
Mark v "Visited"
pg.insert(v)
Mark u "Examined"
End procedure

Input: Consider the graph given below.

e

158 |Page

ulu

e We start from source “S" and search for goal “I" using given costs and Best First search.

e pq initially contains S
e We remove S from pq and process unvisited neighbors of S to pq.
e pg now contains {A, C, B} (C is put before B because C has lesser cost)
e We remove A from pq and process unvisited neighbors of A to pq.
e pqg now contains {C, B, E, D}
e We remove C from pqg and process unvisited neighbors of C to pq.
e pg now contains {B, H, E, D}
e We remove B from pq and process unvisited neighbors of B to pg.
e pg now contains {H, E, D, F, G}
e We remove H from pq.

ulu

e Since our goal “I" is a neighbor of H, we return.

from queue import PriorityQueue
v = 14
graph = [[] for i in range(v)]

Function For Implementing Best First Search
Gives output path having lowest cost

def best first_search(actual Src, target, n):
Write code here

Function for adding edges to graph
def addedge(x, y, cost):
Write code here

The nodes shown in above example(by alphabets) are
implemented using integers addedge(x,y,cost);
addedge(0, 1, 3)

addedge(0, 2, 6)
addedge(0, 3, 5)
addedge(1, 4, 9)
addedge(1, 5, 8)
addedge(2, 6, 12)
addedge(2, 7, 14)
addedge(3, 8, 7)

addedge(8, 9, 5)
addedge(8, 10, 6)
addedge(9, 11, 1)
addedge(9, 12, 10)
addedge(9, 13, 2)

(4]
9

source
target

159 |Page

best_first_search(source, target, v)

12.4 Breadth First Traversal of a Graph

Given a directed graph. The task is to do Breadth First Traversal of this graph starting from 0.

One can move from node u to node v only if there's an edge from u to v. Find the BFS traversal of the graph
starting from the Oth vertex, from left to right according to the input graph. Also, you should only take nodes
directly or indirectly connected from Node 0 in consideration.

Input: Consider the graph given below where V = 5, E = 4, edges = {(0,1), (0,2), (0,3), (2,4)}

Output: 01234
Explanation:
0 is connected to 1, 2, and 3.

2 is connected to 4.
So starting from 0, it will go to 1 then 2 then 3. After this 2 to 4, thus BFS willbe 012 3 4.

Input: Consider the graph given below where V = 3, E = 2, edges = {(0, 1), (0, 2)}

Output: 012

Explanation:

0 is connected to 1, 2. So starting from 0, it will go to 1 then 2, thus BFS will be 0 1 2.

Your task is to complete the function bfsOfGraph() which takes the integer V denoting the number of vertices
and adjacency list as input parameters and returns a list containing the BFS traversal of the graph starting from
the Oth vertex from left to right.

from typing import List
from queue import Queue
class Solution:

Function to return Breadth First Traversal of given graph.
def bfsOfGraph(self, V: int, adj: List[List[int]]) -> List[int]:
Write code here

160|Page

Driver Code
T=int(input())
for i in range(T):
V, E = map(int, input().split())
adj = [[] for i in range(V)]
for _ in range(E):
u, v = map(int, input().split())
adj[u].append(v)
ob = Solution()
ans = ob.bfsOfGraph(V, adj)
for i in range(len(ans)):
print(ans[i], end = " ")
print()

12.5 Depth First Search (DFS) for Disconnected Graph

Given a Disconnected Graph, the task is to implement DFS or Depth First Search Algorithm for this
Disconnected Graph.

Input: Consider the graph given below.

start

Output: 0 1 2 3

Procedure for DFS on Disconnected Graph:
Iterate over all the vertices of the graph and for any unvisited vertex, run a DFS from that vertex.

DFS traversal for complete graph
from collections import defaultdict

This class represents a directed graph using adjacency list representation
class Graph:
Constructor
def __init_ (self):
Default dictionary to store graph
self.graph = defaultdict(list)

Function to add an edge to graph

def addEdge(self, u, v):
Write code here

A function used by DFS
def DFSUtil(self, v, visited):
Write code here

The function to do DFS traversal.

161|Page

It uses recursive DFSUtil
def DFS(self):
Write code here

Driver's code

print("Following is Depth First Traversal")
= Graph()

.addEdge (@, 1)

.addEdge (@, 2)

.addEdge (1, 2)

.addEdge(2, ©0)

.addEdge(2, 3)

.addEdge(3, 3)

0Q 0u 09 09 0u O0u OQ

++

Function call
g.DFS()

Try:

1. Detect a negative cycle in a Graph (Bellman Ford): A Bellman-Ford algorithm is also guaranteed to find
the shortest path in a graph, similar to Dijkstra’'s algorithm. Although Bellman-Ford is slower than Dijkstra’s
algorithm, it is capable of handling graphs with negative edge weights, which makes it more versatile. The
shortest path cannot be found if there exists a negative cycle in the graph. If we continue to go around the
negative cycle an infinite number of times, then the cost of the path will continue to decrease (even though
the length of the path is increasing).

Consider a graph G and detect a negative cycle in the graph using Bellman Ford algorithm.

B—2—0D

13. Minimum Spanning Tree (MST)

13.1 Kruskal’s Algorithm

In Kruskal's algorithm, sort all edges of the given graph in increasing order. Then it keeps on adding new edges
and nodes in the MST if the newly added edge does not form a cycle. It picks the minimum weighted edge at
first and the maximum weighted edge at last.

MST using Kruskal'’s algorithm:
1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If the cycle is not
formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

162 |Page

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy Choice is to
pick the smallest weight edge that does not cause a cycle in the MST constructed so far.

Input: For the given graph G find the minimum cost spanning tree.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 - 1) = 8
edges.

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Now pick all edges one by one from the sorted list of edges.

Output:

Kruskal's algorithm to find minimum Spanning Tree of a given connected,
undirected and weighted graph

163|Page

Class to represent a graph
class Graph:
def init_ (self, vertices):
self.V = vertices
self.graph = []

Function to add an edge to graph
def addEdge(self, u, v, w):
self.graph.append([u, v, w])

def find(self, parent, i):

def union(self, parent, rank, x, y):

def KruskalMST(self):
write your code here

Driver code

g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(@, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)
Function call

g.KruskalMST()

Output: Following are the edges in the constructed MST

2--3==4
0--3==5
0--1==10

Minimum Cost Spanning Tree: 19

13.2 Prim’s Algorithm

The Prim’s algorithm starts with an empty spanning tree. The idea is to maintain two sets of vertices. The first
set contains the vertices already included in the MST, and the other set contains the vertices not yet included.
At every step, it considers all the edges that connect the two sets and picks the minimum weight edge from
these edges. After picking the edge, it moves the other endpoint of the edge to the set containing MST.

Prim’s Algorithm:
The working of Prim’s algorithm can be described by using the following steps:
1. Determine an arbitrary vertex as the starting vertex of the MST.

Follow steps 3 to 5 till there are vertices that are not included in the MST (known as fringe vertex).
Find edges connecting any tree vertex with the fringe vertices.

Find the minimum among these edges.

Add the chosen edge to the MST if it does not form any cycle.

Return the MST and exit

S

164 |Page

Input: For the given graph G find the minimum cost spanning tree.

% an aa N
@ - .- ©
0@

Output: The final structure of the MST is as follows and the weight of the edges of the MSTis (4 + 8 + 1 + 2 +

. ©

Prim's Minimum Spanning Tree (MST) algorithm.
The program is for adjacency matrix representation of the graph

Library for INT_MAX
import sys

class Graph():
def __init__ (self, vertices):
self.V = vertices
self.graph = [[@ for column in range(vertices)]
for row in range(vertices)]

A utility function to print
the constructed MST stored in parent[]
def printMST(self, parent):
print("Edge \tWeight")
for i in range(1, self.V):
print(parent[i], "-", i, "\t", self.graph[i][parent[i]])

A utility function to find the vertex with
minimum distance value, from the set of vertices
not yet included in shortest path tree
def minKey(self, key, mstSet):
write your code here

def primMST(self):
write your code here

Driver's code

g = Graph(5)

g.graph = [[@, 2, @, 6, O],
[2, o, 3, 8, 5],

165|Page

[6) 3) 9) 6) 7])
[6) 8) 9) 6) 9])
[0, 5, 7, 9, 0]]

g.primMST()
Output:

Edge Weight
0-1 2
1-2 3
0-3 6
1-4 5

13.3 Total Number of Spanning Trees in a Graph

If a graph is a complete graph with n vertices, then total number of spanning trees is n("? where n is the
number of nodes in the graph. In complete graph, the task is equal to counting different labeled trees with n
nodes for which have Cayley's formula.

Laplacian matrix:

A Laplacian matrix L, where L[i, i] is the degree of node i and L[i, j] = -1 if there is an edge between nodes i and
j, and otherwise L[i, j] = 0.

Kirchhoff's theorem provides a way to calculate the number of spanning trees for a given graph as a
determinant of a special matrix. Consider the following graph,

All possible spanning trees are as follows:

In order to calculate the number of spanning trees, construct a Laplacian matrix L, where L][i, i] is the degree of
node i and L[i, j] = -1 if there is an edge between nodes i and j, and otherwise L[i, j] = 0.
for the above graph, The Laplacian matrix will look like this

166 |Page

3 -1 -1 -1

11 0 0
L=141 o 2 -1
-1 0 -1 2

The number of spanning trees equals the determinant of a matrix.

The Determinant of a matrix that can be obtained when we remove any row and any column from L.
For example, if we remove the first row and column, the result will be,

1 0 0
det(|0 2 -1()=3.
0 -1 2

The determinant is always the same, regardless of which row and column we remove from L.

Finds the number of spanning trees in a graph using Matrix Chain Multiplication.
MAX = 100

MOD = 1000000007

Matrix Multiplication
def multiply(A, B, C):
write your code here

Function to find Nth power of A
def power(A, N, result):
write your code here

Function to find number of Spanning Trees in a Graph
using Matrix Chain Multiplication.
def numOfSpanningTree(graph, V):

write your code here

Driver program
V = 4 # Number of vertices in graph
E = 5 # Number of edges in graph
gr‘aph = [[0, 1, 1, 1]:

[1, o, 1, 1],

[1, 1, e, 1],

[1, 1, 1, @]]
print(numOfSpanningTree(graph, V))

13.4 Minimum Product Spanning Tree

A minimum product spanning tree for a weighted, connected, and undirected graph is a spanning tree with a
weight product less than or equal to the weight product of every other spanning tree. The weight product of a
spanning tree is the product of weights corresponding to each edge of the spanning tree. All weights of the
given graph will be positive for simplicity.

167 |Page

Input:

9

Output: Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1, 1-2, 0-3 and 1-4

This problem can be solved using standard minimum spanning tree algorithms like Kruskal and prim'’s
algorithm, but we need to modify our graph to use these algorithms. Minimum spanning tree algorithms tries
to minimize the total sum of weights, here we need to minimize the total product of weights. We can use the
property of logarithms to overcome this problem.

logw1* w2 * w3 * ... * wN) = log(w1) + log(w2) + log(w3) + log(wN)

We can replace each weight of the graph by its log value, then we apply any minimum spanning tree algorithm
which will try to minimize the sum of log(wi) which in turn minimizes the weight product.

Minimum product spanning tree
import math

Number of vertices in the graph
V =5

A utility function to find the vertex with minimum key value, from the set
of vertices not yet included in MST
def minKey(key, mstSet):

write your code here

A utility function to print the constructed MST stored in parent[] and
print Minimum Obtainable product
def printMST(parent, n, graph):

write your code here

Function to construct and print MST for a graph represented using adjacency
matrix representation inputGraph is sent for printing actual edges and
logGraph is sent for actual MST operations
def primMST(inputGraph, logGraph):
write your code here

Method to get minimum product spanning tree
def minimumProductMST(graph):
write your code here

Driver code

graph = [[e, 2, 6, 6, @]J
[2, 0, 3, 8 5],
[0) 3J 01 0) 7])

168 |Page

[6) 8’ 0) 0) 9]J
[e, 5 9, 0], 1]

I I

Print the solution
minimumProductMST (graph)

13.5 Reverse Delete Algorithm for Minimum Spanning Tree

In Reverse Delete algorithm, we sort all edges in decreasing order of their weights. After sorting, we one by
one pick edges in decreasing order. We include current picked edge if excluding current edge causes
disconnection in current graph. The main idea is delete edge if its deletion does not lead to disconnection of
graph.

Algorithm:
1. Sort all edges of graph in non-increasing order of edge weights.

2. Initialize MST as original graph and remove extra edges using step 3.

3. Pick highest weight edge from remaining edges and check if deleting the edge disconnects the graph or
not.
If disconnects, then we don't delete the edge.
Else we delete the edge and continue.

Input: Consider the graph below

Next we delete 11 as deleting it doesn't disconnect the graph.

169 |Page

https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/
https://www.geeksforgeeks.org/check-removing-given-edge-disconnects-given-graph/

WE DONOT
DELET THIS
Q)

We continue this way and following edges remain in final MST.
Edges in MST

3.4

0. 7)

(2. 3)

(2. 5)

(VR0

(5. 6)

(2, 8)

6. 7)

Find Minimum Spanning Tree of a graph using Reverse Delete Algorithm
Graph class represents a directed graph using adjacency list representation
class Graph:

def __init_ (self, v):

No. of vertices

170|Page

self.v = v

self.adj = [0] * v

self.edges = []

for i in range(v):
self.adj[i] = []

function to add an edge to graph
def addEdge(self, u: int, v: int, w: int):
write code here

def dfs(self, v: int, visited: list):
write code here

Returns true if graph is connected
Returns true if given graph is connected, else false
def connected(self):

write code here

This function assumes that edge (u, v) exists in graph or not
def reverseDeleteMST(self):
write code here

Driver Code

create the graph given in above figure
V =9

g = Graph(V)

making above shown graph
g.addEdge(0, 1, 4)
g.addEdge(@, 7, 8)
g.addEdge(1, 2, 8)
g.addEdge(1, 7, 11)
g.addEdge(2, 3, 7)
g.addEdge(2, 8, 2)
g.addEdge(2, 5, 4)
g.addEdge(3, 4, 9)
g.addEdge(3, 5, 14)
g.addEdge(4, 5, 10)
g.addEdge(5, 6, 2)
g.addEdge(6, 7, 1)
g.addEdge(6, 8, 6)
g.addEdge(7, 8, 7)
g.reverseDeleteMST()
Try:

1. Detect Cycle in a Directed Graph: Given the root of a Directed graph, The task is to check whether the
graph contains a cycle or not.

Input: N =4,E=6

171|Page

|

Output: Yes
Explanation: The diagram clearly shows a cycle 0 -> 2 -> 0

14. Final Notes

The only way to learn programming is program, program and program on challenging problems. The problems
in this tutorial are certainly NOT challenging. There are tens of thousands of challenging problems available —
used in training for various programming contests (such as International Collegiate Programming Contest
(ICPC), International Olympiad in Informatics (I0l)). Check out these sites:

e The ACM - ICPC International collegiate programming contest (https://icpc.global/)

e The Topcoder Open (TCO) annual programming and design contest (https://www.topcoder.com/)

e Universidad de Valladolid's online judge (https://uva.onlinejudge.org/).

e Peking University's online judge (http://poj.org/).

e USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

e Google's coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

e The ICFP programming contest (https://www.icfpconference.org/)

e BME International 24-hours programming contest (https://www.challenge24.org/)

e The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

e Internet Problem Solving Contest (https://ipsc.ksp.sk/)

e Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

e Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

e OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

Name of the contest Minimum number of problems to solve Required score
e CodeChef 20 200
e Leetcode 20 200
o GeeksforGeeks 20 200
e SPOJ 5 50
e InterviewBit 10 1000
e Hackerrank 25 250
e Codeforces 10 100
e BuildIT 50 500
Total score need to obtain 2500

172|Page

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

Student must have any one of the following certifications:

HackerRank - Problem Solving Skills Certification (Basic and Intermediate)

1.

2. GeeksforGeeks — Data Structures and Algorithms Certification
3. CodeChef - Learn Data Structures and Algorithms Certification
4. Interviewbit — DSA pro / Python pro

5. Edx - Data Structures and Algorithms

5. NPTEL — Programming, Data Structures and Algorithms

6. NPTEL - Introduction to Data Structures and Algorithms

7. NPTEL - Data Structures and Algorithms

8. NPTEL - Programming and Data Structure

V. TEXT BOOKS:
Rance D. Necaise, “Data Structures and Algorithms using Python”, Wiley Student Edition.
. Benjamin Baka, David Julian, “Python Data Structures and Algorithms”, Packt Publishers, 2017.

N

VI. REFERENCE BOOKS:
1. S. Lipschutz, “Data Structures”, Tata McGraw Hill Education, 1% edition, 2008.
2. D. Samanta, “Classic Data Structures”, PHI Learning, 2" edition, 2004.

VII. ELECTRONICS RESOURCES:

1. https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm
2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare
3. https:/iwww.cs.auckland.ac.nz/software/AlgAnim/dsToC.html

4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

VIll. MATERIALS ONLINE

1. Course Content
2. Lab manual

173|Page

PROGRAMMING WITH OBJECTS LABORATORY

111 Semester: Common for CSE / CSE (Al & ML)/ CSE (DS)/ CSE (CS)/CSIT/IT

Course Code Category Hours / Week Credits Maximum Marks
L T P C CIA | SEE Total
AITCO3 Core
0 0 3 15 30 70 100
Contact Classes: NIL Tutorial Classes: NIL Practical Classes: 45 Total Classes: 45

Prerequisite: Programming for Problem Solving using C

I. COURSE OVERVIEW:

This course provides students with hands-on experience in developing programs and applications using object oriented
programming. It covers classes, objects, inheritance, polymorphism, exception handling, files, multi- threading, database
connectivity and AWT. It helps the students to develop real-world applications and enhances their programming skills.

Il. COURSES OBJECTIVES:
The students will try to learn
I. The basic concepts of object oriented programming.
I1. The application of object oriented features for developing flexible and extensible applications.
I11. The Graphical User Interface (GUI) with database connectivity to develop web applications.

I11. COURSE OUTCOMES:
At the end of the course students should be able to:

Cco1 Demonstrate object oriented programming concepts that helps to organize complex problems
solving.

CO2 Make use of the programming constructs like control Structures, arrays, parameter passing
techniques and constructors to solve the real time problems.

CO 3 Utilize the abstraction, encapsulation and polymorphism Techniques to solve different complex
problems.

CO4 Experiment all threading and thread synchronization problems in soft real time systems.

CO5 Make use of inheritance, interfaces, packages and files to implement reusability in soft real time
systems.

CO6 Construct GUI based applications along with Exception handling using AWT, Swings and JDBC
connectivity.

174|Page

IV. COURSE CONTENT:

PROGRAMMING WITH OBJECTS LABORATORY

1. Getting Started Exercises
1.1 HelloWorld

1. Install JDK on your machine. Follow the instructions in "How to Install JDK".

2. Write a Hello-world program using JDK and a source-code editor, such as:

o For All Platforms: Sublime Text, Atom
o For Windows: TextPad, NotePad++

o For macOS: jEdit, gedit

o For Ubuntu: gedit

1.2 CheckOddEven

Write a program called CheckOddEven which prints "0dd Number" if the int variable “number” is odd, or "Even
Number” otherwise. The program shall always print “bye!" before exiting.

Hints

nis an even number if (n % 2) is @; otherwise, it is an odd number. Use == for comparison, e.g., (n % 2) ==
0
/**
* Trying if-else statement and modulus (%) operator.
*/
public class CheckOddEven { // Save as "CheckOddEven.java"
public static void main(String[] args) { // Program entry point

int number = 49; // Set the value of "number" here!
System.out.println("The number is " + number);
if (......) {
System.out.println(......) // even number
} else {
System.out.println(......); // odd number
}
System.out.println(......)
}
}
Try

number = 0, 1, 88, 99, -1, -2 and verify your results.

Again, take note of the source-code indentation! Make it a good habit to ident your code properly, for ease of
reading your program.

175|Page

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html

1.3 PrintDaylnWord

Write a program called PrintDayInWord which prints “Sunday”, "Monday”, ... "Saturday”
if the int variable "dayNumber" is 0, 1, .., 6, respectively. Otherwise, it shall print "Not a valid day". Use (a) a
"nested-if" statement; (b) a "switch-case-default" statement.

Try
dayNumber = 0,1, 2, 3, 4, 5, 6, 7 and verify your results.

1.4 Fibonacci (Decision & Loop)

Write a program called Fibonacci to print the first 2@ Fibonacci numbers F(n), where F(n)=F(n-1)+F(n-
2) and F(1)=F(2)=1. Also compute their average. The output shall look like:

The first 20 Fibonacci numbers are:
112358 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
The average is 885.5

Hints

/**
* Print first 20 Fibonacci numbers and their average
*/
public class Fibonacci {
public static void main (String[] args) {

int n = 3; // The index n for F(n), starting from n=3, as n=1 and n=2 are
pre-defined
int fn; // F(n) to be computed

int fnMinusl = 1; // F(n-1), init to F(2)

int fnMinus2 = 1; // F(n-2), init to F(1)

int nMax = 20; // maximum n, inclusive

int sum = fnMinusl + fnMinus2; // Need sum to compute average
double average;

System.out.println("The first " + nMax + " Fibonacci numbers are:");

while (n <= nMax) { // n starts from 3
// n=3, 4, 5, ..., nMax
// Compute F(n), print it and add to sum

// Increment the index n and shift the numbers for the next iteration

++n;
fnMinus2 = fnMinusil;
fnMinusl = fn;

}

// Compute and display the average (=sum/nMax).
// Beware that int/int gives int.

176 |Page

Try

1. Tribonacci numbers are a sequence of numbers T(n) similar to Fibonacci numbers, except that a number is
formed by adding the three previous numbers, ie, T(n)=T(n-1)+T(n-2)+T(n-3), T(1)=T(2)=1,
and T(3)=2. Write a program called Tribonacci to produce the first twenty Tribonacci numbers.

1.5 ExtractDigits (Decision & Loop)

Write a program called ExtractDigits to extract each digit from an int, in the reverse order. For example, if
the int is 15423, the output shall be "3 24 5 1", with a space separating the digits.

Hints

The coding pattern for extracting individual digits from an integer n is:
1. Use (n % 10) to extract the last (least-significant) digit.
2. Usen = n / 10 to drop the last (least-significant) digit.
3. Repeatif (n > 0), i.e, more digits to extract.

Take note that n is destroyed in the process. You may need to clone a copy.
intn=...;
while (n > 9) {

int digit = n % 10; // Extract the least-significant digit
// Print this digit

n=n/ 10; // Drop the least-significant digit and repeat the loop

Try
Write a program that prompts user for a positive integer. The program shall read the input as int; compute
and print the sum of all its digits

1.6 InputValidation (Loop with boolean flag)

Your program often needs to validate the user's inputs, e.g., marks shall be between 0 and 100.
Write a program that prompts user for an integer between 0-10 or 90-100. The program shall read the input
as int; and repeat until the user enters a valid input. For examples,

Enter a number between 0-10 or 90-100:
Invalid input, try again...

Enter a number between ©0-10 or 90-100: 50
Invalid input, try again...

Enter a number between ©0-10 or 90-100: 101
Invalid input, try again...

Enter a number between 0-10 or 90-100: 95
You have entered: 95

1
=

Hints

Use the following coding pattern which uses a do-while loop controlled by a booleanflag to do input
validation. We use a do-while instead of while-do loop as we need to execute the body to prompt and process
the input at least once.

177|Page

// Declare variables
int numberlIn; // to be input
boolean isValid; // boolean flag to control the loop

// Use a do-while loop controlled by a boolean flag
// to repeatably read the input until a valid input is entered
isValid = false; // default assuming input is not valid
do {
// Prompt and read input

// Validate input by setting the boolean flag accordingly

if (numberIn) {

isvValid = true; // exit the loop
} else {

System.out.println(......); // Print error message and repeat
}

} while (!isValid);

Try

Write a program that prompts user for the mark (between ©-100 in int) of 3 students; computes the average
(in double); and prints the result rounded to 2 decimal places. Your program needs to perform input
validation.

Hints

// Declare constant
final int NUM_STUDENTS = 3;

// Declare variables

int numberlIn;

boolean isValid; // boolean flag to control the input validation loop
int sum = ©@;

double average;

for (int studentNo = 1; studentNo <= NUM_STUDENTS; ++studentNo) {
// Prompt user for mark with input validation
isValid = false; // reset assuming input is not valid
do {

178 |Page

1.7 IncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

rate (0

First $20,000 0
Next $20,000 10
Next $20,000 20
The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% + $20000*10%
+ $20000%20% + $25000*30%.

Write a program called IncomeTaxCalculator that reads the taxable income (in int). The program shall
calculate the income tax payable (in double); and print the result rounded to 2 decimal places. For examples,

Enter the taxable income: $41234
The income tax payable is: $2246.80

Enter the taxable income: $67891
The income tax payable is: $8367.30

Enter the taxable income: $85432
The income tax payable is: $13629.60

Enter the taxable income: $12345
The income tax payable is: $0.00

Hints

// Declare constants first (variables may use these constants)
// The keyword "final" marked these as constant (i.e., cannot be changed).
// Use uppercase words joined with underscore to name constants

final double TAX_RATE_ABOVE 20K = ©.1;
final double TAX_RATE_ABOVE_ 40K = 0.2;
final double TAX_RATE_ABOVE 60K = ©.3;

)

// Declare variables
int taxableIncome;
double taxPayable;

// Compute tax payable in "double" using a nested-if to handle 4 cases

if (taxableIncome <= 20000) { // [0, 20000]
taxPayable = g

} else if (taxableIncome <= 40000) { // [20001, 40000]
taxPayable = 5

} else if (taxableIncome <= 60000) { // [40001, 60000]
taxPayable = g

} else { // [60001,]
taxPayable = 5

¥

// Alternatively, you could use the following nested-if conditions
// but the above follows the table data

179|Page

//if (taxableIncome > 60000) { // [60001,]

/ ccoococ
//} else if (taxableIncome > 40000) { // [40001, 60000]

/] cocoococ
//} else if (taxableIncome > 20000) { // [20001, 40000]

// ...
//} else { // [0, 20000]
/] ...

// Print results rounded to 2 decimal places
System.out.printf("The income tax payable is: $%.2f%n", ...);

Try

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify your
program to handle the tax rebate. For example, suppose that the tax payable is $12,000, the rebate is $1, 000,
as 10% of $12,000 exceeds the cap.

