

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad – 500043

Electrical and Electronics Engineering

List of Laboratory Experiments

AC MACHINES LABORATORY										
Course Code	Category	Hours / Week Credits Maximum Marks			ks					
AEED13	Core	L	T	P	C	CIA	SEE	Total		
		0	0	2	1	40	60	100		
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45			Total Classes:45					
Branch: EEE	Semester: III	Academic Year: 2023-24 Regulation:				n: BT23				

Course overview:

This course is intended to train the students on alternating current machines. It provides hands-on experience by conducting various direct and indirect tests on transformers, synchronous and asynchronous machines to analyze the characteristics of ac machines and separate various losses. This course also enables to develop skills to select, install, operate, and maintain various types of ac machines and transformers tests.

Course objectives:

The students will try to learn:

- I. The elementary experimental and modeling skills for handling problems with electrical machines in industries and domestic applications
- II. The operation of AC machines and its role in power transmission and generating stations
- III. The automation concepts through programmable logic controllers to control the speed and starting current.

Course outcomes:

After successful completion of the course, students should be able to:

- CO1: Select suitable testing strategies for evaluating the performance characteristics of transformers.
- CO2: Determine the performance parameters of induction motor by conducting direct and indirect tests
- CO3: Explain the parallel operation of alternators for load sharing under various loading conditions.
- **CO4:** Distinguish EMF and MMF methods for the computation of voltage regulation of an alternator.
- CO5: Estimate voltage and current swings in salient pole alternator for determination of direct and quadrature axis reactance.
- **CO6:** Apply programmable logic controllers for limiting the starting current of poly phase induction motors.

EXPERIMENT NAME	CO
OC AND SC TEST ON SINGLE PHASE TRANSFORMER	CO1
Determine the equivalent circuit parameters; predetermine the efficiency and regulation by open circuit and short circuit test on a single-phase transformer	
SUMPNER'STEST	CO1
Predetermine the efficiency and regulation of two identical single-phase transformers	
	OC AND SC TEST ON SINGLE PHASE TRANSFORMER Determine the equivalent circuit parameters; predetermine the efficiency and regulation by open circuit and short circuit test on a single-phase transformer SUMPNER'STEST

		CO1				
WEEK – III	LOADTESTON SINGLE PHASE TRANSFORMERS					
	Determination of efficiency by load test on a single phase transformer					
WEEK – IV	SCOTTCONNECTIONOFTRANSFORMERS	CO2				
	Conversion of three phase to two phase using single phase transformers					
WEEK – V	SEPERATION OF CORE LOSSES IN SINGLE PHASE TRANSFORMER	CO2				
	Find out the eddy current and hysteresis losses in single Phase Transformers					
WEEK – VI	HEAT RUN TEST ON SINGLE PHASE TRANSFORMERS	CO2				
	Determine the temperature rise in three single phase transformers set.					
WEEK – VII	BRAKE TEST ON THREE PHASE SQUIRREL CAGE INDUCTION MOTOR					
	Plot the performance characteristics of three phase Induction Motor					
WEEK-VIII	CIRCLE DIAGRAM OF THREE PHASE SQUIRREL CAGE INDUCTION MOTOR	CO3				
	Plot the circle diagram and predetermine the efficiency and losses of three phase squirrel cage Induction Motor					
WEEK - IX	REGULATION OF ALTERNATOR BY EMF METHOD					
	Determine the regulation of alternator using synchronous impedance method					
WEEK - X	REGULATION OF ALTERNATOR BY MMF METHOD					
	Determine the regulation of alternator using amperes turns method					
WEEK - XI	SLIP TEST ON THREE PHASE SALIENT POLE SYNCHRONOUS MOTOR					
	Determination of Xd and Xq in a three-phase salient pole synchronous motor					
WEEK - XII	'V' AND INVERTED 'V' CURVES OF SYNCHRONOUS MOTOR					
	Plot V and inverted V curves to study the effect of power factor in synchronous motor					
WEEK - XIII	EQUIVALENT CIRCUIT PARAMETERS OF SINGLE-PHASE INDUCTION MOTOR	CO4				
	Determine the equivalent circuit parameters of a single-phase induction motor					
WEEK - XIV	STARTING AND SPEED CONTROL OF INDUCTION MOTOR USING PLC	CO4				
	Implementation of star-delta starter using PLC; Speed control of three phase slip ring induction motor with rotor resistance cutting using PLC					