

# INSTITUTE OF AERONAUTICAL ENGINEERING

### (Autonomous)

Dundigal, Hyderabad – 500043

### **Electrical and Electronics Engineering**

## **List of Laboratory Experiments**

| ELECTRICAL CIRCUITS LABORATORY |                       |                        |   |   |                  |                  |     |       |  |  |  |
|--------------------------------|-----------------------|------------------------|---|---|------------------|------------------|-----|-------|--|--|--|
| Course Code                    | Category              | Hours / Week           |   |   | Credits          | Maximum Marks    |     |       |  |  |  |
| AEED04                         | Foundation            | L                      | T | P | C                | CIA              | SEE | Total |  |  |  |
|                                |                       | 0                      | 0 | 2 | 1                | 40               | 60  | 100   |  |  |  |
| Contact Classes: Nil           | Tutorial Classes: Nil | Practical Classes: 45  |   |   | Total Classes:45 |                  |     |       |  |  |  |
| Branch: EEE                    | Semester: I           | Academic Year: 2023-24 |   |   |                  | Regulation: BT23 |     |       |  |  |  |

#### Course overview:

The course is designed to provide students with hands-on experience and practical skills in the field of electrical engineering. The course serves as a complement to theoretical concepts learned in the concurrent electrical circuits course. Through a series of structured experiments, students gain an in-depth understanding of fundamental electrical circuits, components, measurement techniques, and troubleshooting procedures.

### **Course objectives:**

- I. The gap between theoretical knowledge and practical applications by exposing students to a wide range of electrical components and circuit configurations.
- II. The essential skills in circuit design, measurement, testing, and analysis using laboratory equipment such as multimeters, and power supplies.
- III. The basic laws, network reduction techniques and theorems for different circuits.

#### **Course outcomes:**

- CO1: Solve the source resistance, currents, voltage and power using various laws associated with electrical circuits
- **CO2:** Analyze the alternating quantities for different periodic waveforms.
- CO3: Perform the superposition principle, reciprocity and maximum power transfer condition for the electrical network with DC excitation.
- **CO4:** Demonstrate Thevenin's and Norton's theorems to reduce complex networks into simple equivalent networks with DC excitation.
- CO5: Apply Faraday's laws of electromagnetic induction for calculating the various performance parameters in magnetic circuits.
- **CO6:** Make use of two port network parameters for enumerating the symmetry, reciprocity, internal voltages and currents in the various electrical circuits.

| WEEK NO    | EXPERIMENT NAME                                                                            | со  |  |
|------------|--------------------------------------------------------------------------------------------|-----|--|
| WEEK – I   | OHM' S LAW                                                                                 |     |  |
|            | Verification of Ohm's law.                                                                 | CO1 |  |
| WEEK – II  | KIRCHOFF'S CURRENT LAW AND VOLTAGE LAW                                                     | CO1 |  |
|            | Verification of Kirchhoff's current and voltage laws.                                      |     |  |
| WEEK – III | MESH ANALYSIS                                                                              | CO1 |  |
|            | Determination of mesh currents in complex electrical circuit                               | 001 |  |
| WEEK – IV  | NODAL ANALYSIS                                                                             |     |  |
|            | Determination of nodal voltages in complex electrical circuit.                             | CO4 |  |
| WEEK – V   | CHARECTERISTICS OF PERIODIC WAVEFORMS                                                      | CO3 |  |
|            | Calculate Instantaneous, Peak, Peak to peak, Average and RMS values of periodic wave form. |     |  |
| WEEK – VI  | DETERMINATION OF CIRCUIT IMPEDANCE                                                         | CO3 |  |

|             |                                                                                | <u> </u> |  |
|-------------|--------------------------------------------------------------------------------|----------|--|
|             | Find the impedance of series RL, RC and RLC circuits.                          |          |  |
| WEEK – VII  | THEVENIN'S THEOREM                                                             | G0.4     |  |
|             | Determine load or unknown current using Thevenin's equivalent circuit.         | CO4      |  |
| WEEK-VIII   | NORTON'S THEOREM                                                               | CO4      |  |
|             | Determine load or unknown current using Norton's equivalent circuit.           |          |  |
| WEEK - IX   | SUPERPOSITION THEOREM                                                          | 604      |  |
|             | Verification of superposition theorem.                                         | CO4      |  |
| WEEK - X    | RECIPROCITY THEOREM                                                            | 005      |  |
|             | Verification of reciprocity theorem.                                           | CO5      |  |
| WEEK - XI   | SERIES AND PARALLEL RESONANCE                                                  | go.:     |  |
|             | Verification of series and parallel resonance.                                 | CO6      |  |
| WEEK - XII  | MAXIMUM POWER TRANSFER THEOREM                                                 | CO6      |  |
|             | Verify of maximum power transfer theorem.                                      | C00      |  |
| WEEK - XIII | Z AND Y PARAMETERS                                                             | CO6      |  |
|             | Determine the open circuit and short circuit parameters for two port networks. |          |  |
| WEEK - XIV  | H AND ABCD PARAMETERS                                                          | 001      |  |
|             | Determine the hybrid and transmission line parameters for two port networks.   | CO6      |  |