1.8 IncomeTaxCalculatorWithSentinel (Decision & Loop)

Based on the previous exercise, write a program called IncomeTaxCalculatorWithSentinel which shall
repeat the calculation until user enter -1. For example,

Enter the taxable income (or -1 to end): $41000
The income tax payable is: $2200.00

Enter the taxable income (or -1 to end): $62000
The income tax payable is: $6600.00

Enter the taxable income (or -1 to end): $73123
The income tax payable is: $9936.90

Enter the taxable income (or -1 to end): $84328
The income tax payable is: $13298.40

Enter the taxable income: $-1

bye!

The -1 is known as the sentinel value. (Wiki: In programming, a sentinel value, also referred to as a flag value,
trip value, rogue value, signal value, or dummy data, is a special value which uses its presence as a condition of
termination.)

Hints

The coding pattern for handling input with sentinel value is as follows:

// Declare constants first
final int SENTINEL = -1; // Terminating value for input

// Declare variables
int taxableIncome;
double taxPayable;

// Read the first input to "seed" the while loop
System.out.print("Enter the taxable income (or -1 to end): $");

180|Page

taxableIncome = in.nextInt();

while (taxableIncome != SENTINEL) {
// Compute tax payable

// Read the next input
System.out.print("Enter the taxable income (or -1 to end): $");
taxableIncome = in.nextInt();
// Repeat the loop body, only if the input is not the SENTINEL value.
// Take note that you need to repeat these two statements inside/outside the
loop!
}
System.out.println("bye!");

Take note that we repeat the input statements inside and outside the loop. Repeating statements is NOT a
good programming practice. This is because it is easy to repeat (Cntl-C/Cntl-V), but hard to maintain and
synchronize the repeated statements. In this case, we have no better choices!

2. Exercises on Patterns and Arrays

2.1 SquarePattern (nested-loop)

Write a program called SquarePattern that prompts user for the size (a non-negative integer in int); and
prints the following square pattern using two nested for-loops.

he size: 5

HoH HHHE A

HHHFHHEFES
HoH HHHE A

e
#
#
#
#
#

HHHHHFEM

Hints

The code pattern for printing 2D patterns using nested loops is:
// Outer loop to print each of the rows
for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row

for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
System.out.print(......); // Use print() without newline inside the inner

loop

}

// Print a newline after printing all the columns

System.out.println();

}

Notes

1. You should name the loop indexes rowand col, NOTiand j, orxandy, oraandb, which are
meaningless.

181|Page

2. The row and col could start at 1 (and upto size), or start at © (and upto size-1). As computer counts
from @, it is probably more efficient to start from 0. However, since humans counts from 1, it is easier to
read if you start from 1.

Try

Rewrite the above program using nested while-do loops.

2.2 CheckerPattern (nested-loop)

Write a program called CheckerPattern that prompts user for the size (a non-negative integer in int); and
prints the following checkerboard pattern

Enter the size: 7
H#HHH
#HHHEHEHRH
HHHHEEHH
#HHHH
#H# #HHHH
#HHHEEHRH
HHHHEEHH

Hints

// Outer loop to print each of the rows
for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row
for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
if ((row % 2) == 0) { // row 2, 4, 6,

......

System.out.print(......) // Use print() without newline inside the inner
loop

// Print a newline after printing all the columns
System.out.println();

2.3 MultiplicationTable (nested-loop)

Write a program called MultiplicationTable that prompts user for the size (a positive integer in int); and
prints the multiplication table as shown:

Enter the size: 10

oONOUVThAhWNBRE
coNOOUVTSh WN R
=
()
=
Ul
N
()
N
Ul
w
()
w
Ul
I
()
IS
Ul
U1
()

182|Page

9 | 9 18 27 36 45 54 63 72 81 90
10 | 10 20 30 40 50 60 70 80 90 100

Hints
Use printf() to format the output, e.g., each cell is %4d.

2.4 TriangularPattern (nested-loop)

Write 4 programs called TriangularPatternX (X = A, B, C, D) that prompts user for the size (a non-
negative integer in int); and prints each of the patterns as shown:

Enter the size: 8

#HHHEHHEHH #HHHHEHHEHH
#HHHEHHH #HHHHEHHH #
##H# #HHHEHH #HHHHHH ###
#H#HHH #HHHHH # H#
#H#H#HH # # # # # # ## #H#H#HH
#HHHEHH ##H# #HH #HHHEHH
#HHHHHH # # # # #HHHEHHH
#HHHEHHEHHS # # #HHHEHHREHH
(a) (b) (c) (d)
Hints
1. On the main diagonal, row = <col. On the opposite diagonal, row + col = size + 1,
where row and col begin from 1.
2. You need to print the leading blanks, in order to push the # to the right. The trailing blanks are optional,
which does not affect the pattern.
3. For pattern (a), if (row >= col) print #. Trailing blanks are optional.
4. For pattern (b), if (row + col <= size + 1) print # Trailing blanks are optional.
5. For pattern (c), if (row >= col) print #; else print blank. Need to print the leading blanks.
6. For pattern (d), if (row + col >= size + 1) print #; else print blank. Need to print
the leading blanks.
7. The coding pattern is:
// Outer loop to print each of the rows

for (int row = 1; row <= size; row++) { // row =1, 2, 3, ..., size
// Inner loop to print each of the columns of a particular row
for (int col = 1; col <= size; col++) { // col =1, 2, 3, ..., size
if (o.....) {
System.out.print("# ");
} else {
System.out.print(" "); // Need to print the "leading" blanks
}
}

// Print a newline after printing all the columns
System.out.println();

2.5 BoxPattern (nested-loop)

Write 4 programs called BoxPatternX (X = A, B, C, D) that prompts user for the size (a non-negative
integer in int); and prints the pattern as shown:

183|Page

Enter the size: 8

#HHHHHHH #HHHHEHH #HHHEHHRH #HHHHHH #HHHEHHRH

#H # #H

#

#

#

#H

#HHHHEHHH #HHHHHHH #HHHEHHH #HHHHHH # HHHEHHRH

(a) (b) () (d) (e)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,
where row and col begin from 1.

2. For pattern (a), if (row == 1 || row == size || col == 1 || col == size) print #; else
print blank. Need to print the intermediate blanks.

3. For pattern (b), if (row == 1 || row == size || row == col) print #; else print blank.

2.6 HillPattern (nested-loop)

Write 3 programs called HillPatternX (X = A, B, C, D) that prompts user for the size (a non-negative integer
in int); and prints the pattern as shown:

Enter the rows: 6

HHH B R H RSB # BHHEH BB H R R A
HHH B R HHHH ## # HHHEHHE B HHHH
#HHHH HHHH R RN HHHHH #HHH ##HH
HHHHHHH ##HHH HHHH R RN ### ## #
BHHH B R R HH ### HHHH B R HHH ## # #
HHHEHHE R R R A A # HHHH BB HHHHH # #
(a) (b) HHHH B R HHH # # # #
HHHH R RN ### ## #
HHHHH #HHH ##HH
HHHHE B HHHH
BHHEHH R R R A A
(c) (d)
Hints
For pattern (a):
for (int row = 1;) {
// numCol = 2*numRows - 1
for (int col =1;) {
if ((row + col >= numRows + 1) && (row >= col - numRows + 1)) {
...... 5
} else {
...... 5

or, use 2 sequential inner loops to print the columns:

for (int row = 1; row <= rows; row++) {

for (int col = 1; col <= rows; col++) {

184|Page

if ((row + col >= rows + 1)) {

for (int col = 2; col <= rows; col++) { // skip col = 1
if (row >= col) {

2.7 NumberPattern (nested-loop)

Write 4 programs called NumberPatternX (X = A, B, C, D) that prompts user for the size (a non-negative
integer in int); and prints the pattern as shown:

Enter the size: 8

1 12345678 1 87654321
12 1234567 21 7654321
123 123456 321 654321
1234 12345 4321 54321
12345 1234 54321 4321
123456 123 654321 321
1234567 12 7654321 21
12345678 1 87654321 1

(a) (b) (c) (d)

2.8 PrintArray(Array)

Write a program called PrintArray which prompts user for the number of items in an array (a non-negative
integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values of all the items
and saves them in an int array called items. The program shall then print the contents of the array in the form
of [x1, x2, ..., xn].Forexample,

Enter the number of items: 5
Enter the value of all items (separated by space): 3256 9
The values are: [3, 2, 5, 6, 9]

Hints

// Declare variables
tinal int NUM_ITEMS;
int[] items; // Declare array name, to be allocated after NUM_ITEMS is known

// Prompt for for the number of items and read the input as "int

185|Page

// Allocate the array
items = new int[NUM_ITEMS];

// Prompt and read the items into the "int" array, if array length > ©
if (items.length > @) {

// Print array contents, need to handle first item and subsequent items differently
for (int i = @; i < items.length; ++i) {
if (1 == 0) {
// Print the first item without a leading commas

} else {
// Print the subsequent items with a leading commas
}
// or, using a one liner
//System.out.print((i ==0) ? e);

2.9 PrintArrayInStars (Array)

Write a program called printArrayInStars which prompts user for the number of items in an array (a
non-negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values of
all the items (non-negative integers) and saves them in an int array called items. The program shall then print
the contents of the array in a graphical form, with the array index and values represented by number of stars.
For examples,

Enter the number of items: 5

Enter the value of all items (separated by space): 7 4 3 0 7
9: *******(7)

0 ****(4)

0 ***(3)

2 (0)

D ORRRKAAK(7)

A WNBR

Hints

// Declare variables
final int NUM_ITEMS;
int[] items; // Declare array name, to be allocated after NUM_ITEMS is known

// Print array in "index: number of stars" using a nested-loop
// Take note that rows are the array indexes and columns are the value in that
index
for (int idx = @; idx < items.length; ++idx) { // row
System.out.print(idx + ": ");
// Print value as the number of stars
for (int starNo = 1; starNo <= items[idx]; ++starNo) { // column

186|Page

System.out.print("*");

2.10 GradesStatistics (Array)

Write a program which prompts user for the number of students in a class (a non-negative integer), and saves
it in an int variable called numStudents. It then prompts user for the grade of each of the students (integer
between 0 to 100) and saves them in an int array called grades. The program shall then compute and print
the average (in double rounded to 2 decimal places) and minimum/maximum (in int).

Enter the number of students: 5
Enter the grade for student 1: 98
Enter the grade for student 2: 78
Enter the grade for student 3: 78
Enter the grade for student 4: 87
Enter the grade for student 5: 76
The average is: 83.40

The minimum is: 76

The maximum is: 98

2.11 Hex2Bin (Array for Table Lookup)

Write a program called Hex2Bin that prompts user for a hexadecimal string and print its equivalent binary
string. The output shall look like:

Enter a Hexadecimal string: 1abc
The equivalent binary for hexadecimal "labc" is: 0001 1010 1011 1100

Hints

1. Use an array of 16 Strings containing binary strings corresponding to hexadecimal number ©-9A-F (or a-
f), as follows
final String[] HEX_BITS = {"@@ee", "ee01", "0010", "e01l",
"9100", "0101", "@110", "0111",
"1000", "1001", "1010", "1011",
"1100", "1101", "1110", "1111"};

2.12 Dec2Hex (Array for Table Lookup)

Write a program called Dec2Hex that prompts user for a positive decimal number, read as int, and print its
equivalent hexadecimal string. The output shall look like:

Enter a decimal number: 1234
The equivalent hexadecimal number is 4D2

3. Magic(Special) Numbers

3.1 Amicable umbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the other

187 |Page

number. Write a Java program to check whether the given numbers are amicable or not. For example,
Enter 1st number: 228

Enter 2nd number: 220
The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110
1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142
1+2+4+71+142 = 220
Try

1. Print 5 pairs of amicable numbers.

Hints
Amicable Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368).

3.2 Armstrong Number

Armstrong number is a positive number if it is equal to the sum of cubes of its digits is called Armstrong
number and if its sum is not equal to the number then it's not a Armstrong number. For example,

Enter number:145
145 is not an Armstrong Number

Enter number: 153
153 is an Armstrong Number

Hints
Examples: 153 is Armstrong

(1*1*1)+(5*5*5)+(3*3*3) = 153

Try

Print all Armstrong numbers below 10000

3.3 Capricorn Number

A number is called Capricorn (or Kaprekar) number whose square is divided into two parts in any conditions
and parts are added, the additions of parts is equal to the number, is called Capricorn or Kaprekar number. For
example,

Enter a number: 45
45 is a Capricorn number

188 |Page

Enter a number: 297

297 is a Capricorn number
Enter a number: 44

44 is not a Capricorn number

Hints
Number = 45
(45)2 = 2025

All parts for 2025:

202 + 5 =207 (not 45)
20 + 25 =45

2+ 025 =27 (not 45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar number.
Try

Write a Java program to generate and show all Kaprekar numbers less than 1000.

3.4 Circular Prime

A circular prime is a prime number with the property that the number generated at each intermediate step
when cyclically permuting its digits will be prime. For example, 1193 is a circular prime, since 1931, 9311 and
3119 all are also prime. For example,

Enter a number: 137

137 is a Circular Prime
Enter a number: 44

44 is not a Circular Prime

Try

Write Java code to display all circular primes from 1 to 1000.

3.5 Happy Number

A happy number is a natural number in a given number base that eventually reaches 1 when iterated over the
perfect digital invariant function for. Those numbers that do not end in 1 are -unhappy numbers. For example,

Enter a number: 31
31 is a Happy number

Enter a number: 32
32 is not a Happy number

Try
Print all happy numbers from 1 to 1000.
3.6. Automorphic Number

An Automorphic number is a number whose square “ends” in the same digits as the number itself. For
example,

189|Page

Enter a number: 5
5 is a Automorphic Number

Enter a number: 25
25 is a Automorphic Number

Enter a number: 2
2 is not a Automorphic Number

Hints
5*5 = 25, 6*6 = 36, 25*25 = 625

5,6,25 are automorphic numbers

Try
Print all automorphic numbers from 1 to 10000

3.7 Disarium Number

A number is called Disarium number if the sum of its power of the positions from left to right is equal to the
number. For example,

Enter a number: 135
135 is a Disarium Number

Enter a number: 32
32 is not a Disarium Number

Hints
17+32+53=1+9+125=135

Try
Print all Disarium numbers from 1 to 10000

3.8 Magic Number

Magic number is the sum of its digits recursively are calculated till a single digit If the single digit is 1 then the
number is a magic number. Magic number is very similar with Happy Number. For example,

Enter a number: 226
226 is a Magic Number

Enter a number: 32
32 is not a Magic Number

Hints
226 is said to be a magic number

2+2+6=10 sum of digits is 10 then again 1+0=1 now we get a single digit number is 1. if we single digit
number will now 1 them it would not a magic number.

Try
1. A neon number is a number where the sum of digits of square of the number is equal to the number. For

190|Page

example if the input number is 9, its square is 9*9 = 81 and sum of the digits is 9. i.e. 9 is a neon number. For
example,

Enter a number: 9

9 is a Neon Number
Enter a number: 8

8 is not a Neon Number

2. A palindromic number is a number that remains the same when its digits are reversed. For example,

Enter a number: 16461
16461 is a Palindromic Number

Enter a number: 1234

1234 is not a Palindromic Number

3. A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number
itself. For instance, 6 has divisors 1,2 and 3,and 1 + 2 + 3 = 6, so 6 is a perfect number. For example,

Enter a number: 6

6 is a Perfect Number
Enter a number: 3

3 is not a Perfect Number

4. A number is said to be special number when the sum of factorial of its digits is equal to the number itself.
Example- 145 is a Special Number as 1!+4!+5!=145. For example,

Enter a number: 145
145 is a Special Number

Enter a number: 23
23 is not a Special Number

5. A spy number is a number where the sum of its digits equals the product of its digits. For example, 1124 is a
spy number, the sum of its digits is 1+1+2+4=8 and the product of its digits is 1*1*2*4=8. For example,

Enter a number: 1124
1124 is a Spy Number

Enter a number: 12
12 is not a Spy Number

6. A number is said to be an Ugly number if positive numbers whose prime factors only include 2, 3, 5. For
example, 6(2x3), 8(2x2x2), 15(3x5) are ugly numbers while 14(2x7) is not ugly since it includes another
prime factor 7. Note that 1 is typically treated as an ugly number. For example,

Enter a number: 6
6 is an Ugly Number

Enter a number: 14
14 is not an Ugly Number

191|Page

3.9 swap() (Array & Method)

Write a method called swap (), which takes two arrays of int and swap their contents if they have the same
length. It shall return true if the contents are successfully swapped. The method's signature is as follows:

public static boolean swap(int[] arrayl, int[] array2)

Also write a test driver to test this method.

Hints

You need to use a temporary location to swap two storage locations.
// Swap iteml and item2

int iteml, item2, temp;

temp = iteml;

iteml = item2;

item2 = iteml;

// You CANNOT simply do: iteml = item2; item2 = item2;

3.10 reverse() (Array & Method)

Write a method called reverse(), which takes an array of int and reverse its contents. For example, the
reverse of [1,2,3,4] is [4,3,2,1]. The method's signature is as follows:

public static void reverse(int[] array)

Take note that the array passed into the method can be modified by the method (this is called "pass by
reference"). On the other hand, primitives passed into a method cannot be modified. This is because a clone is
created and passed into the method instead of the original copy (this is called "pass by value").

Also write a test driver to test this method.

Hints

You might use two indexes in the loop, one moving forward and one moving backward to point to the two
elements to be swapped.

for (int fIdx = @, bIdx = array.length - 1; fIdx < bIdx; ++fIdx, --bIdx) {

// Swap array[fIdx] and array[bIdx]
// Only need to transverse half of the array elements

You need to use a temporary location to swap two storage locations.

// Swap iteml and item2

int iteml, item2, temp;

temp = iteml;

iteml = item2;

item2 = iteml;

// You CANNOT simply do: iteml = item2; item2 = item2;

3.11 GradesStatistics (Array & Method)

Write a program called GradesStatistics, which reads in n grades (of int between @ and 100, inclusive) and
displays the average, minimum, maximum, median and standard deviation. Display the floating-point values
upto 2 decimal places. Your output shall look like:

Enter the number of students: 4
Enter the grade for student 1: 50

192|Page

Enter the grade for student 2: 51
Enter the grade for student 3: 56
Enter the grade for student 4: 53

The
The
The
The
The
The

The

grades are: [50, 51, 56, 53]
average is: 52.50

median is: 52.00

minimum is: 50

maximum is: 56

standard deviation is: 2.29

formula for calculating standard deviation is:

1 o :
ag= J; "5 x;2 — p?, where uis the mean

Hints:

public class GradesStatistics {

public static int[] grades; // Declare an int[], to be allocated later.

// This array is accessible by all the methods.

public static void main(String[] args) {
readGrades(); // Read and save the inputs in global int[] grades
System.out.println("The grades are: ");
print(grades);
System.out.println("The average is
System.out.println("The median is
System.out.println("The minimum is
System.out.println("The maximum is
System.out.println("The standard deviation is

+ average(grades));
+ median(grades));
+ min(grades));
+ max(grades));
" + stdDev(grades));

}

// Prompt user for the number of students and allocate the global "grades" array.
// Then, prompt user for grade, check for valid grade, and store in "grades".
public static void readGrades() { }

// Print the given int array in the form of [x1, x2, x3,..., xn].
public static void print(int[] array) { }

// Return the average value of the given int[]
public static double average(int[] array) { }

// Return the median value of the given int[]

// Median is the center element for odd-number array,

// or average of the two center elements for even-number array.
// Use Arrays.sort(anArray) to sort anArray in place.

public static double median(int[] array) { }

// Return the maximum value of the given int[]
public static int max(int[] array) {
int max = array[0]; // Assume that max is the first element
// From second element, if the element is more than max, set the max to this

element.

// Return the minimum value of the given int[]
public static int min(int[] array) { }

193|Page

// Return the standard deviation of the given int[]
public static double stdDev(int[] array) { }

Take note that besides readGrade () that relies on global variable grades, all the methods are self-contained
general utilities that operate on any given array.

3.12 GradesHistogram (Array & Method)

Write a program called GradesHistogram, which reads in n grades (as in the previous exercise), and
displays the horizontal and vertical histograms. For example:

0 - 9: %k %
10 - 19: **x*
20 - 29:
30 - 39:
40 - 49: *
50 - 59: kk kK Xk
60 - 69:
70 - 79:
80 - 89: *
90 -100: **
*
*
* * *
* * * *
* * * * * *

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

4. Exercises on String and char Operations

4.1 ReverseString (String & char)

Write a program called ReverseString, which prompts user for a String, and prints the reverse of
the String by extracting and processing each character. The output shall look like:

Enter a String: abcdef
The reverse of the String "abcdef" is "fedcba".

Hints

For aStringcalled inStr, you can use inStr.length()to get the length of the String;
and inStr.charAt(idx) to retrieve the char at the idx position, where idx begins at 0, up
to instr.length() - 1.

// Define variables
String inStr; // input String

194|Page

int inStrLen; // length of the input String

// Prompt and read input as "String"
System.out.print("Enter a String: ");

inStr = in.next(); // use next() to read a String
inStrLen = inStr.length();

// Use inStr.charAt(index) in a loop to extract each character
// The String's index begins at @ from the left.
// Process the String from the right
for (int charIdx = inStrLen - 1; charldx >= @; --charIdx) {
// charIdx = inStrLen-1, inStrLen-2, ... ,0

4.2 CountVowelsDigits (String & char)

Write a program called CountVowelsDigits, which prompts the user for a String, counts the number of
vowels (a,e 1,0, u A E I,0 U) and digits (8-9) contained in the string, and prints the counts and the
percentages (rounded to 2 decimal places). For example,

Enter a String: testingl2345
Number of vowels: 2 (16.67%)
Number of digits: 5 (41.67%)

Hints

1. To check if a char cis a digit, you can use boolean expression (c >= '@' & ¢ <= '9"); or use built-
in boolean function Character.isDigit(c).

2. You could use in.next().toLowerCase() to convert the input Stringto lowercase to reduce the
number of cases.

3. To print a%using printf(), you need to use %%. This is because %is a prefix for format specifier
in printf(), e.g, %d and %f.

4.3 PhoneKeyPad (String & char)
On you phone keypad, the alphabets are mapped to digits as follows:

ABC(2), DEF(3), GHI(4), JKL(5), MNO(6), PQRS(7), TUV(8), WXYZ(9).

Write a program called PhoneKeyPad, which prompts user for a String (case insensitive), and converts to a
sequence of keypad digits. Use (a) a nested-if, (b) a switch-case-default

Hints
1. Youcanuse in.next().toLowerCase() toread a String and convert it to lowercase to reduce your cases.
2. In switch-case, you can handle multiple cases by omitting the break statement, e.g.,

switch (inChar) {

case 'a': case 'b': case 'c': // No break for 'a' and 'b', fall thru 'c'
System.out.print(2); break;
case 'd': case 'e': case 'f':

default:

195|Page

4.4 Caesar's Code (String & char)

Caesar's Code is one of the simplest encryption techniques. Each letter in the plaintext is replaced by a letter
some fixed number of position (n) down the alphabet cyclically. In this exercise, we shall pick n=3. That
is, "A" isreplaced by 'D', 'B"' by 'E', 'C' by 'F', .., 'X" by 'A', .., "Z"' by 'C".

Write a program called CaesarcCode to cipher the Caesar's code. The program shall prompt user for a plaintext
string consisting of mix-case letters only; compute the ciphertext; and print the ciphertext in uppercase. For
example,

Enter a plaintext string: Testing
The ciphertext string is: WHVWLQ3J

Hints

1. Use in.next () .toUpperCase() to read an input string and convert it into uppercase to reduce the
number of cases.

2. You can use a big nested-if with 26 cases ('A'-"Z"). But it is much better to consider 'A" to 'W' as one
case; 'X', 'Y' and 'Z"' as 3 separate cases.

3. Take note that char 'A' is represented as Unicode number 65 and char 'D' as 68. However, ‘A" + 3
gives 68. This is because char + int is implicitly casted to int + int which returns an int value. To
obtain a char value, you need to perform explicit type casting using (char)('A' + 3). Try printing ('A’
+ 3) with and without type casting.

4.5 Decipher Caesar's Code (String & char)

Write a program called DecipherCaesarCode to decipher the Caesar's code described in the previous exercise.
The program shall prompts user for a ciphertext string consisting of mix-case letters only; compute the
plaintext; and print the plaintext in uppercase. For example,

Enter a ciphertext string: wHVwLQ3J
The plaintext string is: TESTING

4.6 Exchange Cipher (String & char)

This simple cipher exchanges 'A' and 'Z', 'B' and 'Y"', 'C" and 'X', and so on.

Write a program called ExchangeCipher that prompts user for a plaintext string consisting of mix-case letters
only. You program shall compute the ciphertext; and print the ciphertext in uppercase. For examples,

Enter a plaintext string: abcXYZ
The ciphertext string is: ZYXCBA

Hints

1. Use in.next () .toUpperCase() to read an input string and convert it into uppercase to reduce the
number of cases.
2. You can use a big nested-if with 26 cases ('A'-'Z"), or use the following relationship:

'A' + 'Z' == 'B' + 'Y' == 'C' + 'X' == ... == plainTextChar + cipherTextChar

196 |Page

Hence, cipherTextChar = 'A' + 'Z' - plainTextChar

4.7 TestPalindromicWord and TestPalindromicPhrase
(String & char)

A word that reads the same backward as forward is called a palindrome, e.g., "mom", "dad", "racecar",
"madam”, and "Radar" (case-insensitive).

Write a program called TestPalindromicWord, that prompts user for a word and prints ""xxx" is|is not a
palindrome".

A phrase that reads the same backward as forward is also called a palindrome, e.g., "Madam, I'm Adam", "A
man, a plan, a canal - Panama!" (ignoring punctuation and capitalization).

Modify your program (called TestPalindromicPhrase) to check for palindromic phrase. Use in.nextLine() to
read a line of input.

Hints

1. Maintain two indexes, forwardIndex (fIdx) and backwardIndex (bIdx), to scan the phrase forward
and backward.
int fIdx = @, bIdx = strLen - 1;
while (fIdx < bIdx) {
++fIdx;
--bIdx;

}

// or
for (int fIdx = @, bIdx = strLen - 1; fIdx < bIdx; ++fIdx, --bIdx) {

2. You can check if achar cis a letter either using built-in boolean function Character.isLetter(c);

or boolean expression (c >= 'a' & & c <= 'z'). Skip the index if it does not contain a letter.

