

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad – 500043

List of Laboratory Experiments

ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY											
Course Code	Category	Hours / Week Cred			Credits	Maximum Marks					
AEED03	Foundation	L	T	P	C	CIA	SEE	Total			
		0	0	2	1	40	60	100			
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45 Total Classes: 45									
II Semester: CSE / CSE(DS) / CSE(CS)	Semester: II	Academic Year: 2023-24				Regulation: BT23					

Course overview:

This course **serves** as a foundation course on electrical engineering. It **covers** a broad range of fundamental electrical circuits and devices. The **concepts** of current, voltage, power, basic circuit elements, electrical and electronic devices and their **application** in more complex electrical systems are to be imparted to the students.

Course objectives:

The students will try to learn:

- I. The basic laws for different circuits.
- II. The elementary experimental and modeling skills for handling problems with electrical circuits in the industries and domestic applications to excel in professional career.
- III. The intuitive knowledge needed to analyze the various circuit theorems to calculate the performance parameters.
- IV. The characteristics of semiconductor devices like diode and transistor.

Course outcomes:

At the end of the course students should be able to:

CO1: Understand the electric circuits by providing laws

CO2: Verify the Superposition and Thevenin's theorems.

CO3: Verify the Norton's, Maximum power transfer and Reciprocity theorems.

CO4: Acquire basic knowledge on the working of diodes to plot their characteristics

CO5: Determine the efficiency, regulation of half and full wave rectifier circuits.

CO6: Identify transistor configurations and their modes of operation.

WEEK NO	EXPERIMENT NAME	CO
WEEK – I	OHM' S LAW	
	Verification of Ohm's law.	CO1
WEEK – II	KIRCHOFF'S CURRENT LAW AND VOLTAGE LAW	G0.1
	Verification of Kirchhoff's current and voltage laws.	CO1
WEEK – III	SUPERPOSITION THEOREM	CO2
	Verification of superposition theorem.	
WEEK – IV	THEVENIN'S THEOREM	00.
	Determine load or unknown current using Thevenin's equivalent circuit.	CO2
WEEK – V	NORTON'S THEOREM	

	Determine load or unknown current using Norton's equivalent circuit.	CO2	
WEEK – VI	MAXIMUM POWER TRANSFER THEOREM	CO2	
	Verify of maximum power transfer theorem.		
WEEK – VII	RECIPROCITY THEOREM		
	Verification of reciprocity theorem.	CO4	
WEEK -VIII	PN JUNCTION DIODE		
	Study the characteristics of PN junction diode.	CO4	
WEEK - IX	ZENER DIODE		
	Study the characteristics of Zener diode and breakdown mechanism.	CO4	
WEEK - X	HALF WAVE RECTIFIER WITH AND WITHOUT FILTER	CO.	
	Determine the efficiency of, regulation of half wave rectifier circuit.	CO5	
WEEK - XI	FULL WAVE RECTIFIER WITH AND WITHOUT FILTER	CO5	
	Determine the efficiency of, regulation of full wave rectifier circuit.		
WEEK - XII	TRANSISTOR		
	Study the characteristics of Transistor with common emitter (CE) configuration.	CO6	
WEEK - XIII	TRANSISTOR	CO6	
	Study the characteristics of Transistor with common base (CB) configuration. COMMON EMITTER AMPLIFIER		
WEEK - XIV	Frequency response of common emitter amplifier and calculate the bandwidth of output	CO6	
	response.		