

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad – 500043

Electrical and Electronics Engineering

List of Laboratory Experiments

POWER SYSTEMS LABORATORY											
Course Code	Category	Hours/Week			Credits	Maximum Marks					
AEEC44	Core	L	T	P	С	CIA	SEE	Total			
		0	0	3	1.5	30	70	100			
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes:36			Total Classes: 36						
Branch: EEE	Semester: VII	AcademicYear:2023-24				Regulation:UG20					

Course overview: The main objective of the course is to provide an overview of the principles of basic protection circuits such as miniature circuit breaker, High rupturing fuse and protection under thermal overload condition. It provides in depth analysis of Ferranti effect and surge impedance loading of a transmission line. It provides in depth knowledge on working principles of various types of relays. It also deals with earth fault protection and feeder protection schemes

Course objectives:

The students will try to learn:

- I. The importance of protection and plotting the characteristics of MCB and Fuse
- II. The parameters, surge impedance loading and reactive power compensation of transmission lines
- III. The concept of Ferranti effect of a transmission lines
- IV. How to Calculate positive, negative and zero sequence impedances of synchronous machine

Course outcomes:

After successful completion of the course, students should be able to:

- CO 1: Understands the Characteristics of Miniature Circuit Breaker (MCB)
- CO 2: Choose ABCD parameters to determine efficiency and performance of transmission lines
- **CO 3: Examine** the Performance of impedance, over current relay and other relays.
- **CO 4: Determine** the efficiency of string of insulators
- CO 5: Measure of Positive, negative and zero sequence impedances of synchronous machine.

WEEK NO	EXPERIMENT NAME	co
WEEK-I	CHARACTERISTICS OF AN MCB Plotting the Characteristics of Miniature Circuit Breaker (MCB).	CO1
WEEK-II	CHARACTERISTICS OF FUSE AND THERMAL OVERLOAD PROTECTION Study of characteristics of High Rupturing Capacity (HRC) fuse and tripping of bimetallic hermal overload protection and its characteristics.	CO1

		CO2		
ABCD PARAMETERS OF TRANSMISSION LINE WEEK-III				
WEEK-III	Measurement of ABCD parameters of a transmission line	CO2		
WEEK-IV	FERRANTI EFFECT IN A TRANSMISSION LINE			
	Study of Ferranti effect in the transmission line			
WEEK-V	SURGE IMPEDANCE LOADING			
	Study of Surge Impedance Loading (SIL) of a transmission line.			
	EFFECT OF SHUNT COMPENSATION.			
WEEK-VI	Determine shunt compensation to counteract the voltage rise on no load and zero regulation at different loads in a transmission line.	CO6		
WEEK-VII	VOLTAGE PROFILE IMPROVEMENT USING TAP CHANGING TRANSFORMER			
	Study of voltage improvement by reactive power control using tap changing transformer.			
WEEK-VIII	EFFICIENCY AND REGULATION OF A TRANSMISSION LINE	CO2		
	Determine the performance of a transmission line by calculating its efficiency and regulation.	CO3		
WEEK-IX	PERFORMANCE OF IMPEDANCE RELAY			
	Study the working principle of impedance relay and its effect during faults in a transmission line	CO3		
WEEK-X	PERFORMANCE OF OVER CURRENT RELAY			
	Study the working principle of over current relay and its effect during faults in a transmission line			
WEEK-XI	EARTH FAULT PROTECTION			
	Study of earth fault detection methods and various earth fault protection schemes	CO3		
WEEK-XII	FEEDER PROTECTION			
	Study the various protection schemes in radial feeder under various fault conditions	CO5		
WEEK-XIII	MEASURMENT OF SEQUENCE IMPEDANCES OF SYNCHRONOUS MACHINE			
	Measurement of positive, negative and zero sequence impedances of synchronous machine by using direct method and fault analysis method			
WENT VIV	STRING EFFICIENCY OF INSULATORS			
WEEK-XIV	Determination of string efficiency in a string of insulators.			