4.8 CheckBinStr (String & char)

The binary number system uses 2 symbols, 0 and 1. Write a program called CheckBinStr to verify a binary
string. The program shall prompt user for a binary string; and decide if the input string is a valid binary string.
For example,

Enter a binary string: 10101100
"10101100" is a binary string

Enter a binary string: 10120000
"10120000" is NOT a binary string

197 |Page

Hints

Use the following coding pattern which involves a boolean flag to check the input string.

// Declare variables

String inStr; // The input string
int inStrLen; // The length of the input string
char inChar; // Each char of the input string

boolean isValid; // "is" or "is not" a valid binary string?

isValid = true; // Assume that the input is valid, unless our check fails

for (......) {
inChar = ;
if (!(inChar == '@' || inChar == '1')) {
isValid = false;
break; // break the loop upon first error, no need to continue for

more errors
// If this is not encountered, isValid remains true after the loop.

}
}
if (isValid) {
System.out.println(......)
} else {
System.out.println(......)
¥

// or using one liner
//System.out.println(isvalid ? ... : ...);

4.9 CheckRHexStr (String & char)

The hexadecimal (hex) number system uses 16 symbols, 8-9 and A-F (or a-f). Write a program to verify a hex
string. The program shall prompt user for a hex string; and decide if the input string is a valid hex string. For
examples,

Enter a hex string: 123aBc
"123aBc" is a hex string

Enter a hex string: 123aBcx
"123aBcx" is NOT a hex string

Hints

if (!'((inChar >= '@' && inChar <= '9")
|| (inChar >= 'A' && inChar <= 'F')

|| (inChar >= 'a' && inChar <= 'f'))) { // Use positive logic and then reverse

4.10 Bin2Dec (String & char)

Write a program called Bin2Dec to convert an input binary string into its equivalent decimal number. Your
output shall look like:

Enter a Binary string: 1011

198 |Page

The equivalent decimal number for binary "1011" is: 11

Enter a Binary string: 1234
error: invalid binary string "1234"

4.11 Hex2Dec (String & char)

Write a program called Hex2Dec to convert an input hexadecimal string into its equivalent decimal number.
Your output shall look like:

Enter a Hexadecimal string: 1a
The equivalent decimal number for hexadecimal "1a" is: 26

Enter a Hexadecimal string: 1y3
error: invalid hexadecimal string "1y3"

4.12 Oct2Dec (String & char)

Write a program called Oct2Dec to convert an input Octal string into its equivalent decimal number. For
example,

Ente an Octal string: 147
The equivalent decimal number "147" is: 103

5. Exercises on Classes and Objects

5.1 The Rectangle Class

A class called Rectangle, which models a rectangle with a length and a width (in float), is designed as shown
in the following class diagram. Write the Rectangle class.

Hints:
Rectangle
-length:flecat = 1.ef
-width:float = 1.ef

+Rectangle()

+Rectangle(length:float,width:float)

+getLength():float

+setLength(length:float):void

+getWidth():float

+setWidth(width:float):void

+getArea() :double

+getPerimeter():double

e T P ey SRS T 1 2 e S —— "Rectangle[length=?,width=?]"

199|Page

The expected output is:

Rectangle[length=1.2,width=3.4]
Rectangle[length=1.0,width=1.0]
Rectangle[length=5.6,width=7.8]
length is: 5.6

width is: 7.8

area is: 43.68

perimeter is: 26.80

5.2 The Employee Class

A class called Employee, which models an employee with an ID, name and salary, is designed as shown in the
following class diagram. The method raiseSalary(percent) increases the salary by the given percentage.
Write the Employee class.

Hints:

Employee
-id:int
-firstName:String

-lastName:String
-salary:int

+Employee(id:int,firstName:String,
lastName:String,salary:int)
+getId():int

+getFirstName():String [*FirstName Lastnome®

+getLastName():String -
+getName():String ® """~~~ -
+getSalary():int , salary * 12
+setSalary(salary:int):void o
+getAnnualSalary():int &---------- .

Increase the salary by the percent and

+raiseSalary(int percent):int e-------
return the new salary

+toString():Stringe_

-~
-~

"Employee[id=?,name=firstName Lastname,salary=?]"

The expected out is:

Employee[id=8,name=Peter Tan,salary=2500]
Employee[id=8,name=Peter Tan,salary=999]
id is: 8

firstname is: Peter

lastname is: Tan

salary is: 999

name is: Peter Tan

annual salary is: 11988

1098

Employee[id=8,name=Peter Tan,salary=1098]

200|Page

5.3 The InvoiceItem Class

A class called InvoiceItem, which models an item of an invoice, with ID, description, quantity and unit price, is
designed as shown in the following class diagram. Write the InvoiceItem class.

Hints:

InvoiceItem

-id:String

-desc:String

-gty:int

-unitPrice:double

+Invoiceltem(id:String,desc:String,
qty:int,unitPrice:double)

+getId():String

+getDesc():String

+getQty():int

+setQty(gty:int):void

+getUnitPrice():double

+setUnitPrice(unitPrice:double):void

+getTotal():double @-------c-coooommmmoaoo unitPrice*qty

+toString():Stringe_

Y
~

"Invoiceltem[id=?,desc=?,qty=?,unitPrice=?]"

The expected output is:

InvoiceItem[id=A101,desc=Pen Red,qty=888,unitPrice=0.08]
InvoiceItem[id=A101,desc=Pen Red,qty=999,unitPrice=0.99]

id is: Ale1l
desc is: Pen Red
gty is: 999

unitPrice is: 0.99
The total is: 989.01

5.4 The Account Class

A class called Account, which models a bank account of a customer, is designed as shown in the following
class diagram. The methods credit(amount) and debit(amount) add or subtract the given amount to
the balance. The method transferTo(anotherAccount, amount) transfers the given amount from
this Account to the given anotherAccount. Write the Account class.

201|Page

Hints:

Account

-id:String , Add amount to balance, return balance
-name:String !

-balance:int = @ / If amount <= balance

+Account(id:String,name:String) / subtract amount from balance
0 0 - !
+Account(id:String,name:String, = . else print "Amount exceeded balance"
. n ! !
. b:%g?jeéin?) ./ return balance
ge :String ;o
* i
+getName():Strin g
+SEtBala£ZE():in§ I :; If amount <= balance
+credit(amount:int):inte--- ;’ | transfer amount to the given Account
+debit(amount:int):int e----- ',/ else print "Amount exceeded balance"
+transferTo(another:Account, return balance
amount:int):int ¢----------- o
+toString():String e--------————---. "Account[id=?,name=?,balance=?]"

The expected output is:

Account[id=A101,name=Tan Ah Teck, balance=88]
Account[id=A102,name=Kumar, balance=0]

ID: Al0l
Name: Tan Ah Teck
Balance: 88

Account[id=A101,name=Tan Ah Teck, balance=188]
Account[id=A101,name=Tan Ah Teck, balance=138]
Amount exceeded balance
Account[id=A101,name=Tan Ah Teck, balance=138]
Account[id=A101,name=Tan Ah Teck, balance=38]
Account[id=A102,name=Kumar, balance=100]

5.5 The Date Class

A class called Date, which models a calendar date, is designed as shown in the following class diagram. Write
the Date class.

Hints:
Date
: day = [1, 31]
-day:ln? [P month = [1, 12]
-monthflnt year = [198@, 9999]
-year:int No input validation needed

+Date(day:int,month:int,year:int)

+getDay():int

+getMonth():int

+getYear():int

+setDay(day:int):void

+setMonth(month:int):void

+setYear(year:int):void

+setDate(day:int,month:int,year:int):void

+t0String() :String e ----c--cmmccmcameaado. "dd/mm/yyyy" with leading zero

The expected output is:
01/02/2014
09/12/2099

Month: 12

Day: 9

202|Page

Year: 2099
03/04/2016

5.6 Ex: The Time Class

A class called Time, which models a time instance, is designed as shown in the following class diagram. The
methods nextSecond() and previousSecond() shall advance or rewind this instance by one second, and
return this instance, so as to support chaining operation such as t1.nextSecond().nextSecond(). Write
the Time class.

Hints:
Time hour = [©, 23]
-hour:1int PR minute = [@, 59]
-minute:int second = [@, 59]
-second:1int No input validation needed.

+Time(hour:int,minute:int,
second:int)
+getHour():int
+getMinute():int
+getSecond():int
+setHour (hour:int):void
+setMinute(minute:int) :void
+setSecond(second:int):void
+setTime(hour:int,minute: int,
second:int):void
+toString():String*
+nextSecond():Time®-------------- Advance by 1 second and

+previousSecond() : Time return this instance

"hh:mm:ss" with leading zero

SRR e
-
-

The expected output is:

01:02:03
04:05:06
Hour: 4

Minute: 5
Second: 6
23:59:58
23:59:59
00:00:01
00:00:00
23:59:58

5.7 The Ball Class

A class called Ball, which models a bouncing ball, is designed as shown in the following class diagram. It
contains its radius, x and y position. Each move-step advances the x and y by delta-x and delta-y, respectively.
delta-x and delta-y could be positive or negative.

203|Page

The reflectHorizontal() and reflectVertical() methods could be used to bounce the ball off the walls.
Write the Ball class. Study the test driver on how the ball bounces.

Hints:

Ball

-x:float
-y:float | Each move step advances x and y
-radius:int -" by Ax and Ay. Ax and Ay could be
e Ooococsooconaos i positive or negative.
-yDelta:float
+Ball(x:float,y:float,radius:int
xDelta:float,yDelta:float)
+getX():float
+setX(x:float):void
+getY():float
+setY(y:float):void
+getRadius():int
+setRadius(radius:int):void .
+getXDe1taE):float) 'hﬂoveon?step. .
+setXDelta(xDelta:float):void S X A= Ay 4= Dy
+getYDelta():float 3
+setYDelta(yDelta:float):void / .~/
+move():voide ---- - - - - —————\—————- o f
+reflectHorizontal():voide----- AL
+reflectVertical():voide-------- ’
+toString():String®-----------------

Ax = -Ax
Ay = -Ay

"Ball[(x,y),speed=(Ax,4y)]"

The expected output is:

Ball[(1.1,2.2),speed=(3.3,4.4)]

Ball[(80.0,35.0),speed=(4.0,6.0)]

x is: 80.0

y is: 35.0

radius is: 5

xDelta is: 4.0

yDelta is: 6.0

Ball[(84.0,41.0),speed=(4. 0]

Ball[(88.0,47.0),speed=(4.0,]

Ball[(92.0,41.0),speed=(4.0)

Ball[(96.0,35.0),speed= (4 0)

Ball[(92.0,29.0),speed=(- 0

Ball[(88.0,23.0),speed=(- 0

Ball[(84.0,17.0),speed=(- (%]

Ball[(80.0,11.0),speed=(- .0
)
0
]
.0)
.0)
-0)
.0)

$> $> $> $>

Ball[(76.0,5.0),speed=(-4. 0 -6.0
Ball[(72.0,-1.9),speed=(-4.0,-6.
Ball[(68.0,5.0),speed=(-4.0,6.0
Ball[(64.0,11.0),speed=(-4.
Ball[(60.0,17.0),speed=(-4.
Ball[(56.0,23.0),speed=(-4.

4.

0
0
(%]
Ball[(52.0,29.0),speed=(-4.0

6. Exercises on Composition

6.1 The Author and Book Classes

This first exercise shall lead you through all the concepts involved in OOP Composition.

204|Page

Author

-name:String *----d- No default values for the variables
-email:String
-gender:char #------caem-_L. char of "'m" or "f'

+Author(name:String,
email:String, gender:char)

+getMame () :String

+getEmail() :String

+setEmail (email:String) :void

+getGender():char
+toString():Stringe------------ "Author[name=?,email=?, gender=?]

Book 1
K—=

-name:String Author

-athDP:ﬂuthDP has -name:String
—pPlC?:dDUblE -email:String
-gty:int = @ -gender:char

+Book(name:5tring, author:Author,
price:double)
+Book(name:5tring, author:Author,
price:double,qty:int)
+getMame() :String
+getAuthor() : Author
+getPrice() :double
+setPrice(price:double):void
+getQty():int
+setQty(gty:int):void
+toString():Stringe__

-
-
-
= -

"Book[name=?,Author[name=?,email="?,gender="],price=?,qty=°]"

You need to reuse Author’s toString().

TRY

1.

Printing the name and email of the author from a Book instance.
(Hint: aBook.getAuthor().getName(), aBook.getAuthor().getEmail()).

2. Introduce new methods

called getAuthorName(), getAuthorEmail(), getAuthorGender() in

the Book class to return the name, email and gender of the author of the book. For example,

public String getAuthorName()

return author.getName();

{

// cannot use author.name as name is private in Author class

205|Page

6.2 The Author and Book Classes - An Array of Objects as an Instance
Variable

m
Book <>— Author

-name:String -name:String
-authors:Author([] -email:String
-price:double -gender:char
-gqty:int = @

+Book(name:String, authors:Author[],
price:double)

+Book(name:String,authors:Author[],
price:double,qty:int)

+getName() :String

+getAuthors():Author[]

+getPr?ce[):unh1e _ "Book[name=n, authors={Author[name=n,
+5etPr1ce(Pr1ce:dDub1e):vold __-+"" email=e,gender=g],...... 1 price=p,
+getQty () :int e aty=qg]"

-
-

+setQty(qty:int):void _--
+toString():Stringe-""

+getAuthorNames () :Stringe - - - ---—--—-- "authorNamel ,authorName2"

In the earlier exercise, a book is written by one and only one author. In reality, a book can be written by one or
more author. Modify the Book class to support one or more authors by changing the instance
variable authors to an Author array.

Notes:

e The constructors take an array of Author (i.e, Author[]), instead of an Author instance. In this design,
once a Book instance is constructor, you cannot add or remove author.

e The toString() method shall return
"Book[name=?,authors={Author[name=?,email=?,gender=?],...... },price=?,qty=?]".

You are required to:

1. Write the code for the Book class. You shall re-use the Author class written earlier.
2. Write a test driver (called TestBook) to test the Book class.

Hints

// Declare and allocate an array of Authors

Author[] authors = new Author[2];

authors[@] = new Author("Tan Ah Teck", "AhTeck@somewhere.com",
authors[1] new Author("Paul Tan", "Paul@nowhere.com", 'm');

m');

// Declare and allocate a Book instance
Book javaDummy = new Book("Java for Dummy", authors, 19.99, 99);
System.out.println(javaDummy); // toString()

206 |Page

6.3 The Customer and Invoice classes

A class called Customer, which models a customer in a transaction, is designed as shown in the class diagram.
A class called Invoice, which models an invoice for a particular customer and composes an instance
of Customer as its instance variable, is also shown. Write the Customer and Invoice classes.

Hints:

Customer

-id:int
-name:String i i
—diSCOUNT:iNT @ - mm oo e e e e oL Discount in percent

+Customer(id:int,name:String,discount:int)

+getId():int

+getName():String

+getDiscount():int

+setDiscount(discount:int):void

+toString():Stringe -------ccmmmm o "name(id) (discount%)"

Invoice 1
-id:int ¢« >——— Customer
-customer:Customer
-amount:double

+Invoice(id:int, customer:Customer,
amount : double)

+getId():int

+getCustomer():Customer

+setCustomer (customer:Customer):void

+getAmount() :double

+setAmount (amount:double) : void

+getCustomerId():int

+getCustomerName():String

+getCustomerDiscount():int

+getAmountAfterDiscount():double &----- Return the amount after discount

+toString():Stringe---._

~
S
<

"Invoice[id=?,customer=name(id)(discount%),amount=?]"

The expected output is:

Tan Ah Teck(88) (10%)

Tan Ah Teck(88)(8%)

id is: 88

name is: Tan Ah Teck

discount is: 8

Invoice[id=101, customer=Tan Ah Teck(88)(8%),amount=888.8]
Invoice[id=101,customer=Tan Ah Teck(88)(8%),amount=999.9]
id is: 101

customer is: Tan Ah Teck(88)(8%)

amount is: 999.9

customer's id is: 88

customer's name is: Tan Ah Teck

customer's discount is: 8

amount after discount is: 919.91

207 |Page

6.4 Ex: The Customer and Account classes

Customer
-id:int
-name:String
-gender:char @----c-ceceeemeeeeeeeeodoo. 'mfoor

+Customer(id:int,name:String,
discount:int)
+getId():int
+getName() :String
+getGender():char
+toString():String e------c-ccooeo - “name (id)"

The Customer class models a customer is design as shown in the class diagram. Write the codes for
the Customer class and a test driver to test all the public methods.

Account

-id:int 1
-customer:Customer <:>_———- Customer
-balance:double = 9.0

+Account (id:int, customer:Customer,
balance:double)
+Account(id: int, customer:Customer)
+getId():int
+getCustomer():Customer "name(id) balance=$xxx.xx"

:EEESZEE:Eg;gzﬁgi?double) void balance rounded to 2 decimal places
') To reuse Customer’s toString()

+toString():String e------coeimiimii
+getCustomerName():String
+deposit(amount:double):Accounte--------- Add amount to balance

+withdraw(amount:double):Accounte

if (balance >= amount)
subtract amount to balance
else
print "amount withdrawn
exceeds the current balance!"

The Account class models a bank account, design as shown in the «class diagram, composes
a Customer instance (written earlier) as its member. Write the codes for the Account class and a test driver to
test all the public methods.

It contains:

e A method called distance(int x, int y) that returns the distance from this point to another point at
the given (x, y) coordinates, e.g.,

208 |Page

MyPoint pl = new MyPoint(3, 4);
System.out.println(pl.distance(5, 6));

e An overloaded distance(MyPoint another) that returns the distance from this point to the
given MyPoint instance (called another), e.g.,

MyPoint pl = new MyPoint(3, 4);
MyPoint p2 = new MyPoint(5, 6);
System.out.println(pl.distance(p2));

e Another overloaded distance() method that returns the distance from this point to the origin (0,90),
e.g.

MyPoint pl = new MyPoint(3, 4);

System.out.println(pl.distance());

You are required to:

1. Write the code for the class MyPoint. Also write a test program (called TestMyPoint) to test all the
methods defined in the class,

Hints:
// Overloading method distance()
// This version takes two ints as arguments
public double distance(int x, int y) {

int xDiff = this.x - x;

int yDiff =

return Math.sqrt(xDiff*xDiff + yDiff*yDiff);
}

// This version takes a MyPoint instance as argument
public double distance(MyPoint another) {
int xDiff = this.x - another.x;

Try
Write a program that allocates 1@ points in an array of MyPoint, and initializes to (1, 1), (2, 2), .. (10,
10).

Hints
You need to allocate the array, as well as each of the 10 MyPoint instances. In other words, you need to issue
11 new, 1 for the array and 10 for the MyPoint instances.

MyPoint[] points = new MyPoint[1@]; // Declare and allocate an array of MyPoint
for (int i = 9; i < points.length; i++) {
points[i] = new MyPoint(...); // Allocate each of MyPoint instances

¥
// use a loop to print all the points

209|Page

6.5 Ex: The MyCircle and MyPoint Classes

A class called MyCircle, which models a circle with a center and a radius, is designed as shown in the class
diagram. The MyCircle class uses a MyPoint instance (written in the earlier exercise) as its center.

MyCircle
: 1
-center:MyPoint = (0,0) «<>——— MyPoint
- ius:i = center
radius:int = 1 T
+MyCircle() -y:int

+MyCircle(x:int,y:int, radius:int)
+MyCircle(center:MyPoint,radius:int)
+getRadius():int
+setRadius(radius:int):void
+getCenter() :MyPoint
+setCenter(center:MyPoint):void
+getCenterX():int
+setCenterX(x:int):void
+getCenterY():int
+setCenterY(y:int):void

"MyCircle[radius=r,center=(x,y)]"
_-" Re-use MyPoint’s toString() to print

+getCenterXY():int[2] ,/, the center’s (x,y)
+setCenterXY(x:int,y:int):void ,-*

+toString():Stringe------------ o Return the distance between the centers
+getArea():double - of this circle and the given MyCircle
+getCircumference():double " instance another. To re-use MyPoint’s

+distance(another:MyCircle) :double o distance()

Hints:

// Constructors

public MyCircle(int x, int y, int radius) {
// Need to construct an instance of MyPoint for the variable center
center = new MyPoint(x, y);
this.radius = radius;

}

public MyCircle(MyPoint center, int radius) {
// An instance of MyPoint already constructed by caller; simply assign.
this.center = center;

}

public MyCircle() {
center = new MyPoint(.....); // construct MyPoint instance
this.radius =

}

// Returns the x-coordinate of the center of this MyCircle
public int getCenterX() {
return center.getX(); // cannot use center.x and x is private in MyPoint

}

// Returns the distance of the center for this MyCircle and another MyCircle
public double distance(MyCircle another) {
return center.distance(another.center); // use distance() of MyPoint

}

210|Page

6.6 Ex: The MyTriangle and MyPoint Classes

A class called MyTriangle, which models a triangle with 3 vertices, is designed as shown in the class diagram.
The MyTriangle class uses three MyPoint instances (created in the earlier exercise) as the three vertices.

MyTriangle 3 MyPoint
-v1:MyPoint & | -x:int
-v2:MyPoint vertices| .y.int
-v3:MyPoint

+MyTriangle(x1:int,yl:int,
x2:int,y2:int,x3:int, "MyTriangle[vl=(x1,y1),v2=(x2,y2),v3=(x3,y3)]"
y3:int) v
+My121;;§i:'£:ilvl';y;;;2;t) Use MyPoint’s distance() to compute
+tostring():Stringe” H,ﬁ' the length of the edges.
+getPerimeter():doubles”

+getType():String e --===---1-- "Equilateral” or "Isosceles” or "Scalene"”

It contains:

e Three private instance variables v1, v2, v3 (instances of MyPoint), for the three vertices.

e A constructor that constructs aMyTriangle with three set of coordinates, vi=(x1, y1),v2=(x2,
y2),v3=(x3, y3).

e An overloaded constructor that constructs a MyTriangle given three instances of MyPoint.

e AtoString() method that returns a string description of the instance in the format
"MyTriangle[vl=(x1,yl),v2=(x2,y2),v3=(x3,y3)]"

e AgetPerimeter() method that returns the length of the perimeter in double. You should use
the distance() method of MyPoint to compute the perimeter.

e A method printType(), which prints "equilateral" if all the three sides are equal, "isosceles" if any
two of the three sides are equal, or "scalene" if the three sides are different.

Write the MyTriangle class. Also write a test driver (called TestMyTriangle) to test all the public methods
defined in the class.

Try

Design a MyRectangle class which is composed of two MyPoint instances as its top-left and bottom-
right corners. Draw the class diagrams, write the codes, and write the test drivers.

211|Page

7. Exercises on Inheritance

7.1 An Introduction to OOP Inheritance: The Circle and Cylinder Classes

This exercise shall guide you through the important concepts in inheritance.

Circle
-radius:double = 1.@
-color:String = "red”

+Circle()

+Circle(radius:double)
+Circle(radius:double,color:String)
+getRadius() :double
+setRadius(radius:double):void
+getColor() :5tring
+setColor(color:String) :void
+gethArea() :double

+toString():Stringe-----mmcmcmmmmmeae "Circle[radius=r,color=c]"
tend superclass
extends subclass
Cylinder
-height:double = 1.8
+Cylinder()

+Cylinder(radius:double)

+Cylinder(radius:double,height:double)

+Cylinder(radius:double,height:double,
color:String)

+getHeight () :double

+setHeight (height:double):void

+getVolume () :double

In this exercise, a subclass called Cylinder is derived from the superclass Circle as shown in the class
diagram (where an an arrow pointing up from the subclass to its superclass). Study how the
subclass Cylinder invokes the superclass' constructors (via super() and super(radius)) and inherits the
variables and methods from the superclass Circle

You can reuse the Circle class that you have created in the previous exercise. Make sure that you keep
"Circle.class" in the same directory.

public class Cylinder extends Circle { // Save as "Cylinder.java"
private double height; // private variable

// Constructor with default color, radius and height

public Cylinder() {
super(); // call superclass no-arg constructor Circle()
height = 1.0;

}

// Constructor with default radius, color but given height

public Cylinder(double height) {

212|Page

super(); // call superclass no-arg constructor Circle()
this.height = height;
}

// Constructor with default color, but given radius, height

public Cylinder(double radius, double height) {
super(radius); // call superclass constructor Circle(r)
this.height = height;

}

// A public method for retrieving the height
public double getHeight() {
return height;

}

// A public method for computing the volume of cylinder
// use superclass method getArea() to get the base area
public double getVolume() {

return getArea()*height;

}

Method Overriding and "Super”: The subclass Cylinder inherits getArea() method from its superclass
Circle. Try overriding the getArea() method in the subclass Cylinder to compute the surface area
(=2mxradiusxheight + 2xbase-area) of the cylinder instead of base area. That is, if getArea() is called by
a Circle instance, it returns the area. If getArea() is called by a Cylinder instance, it returns the surface area
of the cylinder.

If you override the getArea() in the subclass Cylinder, the getVolume() no longer works. This is because
the getVolume() uses the overridden getArea() method found in the same class. (Java runtime will search the
superclass only if it cannot locate the method in this class). Fix the getVolume().

Hints: After overridding the getArea() in subclass Cylinder, you can choose to invoke the getArea() of the
superclass Circle by calling super.getArea()
Try

Provide a toString() method to the Cylinder class, which overrides the toString() inherited from the
superclass Circle, e.g.,

@Override

public String toString() { // in Cylinder class
return "Cylinder: subclass of " + super.toString() // use Circle's toString()
+ " height=" + height;

Try out the toString() method in TestCylinder.

213|Page

7.2 Superclass Person and its subclasses
Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @0override.

Person

-name:5tring
-address:5tring

+Person(name:String,address:String)
+getName():String
+getAddress():String
+setAddress(address:String):void

+toString():5tring e ------------------ "Person[name=?,address=2]"
extends Z%
| |
Student Staff
-program:String -school:5tring
-year:int -pay:double
muceEdoublTe +Staff(name:String,address:String,
+Student(name:String,address:String, school:String,pay:double)
program:String,year:int,fee:double) +getSchool():String
+getProgram() :String +setSchool(school:String):void
+setProgram(program:String):void +getPay() :double
+getYear():int +setPay(pay:double):veoid
+setYear(year:int):void +toString():S5tring «
+getFee():double \

+setFee(fee:double):void

+toString():String e "Staff[Person[name=?,address=?],

. school=?,pay=21"

"Student[Person[name=?,address=2],
program=2? ,year=? fee=2]"

7.3 Point2D and Point3D
Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @0override.

Point2D

-x:float = 8.8F
-y:float = @.0f

+Point2D(x:float,y:float)
+Point2D()

+getX():float
+setX(x:float):void
+get¥():float
+set¥(y:float) :void
+setXY(x:float,y:float) :void _.--"" Array of {x,y}
+getXY():float[2]e------------ -
+toString():String &--------ccocemno-. (%, v)

extends

Point3D
-z:float = @.ef

+Point3D(x:float,y:float,z:float)

+Point3D()

+getZ () :float

+setZ(z:flaot):void
+setXYZ(x:float,y:flaot,z:float) :void _-- Array of {x,y,z}
+getXYZ():float[3] e-------------- -7

+toString() :Stringe------c-ccccecanaaaas- "(x,y,z)"

214|Page

Hints:

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you need to
add a suffix f, e.g. 0. 0f, 1.1f.

2. The instance variables x and y are private in Point2D and cannot be accessed directly in the
subclass Point3D. You need to access via the public getters and setters. For example,

public void setXYZ(float x, float y, float z) {

setX(x); // or super.setX(x), use setter in superclass
setY(y);
this.z = z;

3. The method getXY() shall return a float array:

public float[] getXY() {

float[] result = new float[2]; // construct an array of 2 elements
result[@] = .

result[1] .
return result // return the array

7.4 Point and MovablePoint

Write the classes as shown in the following class diagram. Mark all the overridden methods with
annotation @override.

Point
-x:float = @.08f
-y:float = @.0f
+Point(x:float,y:float)
+Point()

+getX() :float

+setX(x:float) :void

+getY () :float

+set¥(y:float) :void
+setXY(x:float,y:float) :void

+getXY():float[2]

+taString() :String e---ccccmccccamaaaaad " (x,y)"

extends Z%

MovablePoint

-xSpeed:float e.ef
-ySpeed:float e.ef

+MovablePoint (x:float,y:float,
xSpeed:float,ySpeed:float)
+MovablePoint (xSpeed:float, ySpeed:float)
+MovablePoint ()
+getXSpeed() : float
+setXSpeed(xSpeed: float) :void
+getYSpeed() :float ,"(x,y),speed:(xs,ys)“
+setYSpeed(ySpeed: float) :void f
+setSpeed(xSpeed: float,ySpeed: float): Vold’
+getSpeed():float[2]
+toString():Stringe - ---——-------cmmemm - J
+move () :MovablePoint #---------------=-------

X += XSpeed;
/ y += ySpeed;
return this;

215|Page

Hints

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you need to add a

suffix f, e.g. 0.0f, 1.1f.
2. The

instance variables x and y are private in Point and

cannot be accessed directly in the

subclass MovablePoint. You need to access via the public getters and setters. For example, you cannot
write X += XxSpeed, you need to write setX(getX() + xSpeed).

7.5 Superclass Shape and its
subclasses Circle, Rectangle and Square

Shape
-color:5tring = "red"
-filled:boolean = true

+Shape()

+Shape(color:String,filled:boolean)

+getColor():String

+setColor(color:String) :void

+isFilled():boolean

+setFilled(filled:boolean):void

+toString():Stringe-------—-

"Shape[color=?,filled=?]"

extends Z>
|

Circle

-radius:double = 1.0

+Circle()
+Circle(radius:double)
+Circle(radius:double,
color:String,filled:boolean)
+getRadius() :double
+setRadius(radius:double):void
+getArea() :double
+getPerimeter():double
+toString():S‘tring‘w

-
-

"Circle[Shape[color=?,
filled=?],radius=?1"

"Rectangle[Shape[color=7?,

filled=?],width=?,length=?1"

The length and width shall be
set to the same value.

“"Square[Rectangle[Shape[color=?,
filled=?],width=?,length=?]]"

|
Rectangle

-width:double = 1.8
-length:double = 1.8

+Rectangle()
+Rectangle(width:double,
length:double)
+Rectangle(width:double,
length:double, color:String,
filled:boolean)
+getlWidth() :double
+setWidth(width:double) :void
+getlength() :double
+setlength(legnth:double):void
+getArea() :double
+getPerimeter():double
_,,.+toString():String

T

Square

+Square()
+Square(side:double)
+Square(side:double,

I, color:String,filled:boolean)
fﬁ\ +getSide():double

‘\\\ +setSide(side:double):void
\}!+setwidth(side:double):void
ytsetlength(side:double):void

__‘+toString():String

216 |Page

e Write a superclass called Shape (as shown in the class diagram)
e Write a test program to test all the methods defined in Shape.
e Write two subclasses of Shape called Circle and Rectangle, as shown in the class diagram.

e Write a class called Square, as a subclass of Rectangle. Convince yourself that Square can be
modeled as a subclass of Rectangle. Square has no instance variable, but inherits the instance
variables width and length from its superclass Rectangle.

Provide the appropriate constructors (as shown in the class diagram).
Hints:

public Square(double side) {
super(side, side); // Call superclass Rectangle(double, double)

}

. Override the toString() method to return "A Square with side=xxx, which is a subclass of
yyy", where yyy is the output of the toString() method from the superclass.

. Do you need to override the getArea() and getPerimeter()? Try them out.

o Override the setLength() and setWidth() to change both the width and length, so as to maintain

the square geometry.

Exercises on Composition vs Inheritance

7.6 The Point and Line Classes

They are two ways to reuse a class in your applications: composition and inheritance.
Let us begin with composition with the statement "a line composes of two points".

Complete the definition of the following two classes: Point and Line. The class Line composes 2 instances of
class Point, representing the beginning and ending points of the line. Also write test classes
for Point and Line (says TestPoint and TestLine).

The class diagram for composition is as follows (where a diamond-hollow-head arrow pointing to its
constituents):

. 1 2 .

Line & Point

composes

Instead of composition, we can design a Line class using inheritance. Instead of "a line composes of two
points", we can say that "a line is a point extended by another point", as shown in the following class diagram:

Point
superclass
/—?extends
LineSub subclass

217|Page

Let's re-design the Line class (called LineSub) as a subclass of class Point. LineSub inherits the starting point
from its superclass Point, and adds an ending point. Complete the class definition. Write a testing class
called TestLineSub to test LineSub.

Try

There are two approaches that you can design a line, composition or inheritance. "A line composes two
points" or "A line is a point extended with another point"”.
Compare the Line and LineSub designs: Line uses composition and LineSub uses inheritance. Which design

is better?

7.7 The Circle and Cylinder Classes Using Composition

Cylinder 1 Circle
-base:Circle < >————— -radius:double
-height:double composes | —cplor:String

Try
rewriting the Circle-Cylinder of the previous exercise using composition (as shown in the class diagram)

instead of inheritance. That is, "a cylinder is composed of a base circle and a height".

public class Cylinder {
private Circle base; // Base circle, an instance of Circle class
private double height;

// Constructor with default color, radius and height
public Cylinder() {

base = new Circle(); // Call the constructor to construct the Circle
height = 1.0;

Which design (inheritance or composition) is better?

8. Exercises on Polymorphism, Abstract Classes and Interfaces

8.1 Ex: Abstract Superclass Shape and Its Concrete Subclasses

Rewrite the superclass Shape and its subclasses Circle, Rectangle and Square, as shown in the class
diagram.

Shape is an abstract class containing 2 abstract methods: getArea() and getPerimeter(), where its
concrete subclasses must provide its implementation. All instance variables shall have protected access, i.e,
accessible by its subclasses and classes in the same package. Mark all the overridden methods with
annotation @Override.

218|Page

<<abstract>> Shape

#color:String = "red” N # denotes protected access
#filled:Boolean = true
+Shape()

+Shape(color:5tring,filled:boolean)
+getColor():S5tring
+setColor(color:String) :void
+isFilled():boolean
+setFilled(filled:boolean):void
+abstract getArea():double

+abstract getPerimeter():double
+toString():String ®-------c-cmoomooool .

éP extends

"Shape[color=2,filled=2]"

Circle Rectangle
#radius:double = 1.8 #width:double = 1.0
sCircle() #length:double = 1.8
+Circle(radius:double) +Rectangle()
+Circle(radius:double, +Rectangle(width:double, length:double)
color:S5tring,filled:boolean) +Rectangle(width:double,length:double,
+getRadius () :double color:5tring,filled:boolean)
+setRadius(radius:double):void +getWidth() :double
+getArea() :double +setWidth(width:double):void
+getPerimeter() :double +getlength():double
+toString():Stringe +setlength(legnth:double):void
= +gethArea():double
"Circle[Shape[color=2, +getPerimeter():double
filled=2],radius=2]" i L
"Rectangle[Shape[color=2, /! Square

filled=?],width=2,length=2]"
+Square()
+5quare(side:double)
+5quare(side:double,color:String,
filled:boolean)
+getSide():double
+setSide(side:double):void
+setidth(side:double):void
"Square[Rectangle[Shape[color=2, +setlength(side:double) :void
filled=?],width=?,length=?]]" --#+toString():String

In this exercise, Shape shall be defined as an abstract class, which contains:

e Two protected instance variables color(String) and filled(boolean). The protected variables can be
accessed by its subclasses and classes in the same package. They are denoted with a '#' sign in the class

diagram.
e Getter and setter for all the instance variables, and toString().
e Two abstract methods getArea() and getPerimeter() (shown in italics in the class diagram).

The subclasses Circle and Rectangle shall override the abstract methods getArea() and
getPerimeter() and provide the proper implementation. They also override the toString().

Write a test class to test these statements involving polymorphism and explain the outputs. Some statements

may trigger compilation errors. Explain the errors, if any.

Shape s1 = new Circle(5.5, "red", false); // Upcast Circle to Shape

System.out.println(sl); // which version?
System.out.println(sl.getArea()); // which version?
System.out.println(sl.getPerimeter()); // which version?

System.out.println(sl.getColor());

219|Page

System.
System.

Circle

System.
System.
System.
System.
System.
System.

Shape s2

out
out

cl

out
out
out
out
out
out

Shape s3 =

System.
System.
System.
System.
System.

out
out
out
out
out

= (Circle)si;

.println(sl.isFilled());
.println(sl.getRadius());

.println(cl);
.println(cl.getArea());
.println(cl.getPerimeter());
.println(cl.getColor());
.println(cl.isFilled());
.println(cl.getRadius());

new Shape();

new Rectangle(1.0, 2.0, "red", false);
.println(s3);

.println(s3.getArea());
.println(s3.getPerimeter());
.println(s3.getColor());
.println(s3.getLength());

Rectangle rl = (Rectangle)s3; // downcast

System
System
System
System

.out.
.out.
.out.

.out

Shape s4 =

System
System
System
System

// Take note that we downcast Shape s4 to Rectangle,

.out.

.out

.out.
.out.

println(rl);
println(ril.getArea());
println(rl.getColor());
.println(rl.getLength());

new Square(6.6); // Upcast
println(s4);
.println(s4.getArea());
println(s4.getColor());
println(s4.getSide());

// Downcast back to Circle

// Upcast

// which is a superclass of Square, instead of Square
Rectangle r2 = (Rectangle)s4;

System.
System.
System.
System.
System.

out
out
out
out
out

.println(r2);
.println(r2.getArea());
.println(r2.getColor());
.println(r2.getSide());
.println(r2.getLength());

// Downcast Rectangle r2 to Square

Square

System.
System.
System.
System.
System.

Try

sql
out
out
out
out
out

= (Square)r2;
.println(sql);
.println(sql.getArea());
.println(sql.getColor());
.println(sql.getSide());
.println(sql.getLength());

Explain the usage of the abstract method and abstract class?

220|Page

8.2 GeometricObject Interface and its Implementation
Classes Circle and Rectangle

Write an interface called GeometricObject, which contains 2 abstract methods: getArea() and
getPerimeter(), as shown in the class diagram. Also write an implementation class called Circle. Mark all
the overridden methods with annotation @0verride.

Geometricobject
<<interface>>

+getArea():double
+getPerimeter():double

__) implements
Circle Rectangle

-radius:double -width:double

5 . -length:double
+Circle(radius:double)
+tostring():String e +Rectangle(width:double,length:double)
+getArea():double +toString():String e _
+getPerimeter():doubI§ +getArea() :double “\‘

X +getPerimeter():double ~-_
"Circle[radius=r]" "Rectangle[width=?,length=?]"

8.3 Ex: Movable Interface and its Implementation MovablePoint Class

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(), moveleft() and
moveRight (), as shown in the class diagram. Also write an implementation class called MovablePoint. Mark
all the overridden methods with annotation @0verride.

Movable
<<interfaces>>

+movelp():void

+moveDown() :void
+moveleft():void
+moveRight():void

#--------oo- abstract methods

¢ implements
MovablePoint

~x:int

~y:int ®----------1-1 ~ denotes package access
~xSpeed:int

~ySpeed:int

- M(x speed=(x "
+MovablePoint(x:int,y:int, -1 (6, ¥) sp G v

xSpeed:int,ySpeed:int)
+toString() :Stringe””

. movelp: y -= ySpeed
:::::gzizi;?::id moveDown: vy += ySpeed
. L e n moveleft: x -= xSpeed

+moveleft():void

+moveRight () :void moveRight: x += xSpeed

221|Page

8.4 Movable Interface and Classes MovablePoint and MovableCircle

Write an interface called Movable, which contains 4 abstract methods moveUp(), moveDown(),
moveLeft() and moveRight(), as shown in the class diagram. Also write the implementation classes
called MovablePoint and MovableCircle. Mark all the overridden methods with annotation @Override.

<<interface»> Movable

+movelp():void
+moveDown() : void
+moveleft():void
+moveRight() :void

implements Z>

MovablePoint MovableCircle

~x:int 1 -radius:int
~y:int —— <> -center:MovablePoint
~xSpeed:int composes

+MovableCircle(x:int,y:int

~ySpeed:int xSpeed:int,ySpeed:int,

+MovablePoint (x:int,y:int, radius:int)
xSpeed:int,ySpeed:int) +toString():Stringe

+toString():String 4 +movelp() :void H
+movelp() :void x +moveDown() : void \
+moveDown() : void \ +moveleft():void .
+moveleft():void g +moveRight() :void %
+moveRight():void x x

\\\ |‘.

"(x,y),speed=(x,y)" "(x,y),speed=(x,y),radius=2?"

8.5 Interfaces Resizable and GeometricObject

GeometricObject
<<interface>>

+getPerimeter():double
+getArea() :double

JA
Circle = = oo
#radius:double P # for protected
+Circle(radius:double)
R s+toString():String
! +getPerimeter():double Resizable
! +getArea():double <<interface>>
' ﬁx +resize(percent:int):void
]
]
: ResizableCircle Z>
1 ———— . . . e e e e e e e e I
i +ResizableCircle(radius:double)
| -e+toString():String
i +resize(percent:int):voide------- radius *= percent/100.0

R ResizableCircle[Circle[radius=?1]]

————————— Circle[radius=7?]

Write the interface called GeometricObject, which declares two abstract methods: getParameter()

222 |Page

and getArea(), as specified in the class diagram.

Hints:

public interface GeometricObject {
public double getPerimeter();

Write the implementation class Circle, with a protected variable radius, which implements the
interface GeometricObject.

Hints:

public class Circle implements GeometricObject {
// Private variable

// Implement methods defined in the interface GeometricObject
@Override
public double getPerimeter() { }

Write a test program called TestCircle to test the methods defined in Circle.

The class ResizableCircle is defined as a subclass of the class Circle, which also implements an interface
called Resizable, as shown in class diagram. The interface Resizable declares
an abstract method resize(), which modifies the dimension (such as radius) by the given percentage.
Write the interface Resizable and the class ResizableCircle.

Hints:

public interface Resizable {
public double resize(...);

}

public class ResizableCircle extends Circle implements Resizeable {

// Constructor
public ResizableCircle(double radius) {
super(...);

}

// Implement methods defined in the interface Resizable
@Override

public double resize(int percent) { }

223|Page

Try

Write a test program called TestResizableCircle to test the methods defined in ResizableCircle.

8.6 Abstract Superclass Animal and its Implementation Subclasses

Write the codes for all the classes shown in the class diagram. Mark all the overridden methods with
annotation @Override.

Animal
<<abstracts>>

-name :5tring

+Animal (name:5tring)

+greets():void ®--------- abstract
[|
Cat Dog
+Cat(name:String) +Dog(name:String)
+greets():voidﬁ +greets():void ¢---------------- Print "Woof™
y +greets(another:Dog) :void .
Print "Meow" Z% Print "Woooof

BigDog

+BigDog(name:5tring) .
+greets():voide----"""""""

+greets(another:Dog):void e __ . " "
+gr‘e-.=_t5(iamt;nlther:BigD-::g):\..foidt:‘ipl'"l"JC Woooooow

2l

Print "Wooow"

' Print "Wooooooooow"

8.7 Another View of Abstract Superclass Animal and its
Implementation Subclasses

Examine the following codes and draw the class diagram.

abstract public class Animal {
abstract public void greeting();

}

public class Cat extends Animal {
@Override
public void greeting() {
System.out.println("Meow!");

}

224|Page

public class Dog extends Animal {
@Override
public void greeting() {

System.out.println("Woof!");

}

public void greeting(Dog another) {
System.out.println("Woooooooooof!");

}
}

public class BigDog extends Dog {
@0override
public void greeting() {

System.out.println("Woow!");

}

@0override

public void greeting(Dog another) {
System.out.println("Woooooowwwww!");

}

Try

Explain the outputs (or error) for the following test program.

public class TestAnimal {

public static void main(String[] args) {

// Using the subclasses
Cat catl = new Cat();
catl.greeting();

Dog dogl = new Dog();
dogl.greeting();

BigDog bigDogl = new BigDog();

bigDogl.greeting();

// Using Polymorphism
Animal animall = new Cat();
animall.greeting();

Animal animal2 = new Dog();
animal2.greeting();

Animal animal3 = new BigDog();

animal3.greeting();

Animal animal4 = new Animal();

// Downcast
Dog dog2 = (Dog)animal2;

BigDog bigDog2 = (BigDog)animal3;

Dog dog3 = (Dog)animal3;
Cat cat2 = (Cat)animal2;
dog2.greeting(dog3);
dog3.greeting(dog2);
dog2.greeting(bigDog2);
bigDog2.greeting(dog2);
bigDog2.greeting(bigbogl);

225|Page

8.8 Interface Movable and its subclasses MovablePoint &
MovableCircle

Suppose that we have a set of objects with some common behaviors: they could move up, down, left or right.
The exact behaviors (such as how to move and how far to move) depend on the objects themselves. One
common way to model these common behaviors is to define an interface called Movable,
with abstract methods moveUp (), moveDown (), moveLeft() and moveRight(). The classes that implement
the Movable interface will provide actual implementation to these abstract methods.

Let's write two concrete classes - MovablePoint and MovableCircle - that implement the Movable interface.
<<interface>> Movable

+movelp() :void
+moveDown() : void
+moveleft():void
+moveRight():void
implements Z>

s

MovablePoint MovableCircle

~x:int 1 -radius:int
~yrint > -center:MovablePoint
~xSpeed:int COMPOSES | iMovableCircle(x:int,y:int
~ySpeed:int xSpeed:int,ySpeed:int,
+MovablePoint(x:int,y:int, radius:int)
xSpeed:int,ySpeed:int) +toString():String
+toString():String +moveUp() :void
+movelp():void +moveDown() : void
+moveDown() : void +moveleft():void
+moveleft():void +moveRight():void

+moveRight():void

Write a test program and try out these statements:

Movable ml = new MovablePoint(5, 6, 10, 15); // upcast
System.out.println(ml);

ml.moveLeft();

System.out.println(ml);

Movable m2 = new MovableCircle(1, 2, 3, 4, 20); // upcast
System.out.println(m2);

m2.moveRight();

System.out.println(m2);

Write a new class called MovableRectangle, which composes two MovablePoints (representing the top-left

and bottom-right corners) and implementing the Movable Interface. Make sure that the two points has the
same speed.

226 |Page

<<interface>>
Movable

implements /—f.l
]

MovablePoint 9 MovableRectangle

——— <> -toplLeft:MovablePoint
COMPOSES | _pottomRight:MovablePoint

+MovableRectangle(x1:int,
yl:int,x2:int,y2:int
xSpeed:int,ySpeed:int)
+toString():String
+movelp() :void
+moveDown() : void
+moveleft():void
+moveRight():void

Try
Develop classes that shows the difference between an interface and an abstract class

9. Exercises on Exception Handling

9.1 Usage of the try and catch and finally block.

In this example, we are implementing try and catch block to handle the exception. The error code written is in
try block and catch block handles the raised exception. The finally block will be executed on every condition.

Hints:

class ExceptionTest{
public static void main(String[] args){
int a = 40, b = 4, c = 4;
int result;
try{

}
catch (...){

result = a / (b-c);

ooy

}
finally{

}

cees
System.out.println("Result: "+result);

227|Page

Try

Experiment
e A scenario where NumberFormatException occurs
e A scenario where NullPointerException occurs
e A scenario where ArraylndexOutOfBoundsException occurs

9.2 Multiple catch block using command line argument

The catch block is used to handle the exception which is raised in try block. A single try block may contain
more than one catch block. Below example shows how to use to multiple catch block.

Hints:

class Check_Exception{
public static void main(String[] args){

try{
int a = ...}
int b = ...}
int ¢ = a / b;
System.out.println("Result: "+c);
¥
catch (...){
}
catch(...){
¥
catch(NumberFormatException ne){
}
finally{
}

9.3 Java throw Keyword

Create a validate method that takes integer value (age) as a parameter. If the age is less than 18, we are
throwing the ArithmeticException otherwise print a message welcome to vote.

Hints
The syntax of the Java throw keyword is given below.
throw new exception_class("error message");

Example:
throw new IOException("sorry device error");

228 |Page

Try
Implement both unchecked and checked exceptions using throw keyword

9.4 Java throws keyword

The throws keyword can be used to declare multiple exceptions, separated by a comma. Whichever exception
occurs, if matched with the declared ones, is thrown automatically then. Write Java code that demonstrates the
working of throws keyword in exception handling.

Hints

Syntax:
return_type method_name() throws exception_class_namef{
//method code

Advantages:
1. Checked Exception can be propagated (forwarded in call stack).
2. It provides information to the caller of the method about the exception.

9.5 Chained Exceptions

Java allows relating one exception with another exception. i.e. one exception describes the cause of another
exception. Write a program to explain the chained exception in Java.

9.6 Custom Exceptions

In Java, we can create our own exceptions that are derived classes of the Exception class. Creating our own
Exception is known as custom exception or user-defined exception. Basically, Java custom exceptions are used
to customize the exception according to user need.

Following are few of the reasons to use custom exceptions:

e To catch and provide specific treatment to a subset of existing Java exceptions.
e Business logic exceptions: These are the exceptions related to business logic and workflow. It is useful
for the application users or the developers to understand the exact problem.

In order to create custom exception, we need to extend Exception class that belongs to java.lang package.
Develop a java program to implement custom exeptions

// class representing custom exception
class InvalidAgeException extends Exception

{
public InvalidAgeException (String str)

{

// calling the constructor of parent Exception
super(str);

}

229|Page

// class that uses custom exception InvalidAgeException

// main method

10. Exercises on File Handling

10.1 Reading text file

Consider a text file abc.txt that contains data. Now your task is to extract the content of the file and display it

Hints:

1. Your program should accept the path to the text file as a command-line argument.

2. Implement proper error handling to account for file-related exceptions.

3. Design and implement a function/method for reading and displaying the content of the text file.

10.2 Reading file content line by line

The file file.txt is a text file that contains a list of names. Each line in the file contains a single name. The names
in the file are separated by newline characters.

Write a Java program to read the content of the file file.txt line by line. For each line, print the line to the
console.

Hints:

1. Create a BufferedReader object to read the file file.txt.
2. Use a while loop to read each line from the file.

3. For each line, print the line to the console.

10.3 Appending data to an existing file.

Develop a program that allows users to add new content to an already existing file. This problem aims to
assess your understanding of file handling, proper exception management, and effective modification of file
content.

Hints
1. Create a Java program that accepts the following inputs from the user:
The path to the existing text file.
The new content that the user wants to append to the file.
2. Open the existing file and append the provided content to it.
3. Implement appropriate error handling to manage exceptions during file operations.
4. After appending the data, display a confirmation message to the user.

10.4 Reading first 4 lines from a text file

Your task is to develop java program that reads and displays the first four lines of a text file.

Hints

1. Take the path to the text file as a command-line argument.

2. Implement error handling to address potential file-related exceptions.

3. Design a function/method that reads and displays the first four lines of the text file.

230|Page

10.5 Copy the content of one file to another file

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many classes related
to byte streams but the most frequently used classes are, FileInputStream and FileOutputStream. Develop java
code to copy the content of one file to another.

TRY
Implement the same using Character Streams like FileReader and FileWriter.

10.6 List files and Directories

Write a Java program to get a list of all file/directory names in the given directory.

TRY

1. Check if a file or directory specified by pathname exists or not.
2. Get specific files with extensions from a specified folder.

3. Check if a file or directory has read and write permissions.

11. Exercises on Multithreading

11.1 Concurrent Thread Increment

Create and Start Multiple Threads - Write a Java program to create and start multiple threads that increment a
shared counter variable concurrently.

Hints
1. First, define a "Counter" class that represents a shared counter variable. It has a synchronized increment()
method that increments the counter variable by one.

2. Next define an "IncrementThread" class that extends Thread. Each IncrementThread instance increments
the shared counter by a specified number of increments.

3. In the Main class, we create a 'Counter' object, specify the number of threads and increments per thread,
and create an array of ‘IncrementThread' objects. We then iterate over the array, creating and starting each
thread.

4. After starting all the threads, we use the join() method to wait for each thread to finish before proceeding.
After all threads have finished, we print the shared counter's final count.

11.2 wait() and notify() for Thread Synchronization

Write a Java program to create a producer-consumer scenario using the wait() and notify() methods for thread
synchronization.

Hints
1. The "Producer" class implements the Runnable interface and represents the producer thread. It
continuously produces items by adding values to the shared buffer. When the buffer is full, the producer
waits until the consumer consumes an item and notifies it.

2. The "Consumer" class also implements the Runnable interface and represents the consumer thread. It
continuously consumes items by removing values from the shared buffer. As soon as the buffer is empty,
the consumer uses the wait() method to wait until a new item is produced by the producer.

3. In the main() method, we create instances of the Producer and Consumer classes as separate threads and

231|Page

start them concurrently.

11.3 Synchronizing Threads with Reentrant for Shared Resource

A reentrant mutual exclusion Lock with the same basic behavior and semantics as the implicit monitor lock
accessed using synchronized methods and statements, but with extended capabilities.

A ReentrantLock is owned by the thread last successfully locking, but not yet unlocking it. A thread invoking
lock will return, successfully acquiring the lock, when the lock is not owned by another thread. The method will
return immediately if the current thread already owns the lock. This can be checked using methods
isHeldByCurrentThread(), and getHoldCounty().

Write a Java program that uses the ReentrantLock class to synchronize access to a shared resource among
multiple threads.

11.4 Thread Synchronization with Semaphores

In computer science, a semaphore is a variable or abstract data type used to control access to a common
resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking
operating system. Semaphores are a type of synchronization primitive.

Write a Java program to demonstrate Semaphore usage for thread synchronization.

11.5 Concurrent Read-Wtrite Access with ReadWtriteLock

A ReadWriteLock maintains a pair of associated locks, one for read-only operations and one for writing. The
read lock may be held simultaneously by multiple reader threads, so long as there are no writers. The write lock
is exclusive.

All ReadWriteLock implementations must guarantee that the memory synchronization effects of writeLock
operations (as specified in the Lock interface) also hold with respect to the associated readLock. That is, a
thread successfully acquiring the read lock will see all updates made upon previous release of the write lock.

A read-write lock allows for a greater level of concurrency in accessing shared data than that permitted by a
mutual exclusion lock. It exploits the fact that while only a single thread at a time (a writer thread) can modify
the shared data, in many cases any number of threads can concurrently read the data (hence reader threads).
In theory, the increase in concurrency permitted by the use of a read-write lock will lead to performance
improvements over the use of a mutual exclusion lock. In practice this increase in concurrency will only be fully
realized on a multi-processor, and then only if the access patterns for the shared data are suitable.

Write a Java program to illustrate the usage of the ReadWriteLock interface for concurrent read-write access to
a shared resource.

12. JDBC Programming

12.1 Database Connection and Query

Create a Java program that establishes a connection to a database using JDBC. You are required to perform a
basic SQL query to retrieve information from a table and display the results.

232|Page

Hints

1. Set up a local database (e.g., MySQL) with a sample table.

2. Develop a Java program that establishes a JDBC connection to the database.
3. Write an SQL query to retrieve specific information from the table.

4. Execute the query and display the results in a readable format.

5. Handle any potential exceptions that may occur during database operations.

12.2 Prepared Statements and Parameterized Queries

Design a Java program that utilizes prepared statements for executing parameterized queries. Your program
should demonstrate the use of placeholders to execute safe and efficient database operations.

Hints

Modify the previous program to use prepared statements for SQL queries.
Implement parameterized queries by using placeholders for dynamic values.
Allow the user to input values for the query parameters.

Execute the prepared statement and display the results.

M=

12.3 Transaction Management

Develop a Java program that demonstrates the concept of transaction management in JDBC. Your program
should include operations that simulate a transaction, with both successful and failed cases.

Hints
1. Create a sample database table suitable for transaction simulation.
2. Implement a transaction that involves multiple SQL statements.
3. Perform operations that simulate a successful transaction.
4. Perform operations that simulate a failed transaction (e.g., due to an error or violation).
5. Handle transaction rollbacks and commits accordingly.

12.4 Inserting Multiple Records

Design a Java program that showcases batch processing using JDBC. Your program should allow the insertion
of multiple records into a database table in a single operation.

Hints

1. Create a suitable database table for record insertion.

2. Develop a Java program that inserts multiple records into the table.
4. Allow the user to input data for multiple records.

5. Use JDBC techniques to efficiently insert records in a single operation.

12.5 ResultSet and Data Retrieval

Create a Java program that focuses on retrieving and processing data from a database using JDBC's ResultSet.
Your program should demonstrate the fetching and manipulation of data retrieved from a database table.

Hints

1. Set up a database table with relevant sample data.

2. Develop a Java program that connects to the database and retrieves data using a SQL query.
3. Process and manipulate the retrieved data using the ResultSet interface.

4. Display the processed data in a clear and organized manner.

233|Page

13. AWT GUI Applications

13.1 AWTCounter

Frame «—& | o] AWT Counter (/G0 [IES
(Top-Level Container)
Counter |18 { Count]

A

Label TextField Button
(Component) (Component) (Component)
Source of ActionEvent

Write an AWT GUI application (called AWTCounter) as shown in the Figure. Each time the "Count" button is
clicked, the counter value shall increase by 1.

The program has three components:

1. a java.awt.Label "Counter”;
2. anon-editable java.awt.TextField to display the counter value; and
3. a java.awt.Button "Count".

The components are placed inside the top-level AWT container java.awt.Frame, arranged in FlowLayout.
You have to use control-c, or "close" the CMD shell, or hit the "terminate" button on Eclipse's Console to
terminate the program. This is because the program does not process the WindowEvent fired by the "window-
close" button.

Try
(£ | AWT Counter = IEI S:g =] AWT Factorial @Eﬂ

Counter ©8 CounanwnI ‘ ‘ n B factorialin) 1 Hext

1. Modify the program (called AWTCounterDown) to count down, with an initial value of 88, as shown.
2. Modify the program (called AWTFactorial) to display n and factorial of n, as shown. Clicking the "Next"
button shall increase n by 1. n shall begin at 1.

234|Page

13.2 AWTAccumulator

Frame «— gj AWT Accumulator - O X
(Top-Level Container) il
GridlLayout 2x2 Enter an Integer:
i
| 423
The Accumulated Sum is: / \

Label TextField TextField
(Component) (Component) (Component)
Source of ActionEvent non-editable

Write an AWT GUI application called AWTAccumulator, which has four components:
1. a java.awt.Label "Enter an integer and press enter";
2. aninput java.awt.TextField;
3. ajava.awt.Label "The accumulated sum is", and
4. a protected (read-only) java.awt.TextField for displaying the accumulated sum.

The four GUI components are placed inside a container java.awt.Frame, arranged in GridLayout of 2 rows 2

columns. The program shall accumulate the numbers entered into the input TextField, and display the
accumulated sum on the display TextField.

Try

|£ | AWT Accumulator LE'M |£: | AWT Factorial [E!M

Enter an integer 8l Enter a positive integer 5

Accumulated sumis 10 Factorial is 120

1. Modify the program (called AWTAccumulatorLabel) to display the sum using a Label instead of a
protected TextField, as shown (using FlowLayout).

2. Modify the program (called AWTFactorialTextField) to display the factorial of the input number, as
shown (using FlowLayout).

235|Page

13.3 AWTAccumulatorApplet (Obsolete)

r| | “.,\, ;';" - I — @
|Oanawr... |4/ Google »
A simple applet which accumulates the number entered

into a TextField and displays the accumulated sum on the
status bar }

Enter an integer | e > Applet

|
| i
L

|
The accumulated sumis: 8 5::! Status Bar

NOTE: Most browsers today do not support Java applets anymore. Keep this section for nostalgia.

An Java applet is a graphics program run inside a browser.
Write a Java applet (called AWTAccumulatorApplet) which contains:

1. alabel "Enter an integer:",
2. aTextField for user to enter a number.

3. The applet shall accumulate all the integers entered and show it on the status bar of the browser's
window.
Note:

e An applet extends from java.applet.Applet, whereas a standalone GUI application extends
from java.awt.Frame. You cannot setTitle() and setSize() on Applet.

e Applet uses init() to create the GUI, while standalone GUI application uses the constructor (invoked
inmain()).

HTML codes: AWTAccumulatorApplet.html

Applet runs inside a web browser. A separate HTML script (says AWTAccumulatorApplet.html) is required,
which uses an <applet> tag to embed the applet

Try

1. Modify the applet to run the "Counter" application (as in AWTCounter).
2. Modify the applet to run the "Factorial" application (as in AWTFactorial).

13.4 WindowEvent and WindowListener
Modify the AWTCounter program (called AWTCounterWithClose) to process the "Window-Close" button.

236|Page

14. Swing GUI Applications
14.1 Converting from AWT to Swing

Convert all the previous AWT exercises (AWTCounter, AWTAccumulator, AWTFactorial, etc) to Swing
applications (called SwingCounter, SwingAccumulator, SwingFactorial, etc.).

Notes:

e Swing Components are kept in package javax.swing. They begin with a prefix "J"
e.g., JButton, JLabel, JFrame.

e Swing Components are to be added onto the ContentPane of the top-level container JFrame. You can
retrieve the ContentPane via method getContentPane() from a JFrame.

Container cp = getContentPane(); // of JFrame
cp.setLayout(......);
cp.add(......);

rlii Swing Counter | =g m

Counter 8 | Count

14.2 SWingAdder
Write a Swing application called SwingAdder as shown. The "ADD" button adds the two integers and display
the result. The "CLEAR" button shall clear all the text fields.

&y Swing Adder — [X
First Number 123
Second Number 1
Result 124

ADD CLEAR

Hints: Set the content-pane to 4x2 GridLayout. The components are added from left-to-right, top-to-bottom.

Try

Modify the above exercise (called SwingArithmetics) to include buttons "+, "-", "*", "/" "%" (remainder) and
"CLEAR" as shown.

237|Page

First Humber

Second Number

Result

%] Swing Arithmetics b=} i

|
123

321

394B3

CLEAR

14.3 SwingTemperatureConverter

|# | Temperature Converter l—ﬂ: W=l

Celsius: 37.5
Fahrenheit: 98.5

Write a GUI program called SwingTemperatureConverter to convert temperature values between Celsius and

Fahrenheit. User can enter either the Celsius or the Fahrenheit value, in floating-point number.

Hints

To display a floating-point number in a specific format (e.g., 1 decimal place), use
the static method String.format(), which has the same form as printf(). For

example, String.format("%.1f", 1.234) returns String "1.2".

14.4 SwingCurrencyConverter

|£5 Currency Converter

Singapore Dollars
S Dollars

Euros

100

70.92

65.00

Write a simple currency converter, as shown in the figure. User can enter the amount of "Singapore Dollars",
"US Dollars", or "Euros", in floating-point number. The converted values shall be displayed to 2 decimal places.
Assume that 1 USD = 1.41 SGD, 1 USD = 0.92 Euro, 1 SGD = 0.65 Euro.

238|Page

14.5 SwingNumberGuess

r&] Guess Number EMw
The Number is | i Generate
Enter your guess | BEII Try Lower
. o

Write a number guessing game in Swing (as shown in the Figure). The program shall generate a random
number between 1 to 100. It shall mask out the random number generated and output "Yot Got it", "Try
Higher" or "Try Lower" depending on the user’s input.

Hints

e You can use Math.random() to generate a random number in double in the range of [0.0, 1.0).

14.6 SwingPhoneApp

~ N[1
|£) Phone App = | B , DX |£: | Phone App @m
18001112222 | | [18001112222
1 2 3 1 2 3
4 5 6 4 5 6
7 8 a 7 8 g
CLEAR 0 CALL CLEAR 0 HANG UP
\ -

Write a Software Phone App using Java Swing as illustrated in the figure. The user enters the phone number
and pushes the "CALL" button to start a phone call. Once the call is started, the label of the "CALL" button
changes to "HANG UP". When the user hangs up, the display is cleared.

Assume that the following 2 methods are available for handling phone call:

public void call(String phoneNumber); // to make a phone call with the phoneNumber
public void hangup(); // to terminate the existing call

Hints

e Use a 10-element JButton array to hold the 10 numeric buttons. Construct a common instance of a named
inner class as the ActionListener for the 10 numeric buttons.
e Use a boolean flag (says isCalling) to keep track of the status.

239|Page

14.7 SwingCalculator

7

|£: | Swing Calculator l@;@&
ol [ITextField
‘|5 (at BorderLayout .NORTH)

- 8 a -
| 4 5 6 |
’ . JPanel in GridLayout(4,4)
- : . i ‘ (at BorderLayout .CENTER)
| ¢ 0 - I

Content-Pane in BorderlLayout

Implement a simple calculator (called SwingCalculator) as shown.

Hints

e Set the ContentPane to BorderLayout. Add a JTextField (tfDisplay) to the NORHT. Add
a JPanel (panelButtons) to the CENTER. Set the JPanel to GridLayout of 4x4, and add the 16 buttons.

e All the number buttons can share the same listener as they can be processed with the same codes.
Use event.getActionCommand() to get the label of the button that fires the event.

e The operator buttons "+", "-", "*", "/", "%" and "=" can share a common listener.

e Use an anonymous inner class for "C" button.

e You need to keep track of the previous operator. For example in "1 + 2 =", the current operator is "=",

while the previous operator is "+". Perform the operation specified by the previous operator.

14.8 SwingLoginPanel

£» Login = = -

T 2 1 5 4

8 0 3 9

T —

A Java Swing application has a login page as shown in the Figure. Users are required to enter the correct
passcode to start the application. The system uses a scramble keypad with a randomly allocated set of
numbers from 0 to 9. The display shall show "Enter passcode” initially, and show an asterisk (*) for each
number entered. Upon pushing the "Enter" button, the system verifies the passcode. If the passcode is correct,
the system invokes a method called startApp() to start the application. Otherwise, it displays "Wrong
passcode”. The "Clear" button shall clear the display.

Assume that the following methods are available:

public String getPasscode(); // return the passcode
public void startApp(); // Start the application
public void shuffleArray(int[] array)

// Shuffle (Randomize) the given int array, e.g.,

// int[] numbers = {1, 2, 3, 4, 5};

// shuffleArray(numbers); // randomize the elements

240|Page

14.9 SwinglLocR

e |I::} Possible Display

CLOSE

1 2 3 KKK KKK
WEONG PIN

4 5 B OFPEN

7 8 9

CLEAR 0 Enter
|

Write a Java Swing application for an electronic lock as shown in the figure. The display shall show the state of
either "CLOSE" or "OPEN". In the "CLOSE" state, the user types his PIN followed by the "Enter" key to unlock
the system.

The display shall show an asterisk (*) for each number entered. The display shall show "WRONG PIN" if the PIN
is incorrect. The "Clear" button clears the number entered (if any), locks the system and sets the display to
"CLOSE".

Assume that the following methods are available:

public boolean checkPIN(String PIN); // return true for correct PIN
public void unlock(); // Unlock the system
public void lock(); // Lock the system

Hints

e Use a 10-element JButton array to hold the 10 numberic buttons. Construct a common instance of a
named inner class as their ActionListener.
e Use a boolean flag (says isLocked) to keep track of the status.

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The problems
in this tutorial are certainly NOT challenging.

There are tens of thousands of challenging problems available — used in training for various programming
contests (such as International Collegiate Programming Contest (ICPC), International Olympiad in Informatics
(101)). Check out these sites:

e The ACM - ICPC International collegiate programming contest (https://icpc.global/)

e The Topcoder Open (TCO) annual programming and design contest (https://www.topcoder.com/)

e Universidad de Valladolid's online judge (https://uva.onlinejudge.org/).

e Peking University’'s online judge (http://poj.org/).

e USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

e Google's coding competitions (https://codingcompetitions.withgoogle.com/codejam,
https://codingcompetitions.withgoogle.com/hashcode)

e The ICFP programming contest (https://www.icfpconference.org/)

241|Page

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/

BME International 24-hours programming contest (https://www.challenge24.org/)
The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

Internet Problem Solving Contest (https://ipsc.ksp.sk/)

Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)
Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)
OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

Name of the contest Minimum number of problems to solve
CodeChef 20
Leetcode 20
GeeksforGeeks 20
SPO)J 5
InterviewBit 10
Hackerrank 25
Codeforces 10
BuildIT 50

Total score need to obtain

Student must have any one of the following certifications:

PR Lo

PO

=

HackerRank — Java Basic Skills Certification

Oracle Certified Associate Java Programmer OCAJP
CodeChef - Learn Java Certification

NPTEL — Programming in Java

NPTEL — Data Structures and Algorithms in Java

Required score
200
200
200
50
1000
250
100
500
2500

Schildt, Herbert. Java: The Complete Reference 11" Edition, McGraw-Hill Education, 2018.

Deitel, Paul and Deitel, Harvey. Java: How to Program, Pearson, 11" Edition, 2018.

Evans, Benjamin J. and Flanagan, David. Java in a Nutshell, O’Reilly Media, 7" Edition, 2018.

Bloch, Joshua. Effective Java, Addison-Wesley Professional, 3™ Edition, 2017.

Sierra, Kathy and Bates, Bert. Head First Java, O’Reilly Media, 2" Edition, 2005
Farrell, Joyce.Java Programming, Cengage Learning B S Publishers, 8" Edition, 2020

https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

Syllabus
Lab manual

242 |Page

https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/
https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

ADVANCED PYTHON PROGRAMMING LABORATORY

111 Semester: Common for CSE / CSE (AI&ML) / CSE (DS), IT, CSIT

Course Code Category Hours / Week Credits Maximum Marks
ACSC11 Foundation L TP C |CIA| SEE | Total
0 1 2 2 30 70 100
Contact Classes: Nil Tutorial Classes: 15 Practical Classes: 30 Total Classes: 45

Prerequisites: There are no prerequisites to take this course.

I. COURSE OVERVIEW:
The course aims to focuses on providing practical experience and in-depth knowledge of advanced topics and
techniques in python programming. The course is designed to build the core concepts of python programming and
extend skills to more complex and sophisticated applications. It emphasizes students to become proficient in advanced
python programming techniques.

Il. COURSE OBJECTIVES
The students will try to learn:

. Advanced python applications using complex data structures and understanding of object-oriented programming
principles effectively in real-world applications.

I1. Concepts of exception and file handling and be able to apply them effectively in their programming projects,
ensuring robust and error-tolerant software.

I11. Efficient, responsive, and robust multi-threaded applications in Python to improve the performance.

IV. Data manipulation libraries such as NumPy, Pandas, and Matplotlib for data analysis and visualization.

I11. COURSE OUTCOMES:
At the end of the course students should be able to:

Cco1

CoO2

CO3

CoO4

CO5

CO6

Develop a basic understanding of advanced python concepts, syntax, and feature for solving complex
problems.

Develop proficiency in using various python libraries and frameworks for specific tasks, for data
manipulation, visualization and web development.

Implement robust error handling using exception mechanisms and advanced file handling techniques to
ensure code reliability.

Demonstrate multi-threaded applications using python's threading and multiprocessing modules to
understand the challenges of concurrent programming.

Gain experience in working with databases using Python's database APl and learn to interact with relational
databases.

Design and implement graphical user interfaces (GUIs) using Python GUI libraries to develop interactive
applications with event-driven programming.

243|Page

IV. COURSE CONTENT:

EXERCISES FOR ADVANCED PYTHON PROGRAMING LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory
practice sessions.

1. Getting Started Exercises

1.1 Valid Anagram

Given two strings s and t, return true if t s an anagram of s, and false otherwise.

An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically
using all the original letters exactly once.

Example 1:
Input: s = "anagram”, t = "nagaram”
Output: true

Example 2:
Input: s = "rat", t = "car
Output: false

Hints:

class Solution {
public:
bool isAnagram(string s, string t)

{

}
1

#Write the code here

Try
1. Take input: s = "gram", t = "garam" and verify your results.
2. Take input: s = "bat", t = "cat" and verify your results.

1.2 The Climbing Stairs Puzzle

Imagine a staircase with n steps. As you are climbing up this staircase, you either climb one or two steps at a
time. The aim of this computing puzzle is to find out, using an algorithm, in how many distinct ways can you
climb to the top?

Hints:

#The climbing stairs puzzle

def countWays(n):

#Write the code here

steps = 10

ways = countWays(steps)

print("There are " + str(ways) + " distinct ways to climb a staircase of " + str(steps) +
" steps when climbing up one or two steps at a time.")

244|Page

Try
1. Take number of steps=15 and verify your results.
2. Take number of steps=50 and verify your results.

1.3 Longest Palindrome

Given a string s which consists of lowercase or uppercase letters, return the length of the longest palindrome
that can be built with those letters.
Letters are case sensitive, for example, "Aa" is not considered a palindrome here.

Example 1:

Input: s = "abcccedd”

Output: 7

Explanation: One longest palindrome that can be built is "dccaccd”, whose length is 7.

Example 2:
Input: s = "a"
Output: 1

Explanation: The longest palindrome that can be built is "a", whose length is 1.

Hints:
class Solution {

public:
int longestPalindrome(string s) {
#Write the code here

}s
Try

1. Take input s= "112322111223" and verify the results.
2. Take input s= "xxyyxx" and verify the results.

1.4 Coin Change

You are given an integer array coins representing coins of different denominations and an integer amount
representing a total amount of money.

Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be
made up by any combination of the coins, return -1.

You may assume that you have an infinite number of each kind of coin.
Example 1:

Input: coins = [1, 2, 5], amount = 11

Output: 3

Explanation: 11 =5+ 5 + 1

Example 2:
Input: coins = [2], amount = 3
Output: -1

Example 3:
Input: coins = [1], amount = 0

Output: 0

245|Page

Hints:
class Solution(object):
def coinChange(self, coins, amount):

write the code here

Try
1. Take input: coins = [3, 2, 2] and verify the results
2. Take input: coins = [1, 1, 1] and verify the results

1.5 Rotting Oranges

You are given an m x n grid where each cell can have one of three values:
e 0 representing an empty cell,

e 1 representing a fresh orange, or
e 2 representing a rotten orange.

Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible,
return -1.

Example 1:

Input: grid = [[2, 1, 1], [0, 1, 1], [1, O, 1]]

Output: -1

Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only
happens 4-directionally.

Example 2:
Input: grid = [[0,2]]
Output: 0

Hints:
class Solution(object):
def orangesRotting(self, grid):
:type grid: List[List[int]]
:rtype: int
#Write the code here
Try
1. Take input: grid = [[2,1,11,[0,1,11,[1,0,1]] and verify the results.

2. Take input: grid = [[1,1,1],[1,0,11,[1,1,1]] and verify the results.
3. Take input: grid = [[1,2,1],[1,1,11,[1,1,0]] and verify the results.

246|Page

1.6 Longest Palindromic Substring

Given a string s, return the longest palindromic substring in s.
Example 1:

Input: s = "babad"

Output: "bab"

Explanation: "aba" is also a valid answer.

Example 2:

Input: s = "cbbd"
Output: "bb"
Hints:

class Solution(object):
def longestPalindrome(self, s):
:type s: str
:rtype: str

write code here

Try
1. Take input: s = "abbababbba" and verify the results.
2. Take input: s = "xyxxyyxxxyy" and verify the results.

1.7 Word Ladder

A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence
of words beginWord -> s1 -> s2 -> ... -> sk such that:

Every adjacent pair of words differs by a single letter.

Every si for 1 <=i <= ks in wordList. Note that beginWord does not need to be in wordList.

sk == endWord

Given two words, beginWord and endWord, and a dictionary wordList, return the number of words in the
shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.

Example 1:

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log
Output: 5

Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5
words long.

,"cog”]

Example 2:

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]

Output: 0

Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.

Hints:
class Solution(object):
def ladderLength(self, beginWord, endWord, wordList):
:type beginWord: str
:type endWord: str

247|Page

:type wordList: List[str]
:rtype: int

#Write the code here

Try
1. Take input: beginWord = "hot", endWord = "cold" and verify results.
2. Take input: beginWord = "sun", endWord = "moon" and verify results.

1.8 Longest Palindromic Substring

Given an array nums. We define a running sum of an array as runningSum[i] = sum (nums[0]...nums][i]).
Return the running sum of nums.

Input: nums = [1, 2, 3, 4]

Output: [1, 3, 6, 10]

Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].

Input: nums =[1,1,1,1, 1]
Output: [1, 2, 3, 4, 5]
Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].

Input: nums = [3, 1, 2, 10, 1]
Output: [3, 4, 6, 16, 17]

Hints:
def runningSum(self, nums: List[int]) -> List[int]:

write code here

return answer

Try
1. Take input nums = [10, 20, 30, 40] and verify the results.
2. Take input nums = [-10, 22, 36, 43] and verify the results.

1.9 Largest Rectangle in Histogram

Given an array of integer's heights representing the histogram's bar height where the width of each bar is 1,
return the area of the largest rectangle in the histogram.

Hints:
class Solution(object):
def largestRectangleArea(self, heights):
:type heights: List[int]
:rtype: int

#fWrite the code here

Try
1. Write a program to find the smallest rectangle in histogram.

PROBING FOR FURTHER QUESTIONS

248 |Page

Write a function in Python to check duplicate letters. It must accept a string, i.e., a sentence. The function
should return true if the sentence has any word with duplicate letters, else return False.

Write a code in Python to create a Morse code translator. You can take a string with alphanumeric
characters in lower or upper case. The string can also have any special characters as a part of the Morse
code. Special characters can include commas, colons, apostrophes, exclamation marks, periods, and
question marks. The code should return the Morse code that is equivalent to the string.

Write a function to detect 13th Friday. The function can accept two parameters, and both will be numbers.
The first parameter will be the number indicating the month, and the second will be the year in four digits.
Your function should parse the parameters, and it must return True when the month contains a Friday with
the 13th, else return False.

Write function to find the domain name from the IP address. The function will accept an IP address, make a
DNS request, and return the domain name that maps to that IP address while using records of PTR DNS.
You can import the Python socket library.

Write a function in Python to parse a string such that it accepts a parameter- an encoded string. This
encoded string will contain a first name, last name, and an id. You can separate the values in the string by
any number of zeros. The id will not contain any zeros. The function should return a Python dictionary with
the first name, last name, and id values. For example, if the input would be "John000Doe000123". Then the
function should return: { "first_name": "John", "last_name": "Doe", "id": "123" }

Write a function in Python to convert a decimal to a hex. It must accept a string of ASCII characters as
input. The function should return the value of each character as a hexadecimal string. You have to separate
each byte by a space and return all alpha hexadecimal characters as lowercase.

Write a program to find the largest and the smallest number and merge two sorted arrays in a given array.

2. Python Collection Exercise

2.1 Minimum Window Substring

Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such
that every character in t (including duplicates) is included in the window. If there is no such substring,

return the empty string "".

Example 1:

Input: s = "ADOBECODEBANC", t = "ABC"

Output: "BANC"

Explanation: The minimum window substring "BANC" includes ‘A’, 'B', and 'C' from string t.

Example 2:
Input: s = "a", t = "a"
Output: "a"

Explanation: The entire string s is the minimum window.

Example 3:

Input: s = "a", t = "aa"

Output:

249|Page

Explanation: Both ‘a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.

Hints:
class Solution {
public:
string minWindow(string s, string t) {

}
}s

Try
1. Take input: s = "AXYZPQRSSQTRT", t = "XYZ" and verify the results
2. Take input: s = "ABCDXYZXYZSQTRT", t = "ABC" and verify the results.

2.2 Best Time to Buy and Sell Stock

You are given an array price where prices[i] is the price of a given stock on the ith day. You want to maximize
your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that
stock. Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit,
return 0.

Example 1:

Input: prices = [7, 1,5, 3, 6, 4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.

Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7, 6, 4, 3, 1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

Hints:
class Solution {
public:
int maxProfit(vector<int>& prices) {

}
1

Try
1. Take input prices = [6, 2, 4, 3, 6, 4] and verify the results.
2. Take input prices = [1, 1, 0, 3, 7, 9] and verify the results.

2.3 Strange Printer

There is a strange printer with the following two special properties:
e The printer can only print a sequence of the same character each time.

e At each turn, the printer can print new characters starting from and ending at any place and will cover
the original existing characters.

250|Page

Given a string s, return the minimum number of turns the printer needed to print it.

Example 1:

Input: s = "aaabbb”

Output: 2

Explanation: Print "aaa" first and then print "bbb".

Example 2:

Input: s = "aba"

Output: 2

Explanation: Print "aaa" first and then print "b" from the second place of the string, which will cover the
existing character ‘a’

Hints:
class Solution {
public:
int strangePrinter(string s) {

}
}s

Try
1. Take Input: s = "xxxxyyyyzzzb" and verify the results
2. Take Input: s = "qqgsstttrr" and verify the results

2.4 Maximum Running Time of N Computers

You have n computers. You are given the integer n and 0-indexed integer array batteries where the it battery
can run a computer for batteries[i] minutes. You are interested in running all n computers simultaneously using
the given batteries. Initially, you can insert at most one battery into each computer. After that and at any
integer time moment, you can remove a battery from a computer and insert another battery any number of
times. The inserted battery can be a totally new battery or a battery from another computer. You may assume
that the removing and inserting processes take no time.

Note that the batteries cannot be recharged.

Return the maximum number of minutes you can run all the n computers simultaneously.

Example 1:

]] I W

2 minutes 1 minute 1 minute

= = =>

| | 1 1 1 2) 0 1
- w -
0 1 2 0 1 2 0 1 2 0 1 2
Input: n = 2, batteries = [3,3,3]

Output: 4

Explanation:
Initially, insert battery 0 into the first computer and battery 1 into the second computer.

251|Page

After two minutes, remove battery 1 from the second computer and insert battery 2 instead. Note that battery
1 can still run for one minute.

At the end of the third minute, battery 0 is drained, and you need to remove it from the first computer and
insert battery 1 instead.

By the end of the fourth minute, battery 1 is also drained, and the first computer is no longer running.
We can run the two computers simultaneously for at most 4 minutes, so we return 4.

S

Example 2:

1 minute 1 minute

| | | | D | D |
0 2 3 1

1 3

=]
=]
=]

o8
~e
-9
~e
w il

Input: n = 2, batteries = [1,1,1,1]
Output: 2

Explanation:

Initially, insert battery 0 into the first computer and battery 2 into the second computer.

After one minute, battery 0 and battery 2 are drained so you need to remove them and insert battery 1 into the
first computer and battery 3 into the second computer.

After another minute, battery 1 and battery 3 are also drained so the first and second computers are no longer
running. We can run the two computers simultaneously for at most 2 minutes, so we return 2.

Hints:
class Solution(object):
def maxRunTime(self, n, batteries):

:type n: int
:type batteries: List[int]
:rtype: int

Try
1. Take n = 4, batteries = [1, 1, 1, 1, 1, 1, 1] and verify the results
2. Take n = 4, batteries = [3, 3, 3, 3, 3, 3] and verify the results.

2.5 Number of Music Playlists
Your music player contains n different songs. You want to listen to goal songs (not necessarily different) during

your trip. To avoid boredom, you will create a playlist so that:
e Every song is played at least once.

e A song can only be played again only if k other songs have been played.

Given n, goals, and k, return the number of possible playlists that you can create. Since the answer can be very
large, return it modulo 10° + 7.

Example 1:

Input: n = 3, goal =3, k=1

Output: 6

Explanation: There are 6 possible playlists: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], and [3, 2, 1].

252 |Page

Example 2:

Input:n=2,goal =3, k=0

Output: 6

Explanation: There are 6 possible playlists: [1, 1, 2], [1,2, 1], [2, 1, 1], [2, 2, 1], [2, 1, 2], and [1, 2, 2].

Example 3:

Input:n =2, goal =3, k=1

Output: 2

Explanation: There are 2 possible playlists: [1, 2, 1] and [2, 1, 2].

Hints:
class Solution(object):
def numMusicPlaylists(self, n, goal, k):
:type n: int
:type goal: int
:type k: int
:rtype: int

Try
1. Take Input: n = 4, goal = 4, k = 1 and verify the results
2. Take Input: n = 8, goal = 4, k = 2 and verify the results

2.6 Text Justification

Given an array of strings wordsand a width maxWidth, format the text such that each line has
exactly maxWidth characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad
extra spaces ' ' when necessary so that each line has exactly maxWidth characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line does
not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on
the right.

For the last line of text, it should be left-justified, and no extra space is inserted between words.

Note:

e A word is defined as a character sequence consisting of non-space characters only.
e Each word's length is guaranteed to be greater than 0 and not exceed maxWidth.

e The input array word contains at least one word.

Example 1:
Input: words = ["This", "is", "an", "example", "of", "text", "justification."], maxWidth = 16
Output:
[
"This is an",
"example of text",
"justification. "

]

253|Page

Example 2:
Input: words = ["What","must","be","acknowledgment”,"shall","be"], maxWidth = 16
Output:
[
"What must be",
"acknowledgment ",
"shall be "
]
Explanation: Note that the last line is "shall be " instead of "shall be", because the last line must be left-
justified instead of fully-justified.
Note that the second line is also left-justified because it contains only one word.

Hints:
class Solution(object):
def fullJustify(self, words, maxWidth):
:type words: List[str]
:type maxWidth: int
:rtype: List[str]

Try
1. Take Input: words =

["Science","is","what","we","understand”,"well","enough","to","explain","to","a","computer.”,"Art","is","everything
" "else","we","do"], maxWidth = 20 and verify the results.

2. Take Input: words =
["Science","is","what","we","understand","well","enough","to","explain","to","a","computer.","Art","is","everything

S"else”,"we","do"], maxWidth = 10 and verify the results

3. Python Date and Time Exercise

3.1 The Birthday Paradox

The birthday paradox is based on a counter-intuitive fact that in any class of 23 students or more, there is a
higher probability of having at least two students sharing the same birthday.

Considering that there are 366 different possible dates in a year (leap year), you may first predict that it would
take a group of 183 students (50% of 366) to reach a 50% probability of at least two students sharing the same
birthday. However this prediction would be wrong as this is not how the probabilities work in this case. You can
use this example to find out more how to work out that with a class size of only 23 students, there is a
probability of 50% that at least two students sharing the same birthday.

Hints:

#The Birthday Paradox
import random

import datetime

#A function to generate a random date between two given dates
def randomDate(startDate, endDate):

#fList of 23 students in the class
classlList =

["Opal”,"Hugo", "Malek","Terrence","Jeremiah", "Abdel", "Sophie", "Ethan","Noah","Jing", "Ines

254|Page

https://statisticsbyjim.com/fun/birthday-problem/

, 'Oceana","Diego","Zofia","Layla","Julian","Andrei","Ishan","Chloe", "Mateo", "Omar", "Jour
ill, " Lilyll]
birthdayList = []

Try
1. Take classList ={*Ravi”,”salmon”,”Julia”,”’Adbul”,”Rusie”} and verify the results.

3.2 Minimum Seconds to Equalize a Circular Array

You are given a 0-indexed array nums containing n integers.At each second, you perform the following
operation on the array:

For every index i in the range [0, n - 1], replace numsJi] with either nums[i], nums[(i - 1 + n) % n], or nums|[(i +
1) % n].

Note that all the elements get replaced simultaneously.

Return the minimum number of seconds needed to make all elements in the array nums equal.

Example 1:

Input: nums = [1,2,1,2]

Output: 1

Explanation: We can equalize the array in 1 second in the following way:

- At 15t second, replace values at each index with [nums[3],nums[1],nums[3],nums[3]]. After replacement, nums
=[2,2,2,2].

It can be proven that 1 second is the minimum amount of seconds needed for equalizing the array.

Example 2:

Input: nums = [2,1,3,3,2]

Output: 2

Explanation: We can equalize the array in 2 seconds in the following way:

- At 15t second, replace values at each index with [nums[0],nums[2],nums[2],nums[2],nums[3]]. After

replacement, nums = [2,3,3,3,3].

- At 2" second, replace values at each index with [nums[1],nums[1],nums[2],nums[3],nums[4]]. After
replacement, nums = [3,3,3,3,3].

It can be proven that 2 seconds is the minimum amount of seconds needed for equalizing the array.

Example 3:

Input: nums = [5,5,5,5]

Output: 0

Explanation: We don't need to perform any operations as all elements in the initial array are the same.

Hints:
class Solution(object):
def minimumSeconds(self, nums):
:type nums: List[int]
:rtype: int

255|Page

Try
1. Take nums = [1,1,1,2,2,2,3,3] and verify the results.
2 .Take nums =[0,1,0,1,1,2,3,1] and verify the results.

3.3 One Liner Using DATETIME

Given
1. The input is of type <string>. To use the datetime module, these strings will first be converted into type

<date> using datetime.strptime(date_string, format).
2. After conversion, the dates are subtracted, i.e. (date2 - date1).days()

Note:
abs() must be used when calculating the difference as any of the dates could be bigger than the other.

Hints:
from datetime import datetime
class Solution:
def daysBetweenDates(self, datel: str, date2: str) -> int:
M = datetime.strptime(datel, '%Y-%m-%d').date()
N = datetime.strptime(date2, '%Y-%m-%d').date()
return abs((N - M).days)
class Solution(object):
def daysBetweenDates(self, datel, date2):
:type datel: str
:type date2: str
:rtype: int

Try
1. Take date as '%Y-%D-%M' and verify the result.

3.4 Time Based Key-Value Store

Design a time-based key-value data structure that can store multiple values for the same key at different time
stamps and retrieve the key's value at a certain timestamp.
Implement the TimeMap class:
e TimeMap() Initializes the object of the data structure.
o void set(String key, String value, int timestamp) Stores the key key with the value value at the given
time timestamp.
e String get(String key, int timestamp) Returns a value such that set was called previously,
with timestamp_prev <= timestamp. If there are multiple such values, it returns the value associated

with the largest timestamp_prev. If there are no values, it returns "".

Example 1:

Input

["TimeMap", "set", "get", "get", "set", "get", "get"]

([, ["foo", "bar", 1], ['foo", 1], ['foo", 3], ['foo", "bar2", 4], ['foo", 4], ["foo", 5]]
Output

[null, null, "bar", "bar", null, "bar2", "bar2"]

256 |Page

Explanation

TimeMap timeMap = new TimeMap();

timeMap.set("foo", "bar", 1); // store the key "foo" and value "bar" along with timestamp = 1.
timeMap.get("foo", 1); // return "bar"

timeMap.get("foo", 3); // return "bar", since there is no value corresponding to foo at timestamp 3 and

timestamp 2, then the only value is at timestamp 1 is "bar".

timeMap.set("foo", "bar2", 4); // store the key "foo" and value "bar2" along with timestamp = 4.
timeMap.get("foo", 4); // return "bar2"

timeMap.get("foo", 5); // return "bar2"

Hints:
class TimeMap(object):

def __init__ (self):

def set(self, key, value, timestamp):
:type key: str
:type value: str
:type timestamp: int
:rtype: None

def get(self, key, timestamp):
:type key: str
:type timestamp: int
irtype: str

Your TimeMap object will be instantiated and called as such:
obj = TimeMap()

obj.set(key,value,timestamp)

param_2 = obj.get(key,timestamp)

Try
1. Take ["TimeMap"”, "got”, "got", "got", "hot", "hot", "hot"]

([, ["foo", "bar", 1], ["foo", 1], ["foo", 3], ['foo", "bar2", 4], ['foo", 4], ["foo", 5]] and verify the results.

3.5 Number of Days between Two Dates

Write a program to count the number of days between two dates.

The two dates are given as strings, their format is YYYY-MM-DD as shown in the examples.
Example 1:

Input: date1 = "2019-06-29", date2 = "2019-06-30"

Output: 1

Example 2:

Input: date1 = "2020-01-15", date2 = "2019-12-31"

Output: 15

Hints:
class Solution(object):

257 |Page

def daysBetweenDates(self, datel, date2):
:type datel: str
:type date2: str
:rtype: int

Try
1. Take Input: date1

2. Take Input: date1

3.6 Maximum Number of Events That Can Be Attended

"2020-06-29", date2 = "2023-06-30" and verify the results.
"1959-06-29", date2 = "1991-06-30" and verify the results.

You are given an array of events where events[i] = [startDay;, endDayj]. Every event i starts at startDay;and ends

at endDay;.

You can attend an event i at any day d where startTime; <= d <= endTime;. You can only attend one event at

any time d.
Return the maximum number of events you can attend.
Example 1:

N |

Day3

Input: events = [[1,2],[2,3],[3,4]]

Output: 3

Explanation: You can attend all the three events.
One way to attend them all is as shown.

Attend the first event on day 1.

Attend the second event on day 2.

Attend the third event on day 3.

Example 2:
Input: events= [[1,2],[2,3],[3,4],[1.2]]
Output: 4

Hints:

class Solution(object):
def maxEvents(self, events):
:type events: List[List[int]]
:rtype: int

Try
1. Take Input: events = [[11,12],[12,13],[13,14],[14,15]] and verify the results.

258 |Page

2. Take Input: events = [[10,12],[12,30],[30,14],[14,55]] and verify the results.

4. Problems solving using Python

4.1 Minimum Domino Rotations For Equal Row

In a row of dominoes, tops[i] and bottomsli] represent the top and bottom halves of the i domino. (A domino
is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the i!" domino, so that tops[i] and bottoms[i] swap values.

Return the minimum number of rotations so that all the values in tops are the same, or all the values
in bottoms are the same.

If it cannot be done, return -1.

Example 1:

O P A P
SO e O A I A

Dominoes after rotations
- -
tops:
- -

wooms: L+ J(=2 EC LT

Input: tops = [2,1,2,4,2,2], bottoms = [5,2,6,2,3,2]

Output: 2

Explanation:

The first figure represents the dominoes as given by tops and bottoms: before we do any rotations.

If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated
by the second figure.

tops

—_—
[N)

Example 2:

Input: tops = [3,5,1,2,3], bottoms = [3,6,3,3,4]

Output: -1

Explanation:

In this case, it is not possible to rotate the dominoes to make one row of values equal.

Hints:

class Solution(object):
def minDominoRotations(self, tops, bottoms):

:type tops: List[int]
:type bottoms: List[int]
:rtype: int

Try
1. Take input as tops = [1,1,2,2,3,3], bottoms = [2,2,3,3,5,5] and verify the results.
2. Take input as tops = [0,0,2,2,1,1], bottoms = [1,1,0,0,7,7] and verify the results.

259 |Page

4.2 Search in Rotated Sorted Array

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k <
nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-
1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in numes,
or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4

Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

Example 3:
Input: nums = [1], target = 0
Output: -1

Hints:

class Solution(object):
def search(self, nums, target):
:type nums: List[int]
:type target: int
:rtype: int

Try
1. Take Input: nums = [3,4,5,6,7,8,9], target = 3 and verify the result.
2. Take Input: nums = [10,20,30,60,70,90], target = 4 and verify the result.

4.3 Longest Consecutive Sequence

Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence.
You must write an algorithm that runs in O(n) time.

Example 1:

Input: nums = [100,4,200,1,3,2]

Output: 4

Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.

Example 2:
Input: nums = [0,3,7,2,5,8,4,6,0,1]
Output: 9

Hints:

class Solution(object):
def longestConsecutive(self, nums):

:type nums: List[int]

260|Page

:rtype: int

Try
1. Take Input: nums = [0,1,7,2,5,8,5,6,3,1] and verify the result.
2. Take Input: nums = [1,8,1,5,1,5,1,3,1] and verify the result.

4.4 Unique Paths II

You are given anm x ninteger arraygrid. There is a robot initially located at the top-left
corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot
can only move either down or right at any point in time.

An obstacle and space are marked as 1 or O respectively ingrid. A path that the robot takes cannot
include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 10°.

Example 1:

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]

Output: 2

Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:

1. Right -> Right -> Down -> Down

2. Down -> Down -> Right -> Right

Example 2:

Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

Hints:

class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
:type obstacleGrid: List[List[int]]
:rtype: int

261|Page

Try
1. Take Input: obstacleGrid = [[0,1,0],[1,1,1],[0,0,11] and verify the result.
2. Take Input: obstacleGrid = [[1,1,1],[1,1,1],[0,0,1]] and verify the result.

4.5 Container with Most Water

You are given an integer array height of length n. There are n vertical lines drawn such that the two
endpoints of the it" line are (i, 0) and (i, height][i]).

Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.

Notice that you may not slant the container.

Example 1:

Input: height = [1,8,6,2,5,4,8,3,7]

Output: 49

Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of
water (blue section) the container can contain is 49.

Example 2:
Input: height = [1,1]
Output: 1

Hints:

class Solution(object):
def maxArea(self, height):

:type height: List[int]
:rtype: int

Try
1. Take height = [1,8,6,2,5,4,8,3,7] and verify the results.
2. Take height = [1, 1, 1] and verify the results.

4.6Frog Jump

A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not
exist a stone. The frog can jump on a stone, but it must not jump into the water.

Given a list of stones positions (in units) in sorted ascending order, determine if the frog can cross the river by
landing on the last stone. Initially, the frog is on the first stone and assumes the first jump must be 1 unit.

If the frog's last jump was k units, its next jump must be either k - 1, k, or k + 1 units. The frog can only jump in
the forward direction.

Example 1:

Input: stones = [0,1,3,5,6,8,12,17]
Output: true

262|Page

Explanation: The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to the 3rd
stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th stone, and 5 units to the
8th stone.

Example 2:

Input: stones = [0,1,2,3,4,8,9,11]

Output: false

Explanation: There is no way to jump to the last stone as the gap between the 5th and 6th stone is too large.

Hints:

class Solution(object):
def canCross(self, stones):

:type stones: List[int]
:rtype: bool

Try
1. Take Input: stones = [1, 2, 4, 3, 4, 8,9, and 11] and verify the results.
2. Take Input: stones = [2, 3, 5,7, 4, 8, 11 and 13] and verify the results.

5. Analytical problems using Python

5.1 The Monty Hall Problem

The Monty Hall problem is a counter-intuitive brain teaser based on probabilities.

This puzzle is named after Monty Hall, the TV presenter of “Let's Make a Deal”, an American TV show (known as
“Deal or No Deal” in the UK) where contenders swap boxes of different values in order to win a prize.

In a similar approach, the aim of the Monty Hall puzzle is to try to win a car by knocking on the right door. The
player is presented with three closed doors. Behind one of these doors is a luxurious car. Behind each of the
other two doors is a goat!

Here is how the game proceeds:
e You first pick a door. It could be that you picked the door with the car but you do not know that yet!

e The game show host examines the other two doors and opens one with a goat. (Note that when both
doors are hiding a goat, the presenter picks one of these doors randomly.)

e You then need to make a decision: You can either stick with your initial guess and open the door to see if
you win the car. Alternatively, you can decide to switch your door with the other closed door!

263|Page

Hints:

The Monty Hall Problem - Frequency Analysis
import random

#let's initialise our 3 doors
doors = ["goat", "goat", "car"

Randomly position the two goats and the car behind the three doors
random.shuffle(doors)

Randomly pick a door and display the selected door number

Get the computer to identify the two doors which have not been selected

If only one of these two doors contains a goat, display the door number to reveal the
goat

If both doors contain a goat, pick one of the two doors randomly and display its
number to reveal the goat

Get the computer to randomly decide whether it will keep the selected door or switch to
the other closed door

Reveal the content of all three doors

Check if the car was behind the selected door

Keep count of wins and loses when the user decide to switch doors or not
Display these counters/statistics

Repeat the above process 100 times.

If your code is working fine you should reach statistics to confirm that:
When switching doors your are twice as likely to win the car

When not switching doors your are twice as likely to get the goat!

Write the code here

Try
1. Take input as 3 doors = ["car", "goat", "car"] and verify the results.

2. Take input as 3 doors = ["car", "goat", "goat"] and verify the results.

5.2 The ice cream Stack

In this blog post, we will investigate the use of a Stack data structure to store the different flavours of the
different scoops of an ice cream!

A stack is a FILO data structure: First In Last Out and seems to be a suitable data structure for our ice cream,
where the first scoop of ice-cream being added on the cone, will be the last one to be eaten!

With a Stack data structure, you can either:
e Push new data at the end of the stack.

¢ Pop the last value of the stack.

264 |Page

In order to implement our stack will use a 1D array of 5 values, assuming that you cannot make an ice cream
with more than 5 scoops! We will use a pointer to store the index of the next empty cell of our array where
data can be added.

Using OOP programming, we will create an /ceCream class to implement our ice cream as a stack. We
will encapsulate both the array data structure and the stack pointer as private properties of
the IceCream class and we will use two public methods to push() and pop() scoops of different flavours
to/from our IceCream!

Hints:
#A class to implement a Stack that can hold up to 5 values
class IceCream():
#Constructor. ..
def __init_ (self):
self. array = [None,None,None,None,None] # Private Property
self. pointer = @ #_ Private Property
self. maxCapacity = len(self._ array) #_ Private Property

#A method to push a new scoop/flavour to the ice cream
def push(self, flavour):

#A method to pop the last scoop/flavour of the ice cream
def pop(self):
#Write the code here
#Let's instantiate our first ice cream!
myIceCream = IceCream()

Try
1. Take input a stack that can hold up to 10 values and verify the results.
2. Take input a stack that can hold up to 15 values and verify the results.

5.3 Lissajous Curve Tracing Algorithm
Lissajous curves are a family of curves described by the following parametric equations:

x(t) = A sin(at + 8)
y(t) = B sin(bt)
Lissajous curves have applications in physics, astronomy, and other sciences. Below are a few examples of

Lissajous curves that you will be able to reproduce in the Python Trinket provided below by changing the
values of constant A and B in the Python code.

3 B

a=3, b=4 a=5, b=4
6=m/2 /

J
L

a=1, b=

a=3_ b
6=m/

o
II
5
]

o]
=T
B r”x

Hints:

#Python Turtle - Lissajous Curve
import turtle

from math import cos,sin

from time import sleep

265|Page

window = turtle.Screen()
window.bgcolor ("#FFFFFF")

myPen = turtle.Turtle()
myPen.hideturtle()
myPen.tracer(0)
myPen.speed(0)
myPen.pensize(3)
myPen.color("#AAGGAA")

myPen.penup()
A = 100

B = 100

a =3

b=4

delta = 3.14/2
t=0

for i in range(9,1000):
#Write the code here
sleep(0.5)

Try
1. Take input as A = 100, B = 100, a = 3, b = 4, delta = 3.14/2, t=0 and verify the results.
2. Take input as A = 150, B = 150, a = 4, b = 3, delta = 3.14/2, t=2 and verify the results.

5.4 An interactive calculator

You're going to write an interactive calculator! User input is assumed to be a formula that consist of a number,
an operator (at least + and -), and another number, separated by white space (e.g. 1 + 1). Split user input
using str.split(), and check whether the resulting list is valid:

e If the input does not consist of 3 elements, raise a FormulaError, which is a custom Exception.

e Try to convert the first and third input to a float (like so: float_value = float(str_value)). Catch
any ValueError that occurs, and instead raise a FormulaError

e If the second input is not '+' or '-', again raise a FormulaError

If the input is valid, perform the calculation and print out the result. The user is then prompted to provide new
input, and so on, until the user enters quit.

An interaction could look like this:

>>> 1+ 1

2.0

>>>32-15

1.7000000000000002

>>> quit

Hints:

Class FormulaError(Exception): pass

def parse_input(user_input):

input_list = user_input.split()
if len(input_list) != 3:

266 |Page

https://docs.python.org/3/library/stdtypes.html#str.split

raise FormulaError('Input does not consist of three elements')
nl, op, n2 = input_list

try:
nl = float(nl)
n2 = float(n2)

except ValueError:

raise FormulaError('The first and third input value must be numbers')

return nl, op, n2

def calculate(nl, op, n2):
#Write the code here

Try
1. Take input as an operator (* and /) and verify the results.

5.5 Guitar Chords Reader

The idea of this python challenge is to write a python program to help guitar players learn and practise new

songs.

Our program will read all the chords used in a song and display and animate a visual representation/chart of

the chord being played.
First, let's recap what are the main chords when playing the guitar:

Essential Guitar Chords

e, @ @ B @
verrer [® L)
rareet [| | @ Y oo ®
sopret | | @ LY o LX)
anrrer |
ete. |
. X 3 010 X 02220 3 o033
SEEEEZ [D] F
Y Y
£ Y FIK] -
* oo
0z 2100 XX 02 32 X 33 21X
[AA DI} [EXA)

X0 2210 X X 02 31 022000

The code appearing underneath each chord indicates the position of the fingers as described on each chart.

With this code:
e “X" means the string is not played,
e "0" means the string played as an open string,

e anumber tells you which fret to place your finger on.

Hints:

#Guitar Chords Reader - www.1@lcomputing.net/guitar-chords-reader/
import time
import os

#A Python Dictionary matching chord names with "fret notation"

267 |Page

chords = {"C": "x32010", "A":"x02220", "G": "320033", "E": "@022100", "D": "xx0232", "F":
"x3321x", "Am": "x02210", "Dm": "xx0231", "Em": "022000"}

#A procedure to display where to position your fingers to play a given chord
def displayChord(chord):
fretNotation = chords[chord]

print(" + chord)
nut=""
for string in fretNotation:
if string=="x":
nut=nut+"x" # x means don't play this string
else:
nut = nut +
print(nut) #Guitar Nut
for fretNumber in range(1,5):
fret=""
for string in fretNotation:
if string==str(fretNumber):
fret=fret+"0"
else:
fret = fret + "|"
print(fret)

#Main Program Starts Here
song = "C:D:G,Em,C,D,G,Em"

#Let's read this song, one chord at a time
songChords = song.split(","
for chord in songChords:
displayChord(chord)
time.sleep(2)
#Clear the screen

os.system("cls")

Try
1. Take input chords = {"C": "x31010", "A":"x01110", "G": "320022", "E": "11100", "D": "xx0242", "F": "x3321x",
"Am": "x02110", "Dm": "xx0211", "Em": "011000"} and verify the results.

2. Take input chords = {"C": "x31110", "A":"x01110", "G": "xx0022", "E": "xx100", "D": "xx1242", "F": "x1121x",
"Am": "x011110", "Dm": "xx0111", "Em": "011000"} and verify the results

6. Game problems using Python

6.1 Breakout Tutorial using Pygame: Adding a Brick Wall

This tutorial is a series of following Pygame modules:
e Adding the Paddle
e Controlling the Paddle
e Adding a Bouncing Ball
e Adding a Brick Wall
The final stage of our tutorial focuses on adding a brick wall and a scoring system to our Breakout game:
e The player will score a point if the ball bounces against a brick.

e The player will lose a life if the ball bounces against the bottom edge of the screen.

268 |Page

https://www.101computing.net/breakout-tutorial-using-pygame-adding-the-paddle/
https://www.101computing.net/breakout-tutorial-using-pygame-controlling-the-paddle/
https://www.101computing.net/breakout-tutorial-using-pygame-adding-a-bouncing-ball/
https://www.101computing.net/breakout-tutorial-using-pygame-adding-a-brick-wall/

e Both the score and number of lives will be displayed at the top of the screen.
e A "Level Complete” message will be displayed if all bricks have been removed.

e A "Game Over” message will be displayed if the number of lives reaches zero.

The final code for the main.py is provided below. We made several changes to the code as follows:
e On line 6 we import the Brick class. (Code provided in the brick.py tab)

e On lines 39 to 57 we create three rows of bricks and add them to a group called all_bricks.

e Onlines 93 to 103 we take a life away when the ball hit the bottom edge of the screen. If the number

of lives reaches zero, we display a “Game Over” message..

e Onlines 114 to 129 we detect if the ball hits a brick. If so we remove the brick (using
the kill() method) and increment the score by one.

Hints:

#Import the pygame library and initialise the game engine

import pygame

#Let's import the Paddle Class & the Ball Class

from paddle import Paddle

from ball import Ball

from brick import Brick

pygame.init()

Define some colors

WHITE = (255,255,255)

DARKBLUE = (36,90,190)

LIGHTBLUE = (0,176,240)

RED = (255,0,0)

ORANGE = (255,100,0)

YELLOW = (255,255,0)

score = 0@

lives = 3

Open a new window

size = (800, 600)

screen = pygame.display.set_mode(size)
pygame.display.set_caption("Breakout Game")

#Write code here

Try

1. Take input WHITE = (90, 90, 90), DARKBLUE = (90, 90,190), LIGHTBLUE = (90,176,240), RED = (0, 0,0)

269 |Page

ORANGE = (255,100,255), YELLOW = (255,255,255), score = 0, lives = 3 and verify the results.

6.2 Dice Score Frequency Analysis

Let's consider a single 6-sided dice.

When using single dice, the score of the dice can be any of the 6 values/sides (1 to 6). Each value has an equal
probability of 1/6

The dice experiment can be simulated using a computer algorithm to simulate throwing a dice a 1,000 times
and keeping a record of the number of times each of the 6 values appeared. We can then calculate the
frequency of each value as a percentage. In theory, each value should have a very similar frequency of around
16.67% (matching the 1/6 probability).

When completing such an experiment in real life, we would mot likely use a tally chart to record the number of
occurrences for each of the 6 possible values.

Dice value Talles F—
n JIST SV) 2
Ay o o »
!lii AT B B
B s 2
B AHT T 1
@ AT HAT 10

To record our “tallies” in a Python program we will use a dictionary with 6 keys (the 6 values of a dice, from 1
to 6) and for each key, the associated value will be the number of occurrences of when the value appeared.

Hints:
#Dice Score Frequency Analysis

#A function to simulate throwing a 6-sided dice
def throwDice():

dice = random.randint(1,6)

return dice

Main Code Starts Here...

#Initialise a dictionary to store the frequency (tally count) of each of the 6 dice
values
tallyChart = {1:0, 2:0, 3:0, 4:0, 5:0, 6:0}

#Number of throws
n = 1000

#Let's start the experiment and repeat it n times! Let's complete our tally chart!
for i in range(@,n):

score = throwDice()

tallyChart[score] += 1

#lLet's display the results:
print(" Dice Value | Frequency | Percentage ")
print(M------m e ")
for i in range(1,7):

frequency = tallyChart[i]

210|Page

percentage = round((frequency * 100) / n , 2)
print(" + str(i) + " | " + str(frequency)+
ll%ll)

+ str(percentage) +

Try
1. Write a function to simulate throwing a two 6-sided dice and increase number of steps to 1000.

6.3 Boggle Challenge

Boggle is a word game based on a 4x4 grid of 16 letters. Each time the game is played a new grid is
generated. In the real game this is done by shaking a cube that contains 16 letter dice. The The aim of the
game is to find words that can be constructed from sequentially adjacent letters from the 4x4 grid. “Adjacent”
letters are those horizontally, vertically, and diagonally neighbouring. Words must be at least three letters long,
may include singular and plural (or other derived forms) separately, but may not use the same letter from the
grid more than once per word.

A scoring system can be used based on the number of words identified and by adding the number of letters in
each word.

D
C
S
V

.
E
L

X | 1O 0Ol m
> 2 0

Hints:

#Boggle Challenge
import random

letter=chr(random.randint(65,90)) #Generate a random Uppercase letter
(based on ASCII code)
print(letter)

Try
1. Write a code to generate a random lower and uppercase letter (based on ASCII code).
2. Write a code to generate a random lower letter (based on ASCII code).

6.4 Langton’s Ant

At the start of the simulation, the ant is randomly positioned on a 2D-grid of white cells. The ant is also given a
direction (either facing up, down, left or right).

The ant then moves according to the colour of the cell it is currently sitting in, with the following rules:
1. If the cell is white, it changes to black and the ant turns right 90°.
2. If the cell is black, it changes to white and the ant turns left 90°.
3. The ant then moves forward to the next cell, and repeat from step 1.

These simple rules lead to complex behaviours. Three distinct modes of behaviour are apparent, when starting
on a completely white grid:

1. Simplicity: During the first few hundred moves it creates very simple patterns which are often symmetric.

271|Page

2. Chaos: After a few hundred moves, a big, irregular pattern of black and white squares appears. The ant
traces a pseudo-random path until around 10,000 steps.

3. Emergent order: Finally the ant starts building a recurrent "highway” pattern of 104 steps that repeats
indefinitely.

All finite initial configurations tested eventually converge to the same repetitive pattern, suggesting that the
"highway" is an attractor of Langton'’s ant, but no one has been able to prove that this is true for all such initial
configurations

#Langton's Ant

import turtle

import time

from random import randint

#Change this value to speed up or slow down this animation
animationSpeed=2

gridSize = 15

myPen = turtle.Turtle()
myPen.shape("turtle")
myPen.tracer(0)
myPen.speed(0)
myPen.color("#000000")
topLeft_x=-180
topLeft_y=180

#Draw the grid on screen (intDim is the width of a cell on the grid)
def drawGrid(grid,intDim):
Write code here

Try
1. Write a code to verify the result considering input as animationSpeed=1 and gridSize = 5
2. Write a code to verify the result considering input as animationSpeed=6 and gridSize = 25

272|Page

6.5 Food Chain Game Using Python

For this challenge you will write a Python program that stores the organisms a food chain using a list.

4) %) ¢)cie)

foodChain = [“Grass” , “Grasshopper” , “Frog”, “Snake”, “Eagle”]

X

You program will randomly pick two organisms from the food chain. One for the player, and one for the
computer.

The program will find out the positions of these organisms in the given food chain. (This is known as
the trophic level of an organism which is the position it holds in a food chain).

The program will compare both positions; the player with the highest position in the food chain will win the
game.

We have started the code for you. Complete this code to:

e Randomly select the "computer organism” from the list.
e Make sure that both selected organisms are different.

e Compare the positions of both organisms to decide who, between the computer and the player, wins
the round.

Hints:

#Food Chain Game Using Python
import random

foodChain = ["Grass" , "Grasshopper" , "Frog", "Snake", "Eagle"]
foodChainLength = len(foodChain)

playerPosition = random.randint(@,foodChainLength-1)
playerOrganism = foodChain[playerPosition]

print("Player Organism: + playerOrganism)
#Complete code here to select a different organism for the computer

#Then work out who has the highest position to identify the winner (Player or computer)

273|Page

Write he code here

Try
1. Write a program and verify the results by considering input as foodChain = ["Grass”, "Grasshopper",

"Frog", "Snake", "Eagle"] in reverse order.

7. Multithreading and Regular Expressions

7.1 Fizz Buzz Multithreaded

You have the four functions:

e printFizz that prints the word "fizz" to the console,

e printBuzz that prints the word "buzz" to the console,

e printFizzBuzz that prints the word "fizzbuzz" to the console, and
e printNumber that prints a given integer to the console.

You are given an instance of the class FizzBuzz that has four functions: fizz, buzz, fizzbuzz and number. The
same instance of FizzBuzz will be passed to four different threads:

e Thread A: calls fizz() that should output the word "fizz".

e Thread B: calls buzz() that should output the word "buzz".

e Thread C: calls fizzbuzz() that should output the word "fizzbuzz".
e Thread D: calls number() that should only output the integers.

Modify the given class to output the series [1, 2, "fizz", 4, "buzz", ..] where the i" token (1-indexed) of the
series is:

o “fizzbuzz" if i is divisible by 3 and 5,

e “fizz" if i is divisible by 3 and not 5,

e "buzz"ifiis divisible by 5 and not 3, or

e iifiisnotdivisible by 3 or 5.
Implement the FizzBuzz class:

e FizzBuzz(int n) Initializes the object with the number n that represents the length of the sequence that
should be printed.

e void fizz(printFizz) Calls printFizz to output "fizz".
e void buzz(printBuzz) Calls printBuzz to output "buzz".
e void fizzbuzz(printFizzBuzz) Calls printFizzBuzz to output "fizzbuzz".

e void number(printNumber) Calls printnumber to output the numbers.

Example 1:
Input: n = 15
Output: [1,2,"fizz" 4,"buzz","fizz",7,8,"fizz","buzz",11,"fizz",13,14,"fizzbuzz"]

274|Page

Example 2:
Input: n =5
Output: [1,2,"fizz" 4,"buzz"]

Hints:
Class FizzBuzz(object):
def __init__ (self, n):
self.n = n

printFizz() outputs "fizz"

def fizz(self, printFizz):
:type printFizz: method
:rtype: void

printBuzz() outputs "buzz"

def buzz(self, printBuzz):
:type printBuzz: method
:rtype: void

printNumber(x) outputs "x", where x is an integer.
def number(self, printNumber):

:type printNumber: method
:rtype: void

Try
1. Write a program and verify the results by giving input: n = 15.
2. Take input: n = 50 and verify the results.

7.2 The Dining Philosophers

Five silent philosophers sit at a round table with bowls of spaghetti. Forks are placed between each pair of
adjacent philosophers.

Each philosopher must alternately think and eat. However, a philosopher can only eat spaghetti when they
have both left and right forks. Each fork can be held by only one philosopher and so a philosopher can use the
fork only if it is not being used by another philosopher. After an individual philosopher finishes eating, they
need to put down both forks so that the forks become available to others. A philosopher can take the fork on
their right or the one on their left as they become available, but cannot start eating before getting both forks.
Eating is not limited by the remaining amounts of spaghetti or stomach space; an infinite supply and an infinite
demand are assumed.

Design a discipline of behaviour (a concurrent algorithm) such that no philosopher will starve; i.e, each can
forever continue to alternate between eating and thinking, assuming that no philosopher can know when
others may want to eat or think.

2715|Page

The philosophers' ids are numbered from 0to 4 in a clockwise order. Implement the function void

wantsToEat(philosopher, pickLeftFork, pickRightFork, eat, putLeftFork, putRightFork) where:

philosopher is the id of the philosopher who wants to eat.

pickLeftFork and pickRightFork are functions you can call to pick the corresponding forks of that
philosopher.

eat is a function you can call to let the philosopher eat once he has picked both forks.

putLeftFork and putRightFork are functions you can call to put down the corresponding forks of that
philosopher.

The philosophers are assumed to be thinking as long as they are not asking to eat (the function is not
being called with their number).

Five threads, each representing a philosopher, will simultaneously use one object of your class to simulate the

process. The function may be called for the same philosopher more than once, even before the last call ends.

Example 1:

Input: n = 1

Output:

[[4.2,11,[4,1,11,10,1,1],[2,2,1],[2,1,1],[2,0,3],[2,1,2].[2,2,2],[4.0,3],[4,1,2],[0,2,1],[4,2,2],13,2,11,[3,1,1],[0,0,3]1,[0,1,2],[0,2,2]
[1,2,11,01,1,11,13,0,31,[3,1,2].[3,2,2]1,[1,0,31,[1,1,2],[1,2,2]]

Explanation:

n is the number of times each philosopher will call the function.

The output array describes the calls you made to the functions controlling the forks and the eat function, its

format is:

outputli] = [a, b, c] (three integers)

- a is the id of a philosopher.
- b specifies the fork: {1: left, 2: right}.
- ¢ specifies the operation: {1: pick, 2: put, 3: eat}.

Hints:

class DiningPhilosophers(object):

call the functions directly to execute, for example, eat()
def wantsToEat(self, philosopher, pickLeftFork, pickRightFork, eat, putLeftFork,
putRightFork):

:type philosopher: int
:type pickLeftFork: method
:type pickRightFork: method
:type eat: method

:type putLeftFork: method

276 |Page

:type putRightFork: method
:rtype: void

Try
1. Write a program and verify the results by considering input n=2 in anti-clockwise direction.
2. Write a program and verify the results by considering input n=2 in clockwise direction.

7.3 Print FooBar Alternately

Suppose you are given the following code:
class FooBar {
public void foo() {
for(inti=0;i<n;i++){
print("foo");
}
}
public void bar() {
for(inti=0;i<n;i++){
print("bar");
}
}
}

The same instance of FooBar will be passed to two different threads:
e thread A will call foo(), while

e thread B will call bar().

Modify the given program to output “foobar" n times.

Example 1:

Input: n =1

Output: “foobar"

Explanation: There are two threads being fired asynchronously. One of them calls foo(), while the other calls
bar().

“foobar" is being output 1 time.

Example 2:

Input: n =2

Output: "foobarfoobar"

Explanation: "foobar" is being output 2 times.

Hints:

class FooBar(object):
def __init__ (self, n):
self.n = n

def foo(self, printFoo):

:type printFoo: method
:rtype: void

for i in xrange(self.n):

277|Page

printFoo() outputs "foo". Do not change or remove this line.
printFoo()

def bar(self, printBar):

:type printBar: method
:rtype: void

for i in xrange(self.n):

printBar() outputs "bar". Do not change or remove this line.
printBar()

Try

1. Take Input: n = 3 and verify the results.
2. Take Input: n = 4 and verify the results.

7.4 Minimum Penalty for a Shop

You are given the customer visit log of a shop represented by 0-indexed string customers consisting only of
characters ‘N' and 'Y":

e if the i" character is 'Y', it means that customers come at the it" hour
e whereas 'N' indicates that no customers come at the it" hour.
If the shop closes at the j" hour (0 <= j <= n), the penalty is calculated as follows:
e For every hour when the shop is open and no customers come, the penalty increases by 1.
e For every hour when the shop is closed and customers come, the penalty increases by 1.

Return the earliest hour at which the shop must be closed to incur a minimum penalty.
Note that if a shop closes at the j" hour, it means the shop is closed at the hour j.

Example 1:

Input: customers = "YYNY"

Output: 2

Explanation:

- Closing the shop at the 0" hour incurs in 1+1+0+1 = 3 penalty.

- Closing the shop at the 15t hour incurs in 0+1+0+1 = 2 penalty.

- Closing the shop at the 2" hour incurs in 0+0+0+1 = 1 penalty.

- Closing the shop at the 3™ hour incurs in 0+0+1+1 = 2 penalty.

- Closing the shop at the 4" hour incurs in 0+0+1+0 = 1 penalty.

Closing the shop at 2" or 4™ hour gives a minimum penalty. Since 2 is earlier, the optimal closing time is 2.

Example 2:

Input: customers = "NNNNN"

Output: 0

Explanation: It is best to close the shop at the 0™ hour as no customers arrive.

Example 3:

Input: customers = "YYYY"

Output: 4

Explanation: It is best to close the shop at the 4" hour as customers arrive at each hour.

2718 |Page

Hints:

class Solution(object):
def bestClosingTime(self, customers):

:type customers: str
:rtype: int

Try
1. Take input customers = "XXYY" and verify the results.
2. Take input customers = "NNYY" and verify the results.

7.5 Print Zero Even Odd

You have a function printNumber that can be called with an integer parameter and prints it to the console.

For example, calling printNumber(7) prints 7 to the console.
You are given an instance of the class ZeroEvenOdd that has three functions: zero, even, and odd. The same
instance of ZeroEvenOdd will be passed to three different threads:

e Thread A: calls zero() that should only output O's.
e Thread B: calls even() that should only output even numbers.
e Thread C: calls odd() that should only output odd numbers.

Modify the given class to output the series "010203040506..." where the length of the series must be 2n.
Implement the ZeroEvenOdd class:

e ZeroEvenOdd(int n) Initializes the object with the number n that represents the numbers that should
be printed.

e void zero(printNumber) Calls printNumber to output one zero.
¢ void even(printNumber) Calls printNumber to output one even number.

e void odd(printNumber) Calls printNumber to output one odd number.

Example 1:

Input:n = 2

Output: "0102"

Explanation: There are three threads being fired asynchronously.

One of them calls zero(), the other calls even(), and the last one calls odd().
"0102" is the correct output.

Example 2:
Input:n =5
Output: "0102030405"

Hints:

class ZeroEvenOdd(object):
def init_ (self, n):
self.n = n
printNumber(x) outputs "x", where x is an integer.
def zero(self, printNumber):

2719|Page

:type printNumber: method
:rtype: void

def even(self, printNumber):

:type printNumber: method
:rtype: void

def odd(self, printNumber):

:type printNumber: method
:rtype: void

Try
1. Take input n=5 and n=3 and verify the results.
2. Take input n=3 and verify the results.

7.6 Print in Order

Suppose we have a class:
public class Foo {

public void first() { print("first"); }

public void second() { print("second"); }

public void third() { print("third"); }
}
The same instance of Foo will be passed to three different threads. Thread A will call first(), thread B will
call second(), and thread C will call third(). Design a mechanism and modify the program to ensure
that second() is executed after first(), and third() is executed after second().

Note:
We do not know how the threads will be scheduled in the operating system, even though the numbers in the
input seem to imply the ordering. The input format you see is mainly to ensure our tests' comprehensiveness.

Example 1:

Input: nums = [1,2,3]

Output: “firstsecondthird"

Explanation: There are three threads being fired asynchronously. The input [1,2,3] means thread A calls first(),
thread B calls second(), and thread C calls third(). "firstsecondthird" is the correct output.

Example 2:

Input: nums = [1,3,2]

Output: “firstsecondthird”

Explanation: The input [1,3,2] means thread A calls first(), thread B calls third(), and thread C calls second().
“firstsecondthird" is the correct output.

Hints:
Class Foo(object):
def init_ (self):
pass

def first(self, printFirst):

280|Page

:type printFirst: method
:rtype: void

printFirst() outputs "first". Do not change or remove this line.
printFirst()

def second(self, printSecond):

:type printSecond: method
:rtype: void

printSecond() outputs "second". Do not change or remove this line.
printSecond()

def third(self, printThird):

:type printThird: method
:rtype: void

printThird() outputs "third". Do not change or remove this line.
printThird()

Try

1. Take Input: nums = [1,2,2] and verify the results.
2. Take Input: nums = [2,2,2] and verify the results.

7.7 Prime Number Finder

We will create a class called PrimeNumberThread that derives from the Thread class of the threading library.
This class/thread will be used to find very large prime numbers from any given starting position (e.g. Checking
any number greater than 100,000,000,000,000 one by one to see if they are a prime number or not).

We will then run three threads concurrently, each thread starting with a different starting position .e.g.

Thread 1 will look up for prime numbers, starting from number 100,000,000,000,000
Thread 2 will look up for prime numbers, starting from number 300,000,000,000,000
Thread 3 will look up for prime numbers, starting from number 500,000,000,000,000

Hints:

#Introduction to Multi-Threading
import threading
import time

class PrimeFinderThread(threading.Thread):
def __init_ (self, id,startPos):
Calling parent class constructor
threading.Thread. init_ (self)
self.id = id
self.startPos = startPos

#Main Program Starts Here...

281|Page

#Let's intialise three different threads.Each thread will be used to dientify prime
numbers starting with a different starting position
threadl = PrimeFinderThread(1,100000000000000)

thread2
thread3

PrimeFinderThread(2,300000000000000)
PrimeFinderThread(3,500000000000000)

#Let's start our three threads to implement concurrent processing!

threadl.start()
thread2.start()
thread3.start()

Try

1. Write a program considering input as four threads in to implement concurrent processing.
2. Write a program considering input as five threads in to implement concurrent processing.

7.8 Regular expression in Python

Regular Expressions (RegEx) is a special sequence of characters that uses a search pattern to find a string or

set of strings. It can detect the presence or absence of a text by matching it with a particular pattern, and also

can split a pattern into one or more sub-patterns. Python provides a re module that supports the use of regex

in Python. Its primary function is to offer a search, where it takes a regular expression and a string. Here, it

either returns the first match or else none.

Python regex methods

The Python regex module consists of multiple methods. Below is the list of regex methods and their meaning.

Python regex methods

Method

Description

re.compile('pattern’')

Compile a regular expression pattern provided as a string into
a re.Pattern object.

re.search(pattern, str)

Search for occurrences of the regex pattern inside the target string and
return only the first match.

re.match(pattern, str)

Try to match the regex pattern at the start of the string. It returns a
match only if the pattern is located at the beginning of the string.

re.fullmatch(pattern, str)

Match the regular expression pattern to the entire string from the first to
the last character.

re.findall(pattern, str)

Scans the regex pattern through the entire string and returns all
matches.

re.finditer(pattern, str)

Scans the regex pattern through the entire string and returns an iterator
yielding match objects.

re.split(pattern, str)

It breaks a string into a list of matches as per the given regular
expression pattern.

re.sub(pattern, replacement, str)

Replace one or more occurrences of a pattern in the string with
a replacement.

re.subn(pattern, replacement,
str)

Same as re.sub(). The difference is it will return a tuple of two elements.

First, a new string after all replacement, and second the number of
replacements it has made.

Hints

import the RE module
import re

282|Page

https://pynative.com/python-regex-compile/
https://pynative.com/python-regex-search/
https://pynative.com/python-regex-pattern-matching/
https://pynative.com/python-regex-pattern-matching/#h-re-fullmatch
https://pynative.com/python-regex-findall-finditer/
https://pynative.com/python-regex-findall-finditer/#h-finditer-method
https://pynative.com/python-regex-split/
https://pynative.com/python-regex-replace-re-sub/
https://pynative.com/python-regex-replace-re-sub/#h-re-s-subn-method
https://pynative.com/python-regex-replace-re-sub/#h-re-s-subn-method

target_string = "Jessa salary is 8000%"

compile regex pattern

pattern to match any character
str_pattern = r"\w"

pattern = re.compile(str_pattern)

match regex pattern at start of the string
res = pattern.match(target_string)

match character

print(res.group())

OQutput ']’

search regex pattern anywhere inside string
pattern to search any digit

res = re.search(r"\d", target_string)
print(res.group())

Output 8

pattern to find all digits

res = re.findall(r"\d", target_string)
print(res)

Output ['8', '@', '0', '0']

regex to split string on whitespaces

res = re.split(r"\s", target_string)
print("All tokens:", res)

Output ['Jessa', 'salary', 'is', '8000%']

regex for replacement
replace space with hyphen

res = re.sub(r"\s", "-", target_string)
string after replacement:
print(res)

Output Jessa-salary-is-8000%

7.9 Regular Expressions in Python (Search, Match and Find All)

1. Searching an occurrence of pattern

re.search() : This method either returns None (if the pattern doesn’t match), or a re.MatchObject that contains

information about the matching part of the string. This method stops after the first match, so this is best suited

for testing a regular expression more than extracting data.
A Python program to demonstrate working of re.match().

import re

Lets use a regular expression to match a date string
in the form of Month name followed by day number

regex = r"([a-zA-Z]+) (\d+)"

match = re.search(regex, "I was born on June 24")

if match != None:

We reach here when the expression "([a-zA-Z]+) (\d+)"

matches the date string.

283|Page

This will print [14, 21), since it matches at index 14
and ends at 21.
print ("Match at index %s, %s" % (match.start(), match.end()))

We us group() method to get all the matches and
captured groups. The groups contain the matched values.
In particular:

match.group(@) always returns the fully matched string
match.group(1) match.group(2), ... return the capture
groups in order from left to right in the input string
match.group() is equivalent to match.group(®@)

o oo R B H

So this will print "June 24"
print ("Full match: %s" % (match.group(®@)))

So this will print "June"
print ("Month: %s" % (match.group(1)))

So this will print "24"
print ("Day: %s" % (match.group(2)))

else:
print ("The regex pattern does not match.")

Output:

Match at index 14, 21
Full match: June 24
Month: June

Day: 24

2. Matching a Pattern with Text

re.match() : This function attempts to match pattern to whole string. The re.match function returns a match

object on success, None on failure.

A Python program to demonstrate working of
findall()
import re

A sample text string where regular expression

is searched.

string = """Hello my Number is 123456789 and
my friend's number is 987654321"""

A sample regular expression to find digits.
regex = '\d+'

match = re.findall(regex, string)
print(match)

Output:

Match at index 14, 21
Full match: June 24

284|Page

Month: June
Day: 24

3. Finding all occurrences of a pattern

re.findall() : Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned
left-to-right, and matches are returned in the order found (Source: Python Docs).

A Python program to demonstrate working of
findall()
import re

A sample text string where regular expression

is searched.

string = """Hello my Number is 123456789 and
my friend's number is 987654321"""

A sample regular expression to find digits.
regex = '\d+'

match = re.findall(regex, string)
print(match)

Output:
['123456789', '987654321']

TRY
1. Check that a string contains only a certain set of characters (in this case a-z, A-Z and 0-9).

2. Search for literal strings within a string given below.
Sample text : 'The quick brown fox jumps over the lazy dog.'
Searched words : 'fox’, 'dog’, 'horse'

3. Search for literal strings within a string given below.

Sample text : 'The quick brown fox jumps over the lazy dog.'
Searched words : 'fox'

7. Python JSON

7.1 Working with JSON Data in Python

JSON JavaScript Object Notation is a format for structuring data. It is mainly used for storing and transferring
data between the browser and the server. Python too supports JSON with a built-in package called json. This
package provides all the necessary tools for working with JSON Objects including parsing, serializing,
deserializing, and many more.

JSON is JavaScript Object Notation. It means that a script (executable) file which is made of text in a
programming language, is used to store and transfer the data. Python supports JSON through a built-in
package called JSON. To use this feature, we import the JSON package in Python script. The text in JSON is
done through quoted-string which contains the value in key-value mapping within { }. It is similar to the
dictionary in Python. JSON shows an API similar to users of Standard Library marshal and pickle modules and
Python natively supports JSON features. For example

285|Page

https://docs.python.org/2/library/re.html

Hints:

EXAMPLE 1:

Python program showing
use of json package

import json

{key:value mapping}

a ={"name":"John",
"age":31,
"Salary":25000}

conversion to JSON done by dumps() function
b = json.dumps(a)

printing the output
print(b)

Example1 Output:
{"age": 31, "Salary": 25000, "name": "John"}

EXAMPLE 2:

Python program showing that

json support different primitive
types

import json

list conversion to Array
print(json.dumps(['Welcome', "to", "GeeksforGeeks"]))
tuple conversion to Array
print(json.dumps(("Welcome", "to", "GeeksforGeeks")))

string conversion to String
print(json.dumps("Hi"))

int conversion to Number
print(json.dumps(123))

float conversion to Number
print(json.dumps(23.572))

Boolean conversion to their respective values
print(json.dumps(True))
print(json.dumps(False))

None value to null
print(json.dumps(None))

Example2 Output:
["Welcome", "to", "GeeksforGeeks"]

["Welcome", "to", "GeeksforGeeks"]
IIHiII

286 |Page

123
23.572
true
false
null

Try
1. Write a python program to showing that json support different primitive by taking input as ['Hearty
Welcome', "to", "IARE College"])).

7.2 Read JSON files using Python

The full form of JSON is JavaScript Object Notation. It means that a script (executable) file which is made of text
in a programming language, is used to store and transfer the data. Python supports JSON through a built-in
package called JSON. To use this feature, we import the JSON package in Python script. The text in JSON is
done through quoted-string which contains the value in key-value mapping within { }.

Python Parse JSON — How to Read a JSON File

It's pretty easy to load a JSON object in Python. Python has a built-in package called JSON, which can be used
to work with JSON data. It's done by using the JSON module, which provides us with a lot of methods which
among loads() and load() methods are gonna help us to read the JSON file.

Deserialize a JSON String to an Object in Python

The Deserialization of JSON means the conversion of JSON objects into their respective Python objects. The
load()/loads() method is used for it. If you have used JSON data from another program or obtained it as a
string format of JSON, then it can easily be deserialized with load()/loads(), which is usually used to load from
string, otherwise, the root object is in list or dict. See the following table given below.

JSON OBJECT PYTHON OBJECT
object dict
array list
string str
null None
number (int) int
number (real) float
TRUE TRUE
FALSE FALSE

1. json.load() method
The json.load() accepts the file object, parses the JSON data, populates a Python dictionary with the data, and
returns it back to you.

Syntax:

Jjson.load(file object)

Parameter: It takes the file object as a parameter.
Return: It return a JSON Object.

Loading a JSON File in Python

Here we are going to read a JSON file named data.json the screenshot of the file is given below.
Emp_details: [{

287|Page

"emp_name":"Shubhan”,
"email”:"ksingh.shbh@gmail.com’
"job_profile”:intern”

}

{

“emp_name":"Gaurav”,
"email”:"gaurav.singh@gmail.com”,
"job_profile":developer”

}

{

"emp_name":"Nikhil”,
“email":"Nikhil@greeksforgreeks.org”,
"job_profile”:Full Time”

1]

U

Hints:

Python program to read
json file

import json

Opening JSON file
f = open('data.json')

returns JSON object as
a dictionary
data = json.load(f)

Iterating through the json

list
for i in data['emp_details']:
print(i)
Closing file
f.close()
Output:
{"emp name': 'Shubham', 'email': 'ksingh.shubh@gmail.com', 'job profile': 'intern'}
{'emp name': 'Gaurav', 'email': 'gaurav.singh@gmail.com', 'job profile': 'developer'}

{'emp name': 'Nikhil', 'email': 'nikhil@geeksforgeeks.org', 'job profile': 'Full Time'}

Try
1. Write a program to read student details a JSON input file and verify the results.

2. json.loads() Method

If we have a JSON string, we can parse it by using the_json.loads() method. json.loads() does not take the file
path, but the file contents as a string, to read the content of a JSON file we can use fileobject.read() to convert
the file into a string and pass it with json.loads(). This method returns the content of the file.

Syntax:

json.loads(S)
Parameter: it takes a string, bytes, or byte array instance which contains the JSON document as a parameter (S).

288 |Page

https://www.geeksforgeeks.org/json-loads-in-python/

Return Type: It returns the Python object.
Python — Read JSON String

Python program to read
json file

import json

JSON string
j_string = '{"name": "Bob", "languages": "English"}'
deserializes into dict and returns dict.

y = json.loads(j_string)

print("JSON string = "
print()

> Y)

JSON file
f = open ('data.json', "r")

Reading from file
data = json.loads(f.read())

Iterating through the json list
for i in data['emp_details']:

print(i)
Closing file
f.close()
Output:
JSON string = {'name': 'Bob', 'languages': 'English'}
{'emp_name': 'Shubham®', 'email': 'ksingh.shubh@gmail.com', 'job profile': 'intern'}
{'emp_name': 'Gaurav', 'email': ‘gaurav.singh@gmail.com®', 'job_profile': ‘'developer'}
{'emp_name': *Nikhil', ‘'email': °"nikhil@geeksforgeeks.org', 'job_profile': 'Full Time'}
Try

1. Read student details a JSON input file and verify the results.

7.3 Reading and Writing JSON to a File in Python

Writing JSON to a file in Python

Serializing JSON refers to the transformation of data into a series of bytes (hence serial) to be stored or
transmitted across a network. To handle the data flow in a file, the JSON library in Python uses dump()

or dumps() function to convert the Python objects into their respective JSON object, so it makes it easy to write
data to files. See the following table given below.

PYTHON OBJECT JSON OBJECT
Dict object
list, tuple array
str string
int, long, float numbers
TRUE TRUE
FALSE FALSE

289 |Page

https://www.geeksforgeeks.org/serialize-and-deserialize-complex-json-in-python/
https://www.geeksforgeeks.org/json-dump-in-python/
https://www.geeksforgeeks.org/json-dumps-in-python/

None null

Method 1: Writing JSON to a file in Python using json.dumps()
The JSON package in Python has a function called json.dumps() that helps in converting a dictionary to a JSON
object. It takes two parameters:

) dictionary — the name of a dictionary which should be converted to a JSON object.
. indent - defines the number of units for indentation

After converting the dictionary to a JSON object, simply write it to a file using the “write” function.

Hints:
import json

Data to be written
dictionary = {

"name": "sathiyajith",
"rollno": 56,
"cgpa": 8.6,

"phonenumber": "9976770500"
}

Serializing json
json_object = json.dumps(dictionary, indent=4)

Writing to sample.json
with open("sample.json", "w") as outfile:
outfile.write(json_object)

"name": "sathiyajith",
"rollno™: 56,

"cgpa": 8.6,
"phonenumber": "99767706580"

Method 2: Writing JSON to a file in Python using json.dump()

Another way of writing JSON to a file is by using json.dump() method The JSON package has the “"dump”
function which directly writes the dictionary to a file in the form of JSON, without needing to convert it into an
actual JSON object. It takes 2 parameters:

o dictionary — the name of a dictionary which should be converted to a JSON object.

o file pointer - pointer of the file opened in write or append mode.

Hints:

Python program to write JSON
to a file

import json

Data to be written
dictionary = {

"name": "sathiyajith",
"rollno": 56,
"cgpa": 8.6,

290|Page

"phonenumber": "9976770500"
}

with open("sample.json", "w") as outfile:
json.dump(dictionary, outfile)

Output:

1 {"name": "sathiyajith", “"rollno": 56, “"cgpa": 8.6, "phonenumber": “9976776566"3

Reading JSON from a file using Python

Deserialization is the opposite of Serialization, i.e. conversion of JSON objects into their respective Python
objects. The load() method is used for it. If you have used JSON data from another program or obtained it as a
string format of JSON, then it can easily be deserialized with load(), which is usually used to load from a string,
otherwise, the root object is in a list or Dict.

Reading JSON from a file using json.load()

The JSON package has json.load() function that loads the JSON content from a JSON file into a dictionary. It
takes one parameter:

¢ File pointer: A file pointer that points to a JSON file.

Hints:
import json

Opening JSON file
with open('sample.json', 'r') as openfile:

Reading from json file
json_object = json.load(openfile)

print(json_object)
print(type(json_object))

Output:

DY
, 'phonenumber': "9976770

7.4 Parse Data from JSON into Python

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read
and write for machines to parse and generate. Basically, it is used to represent data in a specified format to
access and work with data easily. Here we will learn, how to create and parse data from JSON and work with it.
Before starting the details of parsing data, We should know about jjson’ module in Python. It provides an API
that is similar to pickle for converting in-memory objects in Python to a serialized representation as well as
makes it easy to parse JSON data and files. Here are some ways to parse data from JSON using Python below:

e Python JSON to Dictionary: With the help of json.loads() function, we can parse JSON objects to
dictionary.

291|Page

https://www.geeksforgeeks.org/read-json-file-using-python/
https://www.geeksforgeeks.org/modules-available-for-serialization-and-deserialization-in-python/

jsonloads ().

JsonString weep '{"Name": "nightfuryl", "Languages": ["Python", "C++", "PHP"]}'

json.loads (JsonString)

Dictionar:
{"Name": "nightfuryl", Y

"Languages": ["Python", "C++", "PHP"]}

Hints:

importing json library
import json

geek = '{"Name": "nightfuryl", "Languages": ["Python", "C++", "PHP"]}'
geek dict = json.loads(geek)

printing all elements of dictionary
print("Dictionary after parsing: ", geek dict)

printing the values using key
print("\nValues in Languages: ", geek dict['Languages'])

Output:
Dictionary after parsing: {'Name': ‘nightfury1’, ‘Languages”: ['Python’, ‘C++', 'PHP’]}
Values in Languages: [Python’, ‘C++’, ‘PHP]

Python JSON to Ordered Dictionary: We have to use same json.loads() function for parsing the objects, but for
getting in ordered, we have to add keyword ‘object_pairs_hook=0OrderedDict' from collections module.

Hints:
import json
from collections import OrderedDict

#create Ordered Dictionary using keyword

'object_pairs_hook=0OrderDict'

data = json.loads('{"GeeksforGeeks":1, "Gulshan": 2, "nightfury 1": 3, "Geek": 4}',
object_pairs_hook=0rderedDict)

print("Ordered Dictionary: ", data)

Parse using JSON file: With the help of json.load() method, we can parse JSON objects to dictionary format by
opening the required JSON file.

Jjsonload().
data.json
Json File e |{"Name": "nightfuryl", "Languages": ["Python", "C++", "PHP"]} |
json.load (Openfile-FileHandle)
{"Name": "nightfuryl", Dictionary:
"Languages": ["Python", "C++", "PHP"]}

Hints:
importing json library
import json

292|Page

with open('data.json') as f:

data = json.load(f)
printing data after loading the json file
print(data)

Output:
{Name’: ‘nightfury1’, ‘Language’: [Python’, ‘C++', 'PHP’]}

Try

1. Access the value of key2 from the JSON
Sort JSON keys in and write them into a file
Convert the JSON into Vehicle Object

2

3

4. Convert Python objects into JSON strings. Print all the values.

5. Convert Python dictionary object (sort by key) to JSON data. Print the object members with indent level 4.
6

Convert JSON encoded data into Python objects.

8. Python NumPy

8.1 Finding ‘'n’ Fibonacci numbers.

All of us are familiar with Fibonacci Series. Each number in the sequence is the sum of the two numbers that
precede it. So, the sequence goes: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34...... In this tutorial, we will implement the same
using NumPy with the aid of Binet formula.

Binet Formula

o= (59" (52)) 4

where, alpha = (] _ZV".'_’:] heta = (‘ 2‘*"—"_’)

3%]

'n’ is the parameter which relates the first 'n’ numbers of Fibonacci Series. In the first example we are going to
findout first 10 numbers of Fibonacci Series (n = 10), after that we takes the parameter 'n’ from user and
produce the corresponding result.

Hints:
import numpy as np

We are creating an array contains n elements
for getting first 'n' Fibonacci numbers
fNumber = int(input("Enter the value of n + 1'th number : "))

a = np.arange(1l, fNumber)

print("The first {} numbers of Fibonacci series are {} . ".format(length_a, Fn))

Output:

Here user input was 10

Enter the value of n+l1'th number :10

The first 9 numbers of Fibonacci series are [1. 1. 2. 3. 5. 8. 13. 21. 34.]

293|Page

Try
1. Take input value as 50 and verify the results.
2. Take input value as 100 and verify the results.

8.2 Matrix Multiplication in NumPy

Let us see how to compute matrix multiplication with NumPy.
numpy.dot() method to find the product of 2 matrices.

For example, for two matrices A and B.

A= [[1, 2], [2, 3]]

B = [[4, 5], [6, 7]]

So, A.B = [[1*4 + 2%6, 2*4 + 3*6], [1*5 + 2*7, 2*5 + 3%*7]

So the computed answer will be: [[16, 26], [19, 31]]

Hints:

importing the module
import numpy as np

creating two matrices
p = [[1: 2]: [2: 3]]
a = [[4, 5], [6, 7]]

print(result)

Output:

Matrix p:

[[1, 21, [2, 3]1]

Matrix q:

[[4, 5], [6, 7]1]

The matrix multiplication is:

[[16 19]
[26 31]]
Try

1. Take input A = [[1, 5], [5, 1011 B = [[14, 15], [61, 71]] and verify the results.

We will be using the

2. Take input A = [[10, 50], [50, 100]] B = [[140, 105], [601, 701]] and verify the results.
3. Take input A = [[31, 25], [55, 103]] B = [[134, 175], [61, 751]] and verify the results.

8.3 Numpy Indexing

Given numpy array, the task is to replace negative value with zero in numpy array
Hints:

Python code to demonstrate
to replace negative value with ©
import numpy as np

ini_arrayl = np.array([1, 2, -3, 4, -5, -6])

printing result
print("New resulting array:

, ini_arrayl)

Output:
initial array [1 2 -3 4 -5 -6]

New resulting array:[1 2 0 4 0 @]

294|Page

Try
1. Take input arrayl
2. Take input array1

np.array ([11, 12, -13, 14, -15, -16]) and verify the results.
np.array ([101, 102, -103, 140, -105, -106]) and verify the results.

8.4 NumPy Linear Algebra

Write a Program to get the random samples of geometric distribution and return the random samples of
numpy array by using numpy.random.geometric() method.

f(k) =1 —=p)F'p

Syntax: numpy.random.geometric(p, size=None)
Return: Return the random samples of numpy array.

Example #1:
In this example we can see that by using numpy.random.geometric() method, we are able to get the random
samples of geometric distribution and return the random samples as numpy array by using this method.

Hints:

import numpy and geometric
import numpy as np
import matplotlib.pyplot as plt

Using geometric() method

#Write the code here
plt.show()

Output:

o l A -

1 2 3 4 5 6

8.5 NumPy Sorting and Searching

Write a program to find the k number of the smallest values from a NumPy array.

Examples:

Input: [1,3,5,2,4,6]
k=3

Output: [1,2,3]

Write a Program to get the random samples of geometric distribution and return the random samples of
numpy array by using numpy.random.geometric() method.

295|Page

Method 1: Using np.sort() .
Approach:

Create a NumPy array.

Determine the value of k.

Sort the array in ascending order using the sort() method.
Print the first k values of the sorted array.

Method 2: Using np.argpartition()
Approach:

1. Create a NumPy array.
2. Determine the value of k.
3. Get the indexes of the smallest k elements using the argpartition() method.

4. Fetch the first k values from the array obtained from argpartition() and print their index values with respect
to the original array.

Hints:

importing the module
import numpy as np

creating the array

arr = np.array([23, 12, 1, 3, 4, 5, 6])
print("The Original Array Content")
print(arr)

value of k
k =4

using np.argpartition()
result = np.argpartition(arr, k)

k smallest number of array
print(k, "smallest elements of the array")
print(arr[result[:k]])

Output:

The Original Array Content

[2312 1 3 4 5 6]

4 smallest elements of the array

[1345]

TRY

1. Take input: [1, -1, 3,0, 5, -2, 4, -6] and verify the results.
2. Take input: [2, -2, 3, 5, 8, -2, 9, -10] and verify the results.

8.6 NumPy Mathematics

Evaluate Einstein’s summation convention of two multidimensional NumPy arrays.
Syntax: numpy.einsum(subscripts, *operands, out=None)

296 |Page

https://www.geeksforgeeks.org/numpy-sort-in-python/
https://www.geeksforgeeks.org/numpy-argpartition-in-python/

Parameters:
subscripts: str

Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical
Einstein summation) calculation is performed unless the explicit indicator '->" is included as well as subscript
labels of the precise output form.

operands: list of array like

These are the arrays for the operation.

out: ndarray, optiona

If provided, the calculation is done into this array.
Returns: The calculation based on the Einstein summation convention.

Hints:

Einstein’s summation convention of two 2X2 matrices
Importing library

import numpy as np

Creating two 2X2 matrix
matrixl = np.array([[1, 2], [0, 2]])
matrix2 = np.array([[©, 1], [3, 4]])

print("Original matrix:")
print(matrix1)
print(matrix2)

Output
result = np.einsum("mk,kn", matrixl, matrix2)

print("Einstein’s summation convention of the two matrix:")
print(result)

Output:
Original matrix:
(1 2]

[0 2]]

[[0 1]

[3 4]

Einstein’s summation convention of the two matrix:
([6 9]
(6 8]]

8.7 NumPy Statistics

Calculate the average, variance and standard deviation in Python using NumPy. Numpy in Python is a
general-purpose array-processing package. It provides a high-performance multidimensional array object and
tools for working with these arrays. It is the fundamental package for scientific computing with Python. Numpy
provides very easy methods to calculate the average, variance, and standard deviation.

Average
Average a number expressing the central or typical value in a set of data, in particular the mode, median, or
(most commonly) the mean, which is calculated by dividing the sum of the values in the set by their number.

297 |Page

https://www.geeksforgeeks.org/python-programming-language/#Numpy

Average in Python Using Numpy:
One can calculate the average by using numpy.average() function in python.

Syntax:
numpy.average(a, axis=None, weights=None, returned=False)

Parameters:

a: Array containing data to be averaged

axis: Axis or axes along which to average a

weights: An array of weights associated with the values in a

returned: Default is False. If True, the tuple is returned, otherwise only the average is returned

Hints:

Python program to get average of a list

Importing the NumPy module
import numpy as np

#Write the code here

-]
T3

Find the number of occurrences of a sequence in a NumPy array
Find the most frequent value in a NumPy array

Combining a one and a two-dimensional NumPy Array

Build an array of all combinations of two NumPy arrays

Flatten a Matrix in Python using NumPy

Flatten a 2d numpy array into 1d array

Move axes of an array to new positions

Interchange two axes of an array

9. Counts the number of non-zero values in the array

10. Count the number of elements along a given axis

11. Trim the leading and/or trailing zeros from a 1-D array

12. Change data type of given numpy array

13. Reverse a numpy array

14. Count the number of elements along a given axis

15. Trim the leading and/or trailing zeros from a 1-D array

16. Change data type of given numpy array

17. Get the eigen values of a matrix

18. Multiply matrices of complex numbers using NumPy in Python

19. Compute the outer product of two given vectors using NumPy in Python
20. Calculate inner, outer, and cross products of matrices and vectors using NumPy
21. Compute the covariance matrix of two given NumPy arrays

22. Convert covariance matrix to correlation matrix using Python

23. Compute the Kronecker product of two multidimension NumPy arrays
24, Convert the matrix into a list.

9. PYTHON PANDAS

coONOUVTh WNER

9.1 Calculate Special Bonus

Table: Employees

T Fommmm e +
| Column Name | Type |
T Fommmm e +
| employee_id | int |

| name | varchar

| salary | int |
o R +

employee_id is the primary key (column with unique values) for this table.

298 |Page

https://www.geeksforgeeks.org/numpy-size-function-python/
https://www.geeksforgeeks.org/numpy-trim_zeros-in-python/
https://www.geeksforgeeks.org/change-data-type-of-given-numpy-array/

Each row of this table indicates the employee ID, employee name, and salary.
Write a solution to calculate the bonus of each employee. The bonus of an employee is 100% of their salary if
the ID of the employee is an odd number and the employee's name does not start with the character 'M'. The

bonus of an employee is 0 otherwise return the result table ordered by employee_id.

The result format is in the following example.

Example 1:

Input:

Employees table:

o +ommmmmm - o +
| employee_id | name | salary |
ommmm e o ommm - +
|2 | Meir 3000 |

|3 | Michael | 3800 |

|7 | Addilyn | 7400 |

| 8 |Juan | 6100 |

|9 | Kannon | 7700 |
o B e o +
Hints:

import pandas as pd

def calculate_special bonus(employees: pd.DataFrame) -> pd.DataFrame:

Output:

Output:

o e +
| employee_id | bonus |
o e +
|2 U

|3 U

|7 | 7400 |

|8 U

|9 | 7700 |
mmmmm e R +

Explanation:

The employees with IDs 2 and 8 get 0 bonus because they have an even employee_id.
The employee with ID 3 gets 0 bonus because their name starts with 'M".

The rest of the employees get a 100% bonus.

9.2 Daily Leads and Partners

Table: DailySales

dommmm e o +
| Column Name | Type |
S R +

| date_id | date |
| make_name | varchar |

|lead_id |int |
| partner_id |int |
dommmm e o +

There is no primary key (column with unique values) for this table. It may contain duplicates.

299 |Page

This table contains the date and the name of the product sold and the IDs of the lead and partner it was sold
to.
The name consists of only lowercase English letters.

For each date_id and make_name, find the number of distinct lead_id's and distinct partner_id's.
Return the result table in any order.
The result format is in the following example.

Example 1:

Input:

DailySales table:

ommmmmm e o ommmme e o +
| date_id | make_name | lead_id | partner_id |
oo GRCEEE o B TR +

| 2020-12-8 | toyota | O | 1
| 2020-12-8 [toyota |1 |0
| 2020-12-8 | toyota |1 |

| 2020-12-7 | toyota |0 |2
| 2020-12-7 | toyota |0 |

2020-12-8	honda	1	2
2020-12-8	honda	2	1
2020-12-7	honda	0	1
2020-12-7	honda	1	
2020-12-7	honda	2	1

e et e oo +

Output

e et e et G e +
| date_id | make_name | unique_leads | unique_partners |
e et e et G e +
| 2020-12-8 | toyota |2 |3 |

| 2020-12-7 | toyota | 1 | 2 |

| 2020-12-8 | honda | 2 |2 |

| 2020-12-7 | honda |3 | 2 |
e +ommmmm e oo G e +
Explanation:

For 2020-12-8, toyota gets leads = [0, 1] and partners = [0, 1, 2] while honda gets leads = [1, 2] and partners =
[1, 2].

For 2020-12-7, toyota gets leads = [0] and partners = [1, 2] while honda gets leads = [0, 1, 2] and partners = [1,
2].

Hints:
import pandas as pd

def daily leads_and_partners(daily_sales: pd.DataFrame) -> pd.DataFrame:

9.3 Game Play Analysis |
Activity

300|Page

o Fom e +

| Column Name | Type |

o Fom e +

| player_id |int |

| device_id |int |

| event_date |date |

| games_played | int |

mmmmm e +ommmmmme- +

(player_id, event_date) is the primary key (combination of columns with unique values) of this table.
This table shows the activity of players of some games.

Each row is a record of a player who logged in and played a number of games (possibly 0) before logging out
on someday using some device.

Write a solution to find the first login date for each player.
Return the result table in any order.
The result format is in the following example.

Example 1:

Input:

Activity table:

T TR Fommmmm e o e Fmmmm e +
| player_id | device_id | event_date | games_played |
T TR Fommmmm e o e Fmmmm e +
| 1 |2 |2016-03-01]5 |

| 1 |2 |2016-05-02 | 6 |

|2 |3 |2017-06-25]1 |

13 |1 | 2016-03-02 | 0 |

|3 |4 |2018-07-03|5 |

T TR Fommmmm e o e Fmmmm e +
Output

oo E RCEEEEEE +

| player_id | first_login |

oo E RCEEEEEE +

| 1 | 2016-03-01 |

|2 | 2017-06-25 |

|3 |2016-03-02 |

T TR Fommm e +

Hints:

import pandas as pd

def game_analysis(activity: pd.DataFrame) -> pd.DataFrame:

9.4 Article Views |

Table: Views

o +ommmmmmee +
| Column Name | Type |
o +ommmmmmee +

| article_id |int |
| author_id |int |

301|Page

| viewer_id |int |

| view_date |date |

oo o +

There is no primary key (column with unique values) for this table, the table may have duplicate rows.

Each row of this table indicates that some viewer viewed an article (written by some author) on some date.
Note that equal author_id and viewer_id indicate the same person.

Write a solution to find all the authors that viewed at least one of their own articles.
Return the result table sorted by id in ascending order.

The result format is in the following example.

Example 1:

Input:

Views table:

mmmm e e TR B e EEEEE +
| article_id | author_id | viewer_id | view_date |
mmmm e e TR B e EEEEE +
| 1 |3 | 5 | 2019-08-01 |

| 1 |3 | 6 | 2019-08-02 |

| 2 | 7 | 7 | 2019-08-01 |

| 2 | 7 | 6 | 2019-08-02 |

| 4 |7 |1 | 2019-07-22 |

|3 | 4 | 4 | 2019-07-21 |

|3 | 4 | 4 | 2019-07-21 |
oo e e oo +
Output

+--mmm- +

lid |

+--mmm- +

14 |

17 |

+--mmm- +

Hints:

import pandas as pd